PathWave
FPGA 2022

Update 1.0

M KEYSIGHT USER GUIDE

Notices
Copyright Notice
© Keysight Technologies 2018-2022

No part of this manual may be reproduced in
any form or by any means (including elec-
tronic storage and retrieval or translation
into a foreign language) without prior agree-
ment and written consent from Keysight
Technologies, Inc. as governed by United

States and international copyright laws.

Manual Part Number

Published By

Keysight Technologies
1400 Fountaingrove Pkwy
Santa Rosa, CA
95403-1738, United States

Edition

Edition 3.0, February, 2023
Printed in USA

Regulatory Compliance

This product has been designed and tested
in accordance with accepted industry stand-
ards, and has been supplied in a safe con-
dition. To review the Declaration of
Conformity, go to http://www.key-

sight.com/go/conformity.

Warranty

THE MATERIAL CONTAINED IN THIS
DOCUMENT IS PROVIDED “AS IS,” AND IS
SUBJECT TO BEING CHANGED, WITHOUT
NOTICE, IN FUTURE EDITIONS. FURTHER,
TO THE MAXIMUM EXTENT PERMITTED BY
APPLICABLE LAW, KEYSIGHT DISCLAIMS
ALL WARRANTIES, EITHER EXPRESS OR
IMPLIED, WITH REGARD TO THIS MANUAL
AND ANY INFORMATION CONTAINED
HEREIN, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE. KEYSIGHT SHALL
NOT BE LIABLE FOR ERRORS OR FOR
INCIDENTAL OR CONSEQUENTIAL
DAMAGES IN CONNECTION WITH THE
FURNISHING, USE, OR PERFORMANCE OF
THIS DOCUMENT OR OF ANY
INFORMATION CONTAINED HEREIN.
SHOULD KEYSIGHT AND THE USER HAVE A
SEPARATE WRITTEN AGREEMENT WITH
WARRANTY TERMS COVERING THE
MATERIAL IN THIS DOCUMENT THAT
CONFLICT WITH THESE TERMS, THE
WARRANTY TERMS IN THE SEPARATE
AGREEMENT SHALL CONTROL.

KEYSIGHT TECHNOLOGIES DOES NOT
WARRANT THIRD-PARTY SYSTEM-LEVEL
(COMBINATION OF CHASSIS,
CONTROLLERS, MODULES, ETC.)
PERFORMANCE, SAFETY, OR REGULATORY
COMPLIANCE, UNLESS SPECIFICALLY
STATED.

Technology Licenses

The hardware and/or software described in
this document are furnished under a license
and may be used or copied only in accord-

ance with the terms of such license.

U.S. Government Rights

The Software is “commercial computer soft-
ware,” as defined by Federal Acquisition
Regulation (“FAR”) 2.107. Pursuant to FAR
12.212 and 27.405-3 and Department of
Defense FAR Supplement (“DFARS”)
227.7202, the U.S. government acquires
commercial computer software under the
same terms by which the software is cus-
tomarily provided to the public. Accordingly,
Keysight provides the Software to U.S. gov-
ernment customers under its standard com-
mercial license, which is embodied in its End
User License Agreement (EULA), a copy of
which can be found at http://www.key-
sight.com/find/sweula. The license set forth in

the EULA represents the exclusive authority

by which the U.S. government may use,
modify, distribute, or disclose the Software.
The EULA and the license set forth therein,
does not require or permit, among other
things, that Keysight: (1) Furnish technical
information related to commercial computer
software or commercial computer software
documentation that is not customarily
provided to the public; or (2) Relinquish to,
or otherwise provide, the government rights
in excess of these rights customarily
provided to the public to use, modify, repro-
duce, release, perform, display, or disclose
commercial computer software or com-
mercial computer software documentation.
No additional government requirements bey-
ond those set forth in the EULA shall apply,
except to the extent that those terms, rights,
or licenses are explicitly required from all pro-
viders of commercial computer software pur-
suant to the FAR and the DFARS and are set
forth specifically in writing elsewhere in the
EULA. Keysight shall be under no obligation
to update, revise or otherwise modify the
Software. With respect to any technical data
as defined by FAR 2.101, pursuant to FAR
12.211 and 27.404.2 and DFARS 227.7102,
the U.S. government acquires no greater
than Limited Rights as defined in FAR 27.401
or DFAR 227.7103-5 (c), as applicable in any

technical data.

Safety Notices

A CAUTION notice denotes a hazard. It calls
attention to an operating procedure, practice,
or the like that, if not correctly performed or
adhered to, could result in damage to the
product or loss of important data. Do not pro-
ceed beyond a CAUTION notice until the
indicated conditions are fully understood and

met.

Page iii

http://www.keysight.com/go/conformity
http://www.keysight.com/go/conformity
http://www.keysight.com/find/sweula
http://www.keysight.com/find/sweula

A WARNING notice denotes a hazard. It calls
attention to an operating procedure, prac-
tice, or the like that, if not correctly per-
formed or adhered to, could result in
personal injury or death. Do not proceed bey-
ond a WARNING notice until the indicated

conditions are fully understood and met.

The following safety precautions should be
observed before using this product and any

associated instrumentation.

This product is intended for use by qualified
personnel who recognize shock hazards and
are familiar with the safety precautions
required to avoid possible injury. Read and
follow all installation, operation, and main-
tenance information carefully before using

the product.

If this product is not used as specified, the
protection provided by the equipment could
be impaired. This product must be used in a
normal condition (in which all means for pro-

tection are intact) only.

The types of product users are:

o Responsible body is the individual or
group responsible for the use and main-
tenance of equipment, for ensuring that
the equipment is operated within its spe-
cifications and operating limits, and for
ensuring operators are adequately
trained.

o Operators use the product for its inten-
ded function. They must be trained in
electrical safety procedures and proper
use of the instrument. They must be pro-
tected from electric shock and contact
with hazardous live circuits.

« Maintenance personnel perform routine
procedures on the product to keep it
operating properly (for example, setting
the line voltage or replacing consumable
materials). Maintenance procedures are
described in the user documentation.
The procedures explicitly state if the
operator may perform them. Otherwise,

they should be performed only by ser-
vice personnel.

 Service personnel are trained to work on
live circuits, perform safe installations,
and repair products. Only properly
trained service personnel may perform
installation and service procedures.

Operator is responsible to maintain safe
operating conditions. To ensure safe oper-
ating conditions, modules should not be
operated beyond the full temperature range
specified in the Environmental and physical
specification. Exceeding safe operating con-
ditions can result in shorter lifespans,
improper module performance and user
safety issues. When the modules are in use
and operation within the specified full tem-
perature range is not maintained, module
surface temperatures may exceed safe hand-
ling conditions which can cause discomfort
or burns if touched. In the event of a module
exceeding the full temperature range,
always allow the module to cool before

touching or removing modules from chassis.

Keysight products are designed for use with
electrical signals that are rated Meas-
urement Category | and Measurement Cat-
egory Il as described in the International
Electrotechnical Commission (IEC) Standard
|IEC 60664. Most measurement, control, and
data I/0 signals are Measurement Category
I and must not be directly connected to
mains voltage or to voltage sources with
high transient over-voltages. Measurement
Category Il connections require protection
for high transient over-voltages often asso-
ciated with local AC mains connections.
Assume all measurement, control, and data
1/0 connections are for connection to Cat-
egory | sources unless otherwise marked or
described in the user documentation.

Exercise extreme caution when a shock haz-
ard is present. Lethal voltage may be present
on cable connector jacks or test fixtures. The
American National Standards Institute
(ANSI) states that a shock hazard exists
when voltage levels greater than 30V RMS,
42.4V peak, or 60VDC are present. A good
safety practice is to expect that hazardous
voltage is present in any unknown circuit

before measuring.

Operators of this product must be protected
from electric shock at all times. The respons-
ible body must ensure that operators are pre-
vented access and/or insulated from every
connection point. In some cases, con-
nections must be exposed to potential
human contact. Product operators in these
circumstances must be trained to protect
themselves from the risk of electric shock. If
the circuit is capable of operating at or above
1000V, no conductive part of the circuit may

be exposed.

Do not connect switching cards directly to
unlimited power circuits. They are intended
to be used with impedance-limited sources.
NEVER connect switching cards directly to
AC mains. When connecting sources to
switching cards, install protective devices to

limit fault current and voltage to the card.

Before operating an instrument, ensure that
the line cord is connected to a properly-
grounded power receptacle. Inspect the con-
necting cables, test leads, and jumpers for
possible wear, cracks, or breaks before each

use.

When installing equipment where access to
the main power cord is restricted, such as
rack mounting, a separate main input power
disconnect device must be provided in close
proximity to the equipment and within easy

reach of the operator.

For maximum safety, do not touch the

product, test cables, or any other

Page iv

instruments while power is applied to the cir-
cuit under test. ALWAYS remove power from
the entire test system and discharge any
capacitors before: connecting or dis-
connecting cables or jumpers, installing or
removing switching cards, or making internal
changes, such as installing or removing jump-

ers.

Do not touch any object that could provide a
current path to the common side of the cir-
cuit under test or power line (earth) ground.
Always make measurements with dry hands
while standing on a dry, insulated surface
capable of withstanding the voltage being

measured.

The instrument and accessories must be
used in accordance with its specifications
and operating instructions, or the safety of

the equipment may be impaired.

Do not exceed the maximum signal levels of
the instruments and accessories, as defined
in the specifications and operating inform-
ation, and as shown on the instrument or

test fixture panels, or switching card.

When fuses are used in a product, replace
with the same type and rating for continued

protection against fire hazard.

Chassis connections must only be used as
shield connections for measuring circuits,

NOT as safety earth ground connections.

If you are using a test fixture, keep the lid
closed while power is applied to the device
under test. Safe operation requires the use of

a lid interlock.

Instrumentation and accessories shall not be

connected to humans.

Before performing any maintenance, dis-

connect the line cord and all test cables.

To maintain protection from electric shock
and fire, replacement components in mains

circuits - including the power transformer,

test leads, and input jacks — must be pur-
chased from Keysight. Standard fuses with
applicable national safety approvals may be
used if the rating and type are the same.
Other components that are not safety-
related may be purchased from other sup-
pliers as long as they are equivalent to the
original component (note that selected parts
should be purchased only through Keysight
to maintain accuracy and functionality of the
product). If you are unsure about the applic-
ability of a replacement component, call an

Keysight office for information.

No operator serviceable parts inside. Refer

servicing to qualified personnel. To prevent
electrical shock do not remove covers. For

continued protection against fire hazard,

replace fuse with same type and rating.

PRODUCT MARKINGS:

The CE mark is a registered trademark of the

European Community.

&

Australian Communication and Media
Authority mark to indicate regulatory com-

pliance as a registered supplier.

ICES/NMB-001
ISM GRP.1 CLASS A

This symbol indicates product compliance
with the Canadian Interference-Causing
Equipment Standard (ICES-001). It also iden-
tifies the product is an Industrial Scientific
and Medical Group 1 Class A product (CISPR
11, Clause 4).

KCC-REM-KST-
BLMooox

South Korean Class A EMC Declaration. This
equipment is Class A suitable for pro-
fessional use and is for use in elec-
tromagnetic environments outside of the
home. Ag 7|7| (A& HESMZIAH)
0] 7]7|= e R& (A a) TAIHEY7|7| 2
M £ OiR} EE= AFEALE O] HE F 2l5HA|
7| Hi2t o, 7Hg el RO M AL

2280 2 gt

= A

)54

This product complies with the WEEE Dir-
ective marketing requirement. The affixed
product label (above) indicates that you

must not discard this electrical/electronic

Page v

product in domestic household waste.
Product Category: With reference to the
equipment types in the WEEE directive
Annex 1, this product is classified as “Mon-
itoring and Control instrumentation”
product. Do not dispose in domestic house-
hold waste. To return unwanted products,
contact your local Keysight office, or for
more information see http://-

about.key-

sight.-

com/en/companyinfo/environment/takeback.shtml.

A
Atad

This symbol indicates the instrument is sens-
itive to electrostatic discharge (ESD). ESD
can damage the highly sensitive components
in your instrument. ESD damage is most
likely to occur as the module is being
installed or when cables are connected or
disconnected. Protect the circuits from ESD
damage by wearing a grounding strap that
provides a high resistance path to ground.
Alternatively, ground yourself to discharge
any built-up static charge by touching the
outer shell of any grounded instrument

chassis before touching the port connectors.

A

This symbol on an instrument means cau-
tion, risk of danger. You should refer to the
operating instructions located in the user
documentation in all cases where the symbol

is marked on the instrument.

Gy

This symbol indicates the time period during
which no hazardous or toxic substance ele-
ments are expected to leak or deteriorate
during normal use. Forty years is the expec-

ted useful life of the product.

Page vi

http://about.keysight.com/en/companyinfo/environment/takeback.shtml
http://about.keysight.com/en/companyinfo/environment/takeback.shtml
http://about.keysight.com/en/companyinfo/environment/takeback.shtml
http://about.keysight.com/en/companyinfo/environment/takeback.shtml

Page vii

Contents

Getting Started ... 11
System RequUirements 12
InStallation ... 14
LGB NG 16

USEr GUITE ..o 18
OVEIVIEW . 19
GUIOVEIVIBW ..o 23

Keyboard and Mouse ShOrCUS ... 25
BasiC CONTIOLS ... 25
AddINg BlOCKS .. 27
Connecting Ports and Interfaces ... 29
CoNNECtioN RULES ... 35
Adding and Editing COmMmMENTS ... 37
Configuring PathWave FPGA ... 40
Designing Your FPGA LOGIC ... 42
Creating a New Sandbox Project ... 42
Creating a New Submodule Project ... 46
Project Settings Dialog ... 46
DESIgN INE eI S 48
Keysight Standard Interfaces ... 50
Adding a Memory Map L. 59
Adding a Register Bank ... 60
Configuring Submodule Interfaces ... 64
Deciding the Address Width of an Interface ... 67
Registering Sandbox INTerfaces ... 72
SYMBDOUNAMES 73
P Catalog . 75
PathWave FPGA [P RepOSITOrY 80
BasiC IP BlOCKS .. o 80
Connector BLOCKSo 110
Math BlOCKS .. oo 115
DSP BLOCKS ..o 132
MemOry BlOCKS .. 159
DSP Library IP BlOCKS ... 168
P REDOSI OIS . 214
Imported USer 1P 215
Vivado XCI (Xilinx Core INStaNCe) ... 220
PathWave FPGA Submodule ... 223

NamiNg CONVENTIONS 224
Name ColliSIONS ... 225
Building your FPGA LOGIC ... 227
Generating the Bit File 227
Simulating your FPGA LOgiC 237
Simulation Testbench DesigN .. 237
Test Bench Address Mapping ... 253
Advanced Features ... 258
Command Line ArQUmMENTS 258
Migrating adesigntoanew BSP 260
Changing a Submodule Project Target Hardware 267
Debugging in HardWare ... 261
User Constraint FIles ... 271
GOSNy .o 273
IP Developers GUIAe ... 275
Overview: [P Developers GUIAE 276
P PaCKaG T . 277
Additional Interface Properties ... 292

IP Repository Manifest 296
TU OIS 297
IP Packager TUtorial ... 298
Simple HDL done manually ... 299
Simple HDL done automatically ... 325
Parameterized HDL ... 336
Advanced |P Packaging ... 354
HV L EXaMMIDlE 380
Import Vivado High-Level Synthesis (HLS) generated IP ... 386
Power of Two Decimation Tutorial ... 395
Xilinx System Generator for DSP™ Tutorial 404

A DDA X 417
Infer Interface Reference ... 418
Importing IP with Invalid IP-XACT ... 424
VHD L SUPP O 425
VErilOg SUP PO 427
LAl 429
Brd Party LiCeNSES . 430
Apache LiCense V2.0 436
GNU GV L 440
GNU LGPV 452

Page 9

Page 10

Getting Started

Getting Started

Contents

e System Requirements
* Installation
» Licensing

Find us at www.keysight.com Page 11

System Requirements

You must ensure that your system meets the following requirements before installing PathWave
FPGA.

e Administrator privileges
e QOperating system that has the most recent updates and Service Packs
« License File (or Authorization Codes, or token if evaluating) or internet access

Recommended Hardware Configurations

Category Practical Minimums Recommended
Operating System Windows 10, 64-bit Windows 10, 64-bit
Hard disk 10 GB free space 100 GB free space
RAM 4 GB RAM 16 GB RAM and above
Display 1280x 720 1920 x 1200
Software Security ~ USB hardware key Wired LAN, or Wireless LAN
Test Inst t
estinstrumen Not required LAN
Interface
Touch User
N/A Not rted
Interface Ot SUPPOTEE

Software Compatibility with PathWave FPGA

The following table summarizes PathWave FPGA compatibility with various versions of other software
applications. However, for the latest vendor information, licensing, and downloads, please contact
each vendor directly.

Release Release
Vendor Software / Feature Officially May work, but not supported ~ Explicitly not-
Supported supported
xilin Vivado, debugging, Vivado prior to Vivado
compilation of bitimages. 2017.3 2017.3
CMake C.M"?‘ke o .s.upp.ort o enable FPGA 3.9 or later priorto 3.9
bit file verification
We recommend using the 3.5 (note, there is a workaround
Kactus2 PathWave FPGA IP Packager 3.6 or later documented when using 3.4
instead of Kactus 2. parameterized HDL)
Microsoft Visual Studio C++to enable FPGA 2017 Other versions

bit file verification

http://www.xilinx.com/
https://cmake.org/
https://sourceforge.net/projects/kactus2/
https://www.microsoft.com/

Getting Started System Requirements

Summary of HDL Language Support

Standard Felpassiclal S ppariod May work, but not Release Explicitly not-
supported supported
IP-XACT IEEE 1685-2014, IEEE 1685-
2009
Verilog IEEE 1364-2005
VHDL IEEE 1076-2002 (VHDL 2002) IEEE 1076-2008 (VHDL 2008)

Newer versions of Xilinx Vivado might be required for Keysight Instruments (BSPs).
Consult the instrument product manual for specific requirements.

Find us at www.keysight.com Page 13

https://standards.ieee.org/findstds/standard/1685-2014.html
https://standards.ieee.org/findstds/standard/1685-2009.html
https://standards.ieee.org/findstds/standard/1685-2009.html
http://ieeexplore.ieee.org/document/1620780/
http://ieeexplore.ieee.org/document/1003477/
http://ieeexplore.ieee.org/document/4772740/

Getting Started Installation

Installation

PathWave FPGA can be installed on a computer running Windows by downloading the PathWave
FPGA install file from http://www.keysight.com/find/pathwave-fpga. For the system requirement
details, refer to System Requirements.

< Obtain License File)

Y

Download Product

A J

Install Product

v

Set Up Product License

Y

(Launch Product)

Obtain PathWave FPGA License File

PathWave FPGA requires a license to run. You can either apply for an Evaluation or a Purchased
license. Once the license request is approved, a license file (with .lic extension) is sent as an email
attachment. Save this file on your computer, it will be used when you run the Keysight PathWave
License Manager.

Download PathWave FPGA Installer
Click https://www.keysight.com/find/pathwave-fpga to download the installer.

Install PathWave FPGA

To install PathWave FPGA, you must have system administrator privileges. Run the downloaded
installer and follow the guided tour to complete the installation. If you want to do a silent install, run

Find us at www.keysight.com Page 14

http://www.keysight.com/find/pathwave-fpga
https://edaapps.software.keysight.com/cgi-bin/pxi-sw/evaluation/request.cgi?cmpid=99_ZZ_000001product=kf9000acc=USlc=en
http://www.keysight.com/find/softwaremanager
https://www.keysight.com/find/pathwave-fpga

the installer executable from the command line as Administrator and use the "--mode unattended"
command line option.

Setup PathWave FPGA License

At the end of installation, the License Setup Wizard starts automatically after detecting that you do
not have a valid license to start PathWave FPGA. If you choose to skip the license setup, you can com-
plete the process later by clicking Start > Programs > Keysight PathWave License Manager > Key-
sight PathWave License Manager.

Node-locked License

To setup a counted license, select the Add a License File option and follow the guided tour to com-
plete the license setup process. In case of a USB dongle, attach the dongle to the USB port and
invoke the PathWave License Manager to complete the setup process.

Floating License

To setup a floating license, select the Specify a Remote License Server option and follow the guided
tour to complete the license setup process. Consult your license administrator for the network path of
the license server.

Launch PathWave FPGA

To run PathWave FPGA, go to the Start menu and choose Programs > Keysight PathWave FPGA
<release_number> > Keysight PathWave FPGA <release_number>.

Licensing
This chapter explains in more detail how to install PathWave FPGA licenses. It contains the following

sections:

e About PathWave FPGA Licenses
e The Licensing Process
e Troubleshooting

About PathWave FPGA Licenses

PathWave FPGA requires one license per desktop client. PathWave FPGA releases 2021 and newer
require a different license than PathWave FPGA 2020 Update 1.1, or older.

Option -FPT was previously required to be purchased for an instrument to be used
with PathWave FPGA. Option -FP1 is now deprecated, but existing instruments that
used the -FP1 option, such as Keysight M3xxxA PXI Instruments, are still supported.

Supported licensing modes

The following types of licenses are supported:

Commercial licenses:

» Node-Locked, perpetual and 6, 12, 24, and 36 months, subscription.
» USB Portable, perpetual and 6, 12, 24, and 36 months, subscription.

» Floating/Networking, perpetual and 6, 12, 24, and 36 months, subscription.
» Transportable, perpetual and 6, 12, 24, and 36 months, subscription.

Trial licenses:

« 30 days Node-locked.

The Licensing Process
The Keysight licensing process uses the following steps:
1. Purchase and fulfillment

For most Keysight licensed product options, your entitlement certificate is sent to you as a PDF
attachment via email immediately after your purchase. In some cases, you receive a paper copy
of your certificate with your purchased product. The licensed product options may be software
products or upgraded features of an instrument.

2. Getting a license

Using the entitlement certificate you received when you ordered, you can request your licenses
on the Keysight Software Manager web site. To do this, you'll need to choose a host instrument
or PC, and provide its identifying information (the Host ID) when you request your licenses. Once
you begin the process, Keysight Software Manager will guide you step by step through request-
ing your licenses and you will receive the license files via email.

You might need to create a myKeysight login when you first go to the Keysight Software Manager
site, and you will need to log in anytime you go to the site.

3. Installing your license

To enable the licensed software, after you receive a license file from Keysight Software Manager,
you must install it on your instrument or computer or on a central licensing server accessible
from your instrument or computer.

To install the license:
1. Install PathWave FPGA.

2. Use Keysight PathWave License Manager to install your license. PathWave License Man-
ager is installed with PathWave FPGA, if not already installed. The installation process is
described in the email that comes with your license. Previous versions of PathWave FPGA
used a different Keysight license manager. Keysight recommends that you do not uninstall
any previous Keysight license manager so that your previous Keysight products continue to
function. After installing a PathWave FPGA license, it will appear in the PathWave License
Manager status tab, with a Feature name of KF9000B.

Detailed documentation for administrators is available
at http://www.keysight.com/find/licensingdoc.

Troubleshooting

By default, PathWave License Manager 2.3 saves its log files in c:\Pro-
gramData\Keysight\Licensing\Log

http://www.keysight.com/find/softwaremanager
http://www.keysight.com/find/licensingdoc

User Guide

User Guide

Contents

e Overview

e GUI Overview

» Configuring PathWave FPGA
» Designing your FPGA Logic
 Building your FPGA Logic

e Simulating your FPGA Logic
e Advanced Features

e Glossary

Find us at www.keysight.com

Page 18

Overview

PathWave FPGA is Keysight's "Open FPGA" development environment. PathWave FPGA provides a

complete FPGA design flow from design creation to gateware deployment to HW/gateware veri-
fication.

PathWave FPGA includes a graphical environment that provides a way to rapidly develop FPGA
designs on Keysight Open FPGA hardware. An IP library is provided which includes Logic/Math,
Memory, and DSP blocks that can be included in an FPGA design. Vivado IP blocks or custom HDL IP
can also be imported and the port interfaces described using IP-XACT 2014. PathWave FPGA
provides a design flow from schematic to bitfile generation with the press of a button.

To get started, follow the PathWave FPGA design flow:

1. Start PathWave FPGA
2. Create a new project with the PathWave FPGA New Project Wizard

B MNew Sandbox Project *

Project Name
Enter a name for your project and specify a directory
where the project data files will be stored.

Project name: mySandbox
Project location: C:/FPGA/PathWave FPGA

v Create project subdirectory

Sandbox project will be created at: C/FPGA/PathWave FPGA/mySandbox

Cancel

3. Modify the default FPGA template design by importing Vivado IP, HDL IP, or by
using the PathWave FPGA IP library.

+ Doefl Doutl

o E AR

IMod Gain_Carmrol_Ch_1

*
+
*
"
"
+
+
4 a
® o
+

4. Compile the design into a bitimage
¥ FPGA Hardware Build

Configuration

Build directory: C:/FPGA/PathWave FPGA/mySandbox/mySandbox.build|
Sandbox: pr_awglG =

Build Type: Implementation Project Generation Only Launch Vivado Gui

Compile Dutput

v ™ Errors v ﬁ Critical Warnings + ﬁ_wglrnings v @ Infos Hide All

5. Deploy your design using the instrument driver

GUI Overview

KEYSIGHT PATH FPGA 2020 Update 1.0 - mySandbox
File Edt Project Tools Help
RREmE ra0 GQaR

Design
Canvas

o

Communications.
Real-time HV}

VLNV

M

Design
Interfaces

IP Catalog

Menu/Icon/Pane

File

Description
Includes options to create a new project, open an existing project, save a project, close a
project, and exit.

WAGININ[el When doing a Save As... of an existing project, only the project file and
files in the .data directory will be copied to the new project folder.

Includes actions to manipulate the design canvas such as undo, redo, select all, and copy.
Includes an option to generate FPGA firmware and to import external blocks.

Includes the IP Packager, Vivado IP tool and configure settings.

Includes link to product documentation, license, and product related information.

Create a new sandbox project.
Create a new submodule project.
Open an existing project.
Save the project.

Undo the last operation.

Redo the last operation that was undone.
Fit schematic in window.

Zoomiin.

Zoom out.

Copy.

Flip.

Redraw connections.

Remove.

Launch the Vivado IP tool.

Add external block.

(:) Generate the firmware for the project.

Design Design Interfaces are responsible for communication between the internally configurable
Interfaces FPGA part (the FPGA customizable space, which a user can edit) and the rest of FPGA.
IP Catalog IP Catalog contains the building blocks, built-in or custom, for the design canvas.

See Also

Keyboard and Mouse Shortcuts
Basic Controls
Adding Blocks

Connecting Ports and Interfaces

Adding and Editing Comments

Keyboard and Mouse Shortcuts

This topic lists the operations that can be performed using keyboard and mouse shortcuts.

Function Key Code
Add/remove item from selection = Ctrl+ Left click
Select all connected nets Double click on a net
Abort current action Esc
Remove selected items Delete
Redraw connections Ctrl+R
Zoom fit Ctrl+F
Copy selection Ctrl+C
Select all Ctrl+A
Undo Ctrl+7
Redo Ctrl+Y
New project Ctrl+N
Open project Ctrl+0
Save project Ctrl+ S
Close project Ctrl+ F4
Exit Alt + F4

Basic Controls

Adjusting the View

Operation Keyboard Mouse
| oom Ctrl++ Ctrl + Mouse wheel up

n
©LZoom

Ctrl+- Ctrl + Mouse wheel down

Out
|j:\[j]‘-‘<z

SEOOM o
Fit
Pan Alt + Mouse click and drag

Manipulating Items
To move an item, left-click on the item and drag it to a different location. Connections are routed auto-
matically and can't be moved manually.

To select an item, left-click on the item. To select multiple items, left-click on an empty space and
drag to select all items in a rectangle. To add or remove individual items from the selection, hold
the Ctrl key and left-click an item. To select all items, press Ctrl+A or choose Select All from the Edit
menu.

To copy a block or a selection, right-click the block or an item in the selection and choose Copy, then
left-click to place the copy in the design. You can also press Ctrl+C, choose Copy from the Edit menu,

orclick the: ICopy button on the toolbar.

Undo and Redo

=
To Undo an action, press Ctrl+Z, or choose Undo from the Edit menu, or click the ~ Undo button on
the toolbar.

Al
To Redo an action, press Ctrl+Y, or choose Redo from the Edit menu, or click the ~ Redo button on
the toolbar.

Undo is disabled after certain actions:

» Adding or removing external blocks from the IP panes. Adding or removing instances does not dis-
able Undo.

e Adding or removing Vivado IP from the IP panes. Adding or removing instances does not disable
Undo.

» Creating or removing a submodule project from the Submodules pane. Adding or removing
instances does not disable Undo.

e Reloading a block
e Changing a blocks file

Adding Blocks

A hardware project is created by combining blocks from the IP Catalog on the right side of the user
interface. The blocks can be selected, dragged into the project, configured, and connected to other
blocks in the project.

To add a block, either double-click the entry or drag it onto the Design Canvas. In the properties dia-
log, you can review the description and change the values of parameters.

IP Catalog
a Block: Combiner b atalog
Name ~ Version =

Combiner_1 + Basic

a Description Identity Fi. Combiner
a n[O] Combines N single-bit inputs into a single N-bit rJ
Din[1] output vector.
Din[2]
Din[3] Dout(7:0)
Din[4]
Din[5]
Din[6] [t1| 'erTﬂT'
Din[7]

Parameters

Cancel

¥ Block: AddSub X

Description Identity

Module Name AddSub

Vendor example.com

Library math

MName AddSub

Version 1.00

File Path C/TEMP/IPfAddSub. 1.0 xml

Parameters

input_width
[1, 64]

subtract

Cancel

The Identity tab shows the identifying information about the IP.

« Module/Entity Name is the name of the Verilog module or VHDL entity that contains the IP.

» Vendor, Library, Name, and Version are the unique identifier for the IP-XACT file. If the IP was
imported directly from VHDL or Verilog, these fields are not shown.

¢ File Path is the location on disk of the IP-XACT or HDL file. This is not shown for IP that comes with
PathWave FPGA.

Right-click a block on the Design Canvas to open the context menu.

Combiner_1
Din[0]
Din[1]
Din[2]
Din([3]
Din[4]
Din[5]
Din[6]
Din[7]

Dout(7:0)

. Copy
Flip
“ Remove

Properties. ..

Show in IP Catalog

» Copy creates a duplicate of the selected block.
» Flip swaps the ports, so that inputs are on the right and outputs are on the left.

Remove deletes the block from the project.

Properties... opens the configuration dialog box shown above.
Show in IP Catalog selects the IP for this block in the IP Catalog.

Connecting Ports and Interfaces

Blocks can be connected together by their ports and interfaces. An interface is defined to be a set of
ports.

Adder_stream_1

Clk
nRst Dout +

+ A
+ B

In the example above, this block has inputs to the left (input connectors point into the block), and out-
puts to the right side of the block (output connectors point out of the block).

This block has two ports (small connectors), and the other connectors are interfaces (larger con-
nectors). The ports can represent one bit of data or a vector of bits. If the port represents a vector of
bits, the size can be identified next to its name.

When clicking on the "+" sign of an interface, such as “A” in the above image, the internal ports of the
interface appear shown below. Notice also that the “+” sign has changed to a “-“ sign. Clicking on the
“~“sign hides the ports again.

Adder_stream_1

tdata(15:0)
tvalid
+ B

When the "A" interface is connected to the output of a compatible interface, all individual signals
between the two interfaces are connected. If the design requires connecting an interface to an incom-
patible interface or individual ports on another block, the ports within the interface may be connected
instead.

Connecting an Output Port to an Input Port

In the image below, connections are made by clicking on one port and then dragging the line from it
to another suitable port. This can be done by dragging a line from an output port to an input port or

by dragging a line from an input port to an output port. It may also be done by dragging a line from

an input port to an existing compatible connection.

@© mRst nRst 3 7‘_l—,

{© clklocked ! FunctionGeneratar_0 ModGain_0

clock
= nRst
FuncGen_Control_Ch_0 ked waveShapeOut +9————————————————————— 4 waveShape
Ch0_phaseRst

X parnerOut +
square dl———— signalOut #s———————={+ dou0__douwo o)

+ offset
+ partnerin

Mod_Datz +

@ mRst nfst

FunctionGenerator_1

n
+ waveShape
+ sine

FuncGen_Control_Ch_1 ed waveShapeOut +
Ch1_phaseRst

pamerOut 4
signalout #sp——————={+ dow1 _dout1 &

4 ampModCul
+ amplinde
+ offset

+ parmern

Mod Data + |
_ ModGain_Control_Ch_1

AmpModCtrl +

Amplitude +

Offset +

Connections can be created according to connection rules. For more information, refer Connection
Rules.

If a connection can be made from a connector, a new line appears from this connector to mouse and
the mouse cursor changes to the axis icon as shown below. Furthermore, the possible target con-
nectors are highlighted in blue for showing the different connection possibilities. See the input ports
on the lower block "Awg_0" shown below.

clkLocked clkLocked 3— FunctionGenerator_0

clock
nRst
FuncGen_Control_Ch_0 ClkLocked waveShapeQut
ChO_phaseRst phaseRst sine
AngleModCtrl + + angleModCtrl triangle
Frequency + + frequency sawtooth
Phase + + phase square
WaveShape + + waveShape
+ awg_ph

Awg_0
+
Mod_Data =+

ModGain_Control_Ch_0

For finishing the connection, the end of the connection line is dragged by the mouse to a compatible
target connector. In this case, the mouse icon changes to the green connection icon.

clock

~ nRst
FuncGen_Control_Ch_0 ClkLocked waveShapeOut
ChO_phaseRst phaseRst sine
AngleModCtrl =+ + angleModCtrl triangle
Frequency + + frequency sawtooth
Phase + + phase square

WaveShape == | + waveShape
4+ awg_ph

Awg_0

Mod_Data +

ModGain_Control_Ch_0
AmpModCtrl

When the mouse button is released, the new connection is created.

Remove and Redraw operations

Right-click the line connecting the two ports to see two options: Remove and Redraw. Remove will
delete the connecting line.

clkLocked clkLocked FunctionGenerator_0

clock

nRst
FuncGen_Control_Ch_0 ClkLocked wave ShapeOut
ChO_phaseRst #+——— phaseRst sine
AngleModCtrl #+#p———— =+ angleModCtrl triangle
Frequency +#»——— X X X = + frequency sawtooth
Phase 48— = 4 phase square

WaveShape +#p————————— 4+ waveShape
+ awg_ph

Awg_0
+
Mod_Data +

ModGain_Control_Ch_0

For example, add a block between the two ports. Notice the line connecting the ports is no longer
straight.

clkLocked clkLocked FunctionGenerator_0

clock
nRst

e o0 ClkLocked waveShapeOQut +
o y phaseRst
¢) Adder_1 + angleModCtrl
e 5,
Nave

Clk
nRst Dout(15:0)
A(15:0)

B(15:0) n

]
Mod_Data + ModGain_Control_Ch_0
AmpModCtrl +
Amplitude +
Offset +

Delete the block that was just added and notice that the connecting line stays unchanged. Right-
click the line and select Redraw. The line will be straight again.

clkLocked clkLocked

FuncGen_Control_Ch_0

WaveShape +

Awg_0
Phase_Data +
Mod_Data +

Disconnecting a Connection

FunctionGenerator_0
clock
nRst
ClkLocked waveShapeOQut +
phaseRst
+ angleModCtrl
+ frequency s
+ pha square +
+ waveShape
+ awg_ph

Mo dGain_Contro|_Ch_0
AmpModCtrl +
Amplitude +
Offset +

Once a connection is created, the connection can be disconnected by right-clicking on the con-

nector, which displays the Disconnect option.

clkLocked clkLocked

FuncGen_Control_Ch_0
ChO_phaseRst
AngleModCtrl +
Frequency +
Phase +
WaveShape +

Awg_0
Phase_Data +
Mod_Data +

Connecting Input Ports to a Literal Constant

FunctionGenerator_0

clock

nRst

ClkLocked waveShapeOut +
phaseRst sine +
+ angleModCtrl triangle +
+ frequency sawtooth +
+ phase square +
+ waveShape

If you want to connect a input port to a constant numeric value, you should connect the port to a
literal. Literals set 64-Dbit value constants at input ports. To insert a literal, right-click the port and
select the 'Connect to literal' command. You can set the value to an integer, hexadecimal, or binary

value:

 Integer: Ainteger number, negative numbers set a two's complement format. The range for valid
inputs is from -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807, or from -(2°63) to 2763

-1

» Hexadecimal: A hexadecimal number using the characters O - F can be entered, followed by an h;
for example, Ah. The range for valid inputs is from Oh to FFFFFFFFFFFFFFFFh.

 Binary: Binary numbers can be added followed by a b, for example, 1010b.

Connection Rules

Ports

There are input ports and output ports. The input ports can have only one connection to an output
port. In this example, Din(15:0) has one connection.

Dout(15:0) #——— Din(15:0)

The output ports can be connected to multiple input ports. In this example, Dout(15:0) output is con-
nected to three inputs.

Dout(15:0)

Port Size Mismatches

If a wider output port is connected to a narrower input port, then the LSBs of the output port are used
to make the connection.

If a narrow output port is connected to a wider input port, the output port connects to the LSBs of the
input port. The remaining bits of the input port are set to zero.

In general, if the smaller of the two ports has N bits, then bits N-1...0 of the output port are connected
to bits N-1...0 of the input port. Any remaining output port bits are ignored, and any remaining input
port bits are set to zero.

In the second example shown above, both clk and rst will be connected to Dout(0).

Interfaces

Interfaces with the same type can be connected together as long as their data ports have the same
width. Therefore, interfaces of similar protocols can be put together with a single connection. By con-
necting one interface to another interface, as shown below, all the corresponding ports shown are
connected. This removes the chore of having to connect each interface port as shown below.

Awg_0

Phase_Data +
Mod Data +

Clicking on the "+" sign for either interface will expand the interface to show the underlying ports.
When an interface is expanded, clicking the "-" sign will collapse the port back to showing just the
interface name.

i' tdata(159:0)

— > tvalid
tuser(0:0)

Awg_0

Phase_Data =
tdata(159:0)
tvalid
tuser(0:0)
Mod_Data +

Connection between interface ports that have mismatched width, apart from data ports, is handled
the same way as it is described in section Port Size Mismatches.

#ConnectionRules-PortSizeMismatches

Connecting Keysight interfaces to Xilinx interfaces

Keysight standard interfaces can be connected to Xilinx standard interfaces when appropriate map-
pings exist. i.e. a Keysight AXI4 can connect to a Xilinx AXl4. If no appropriate mapping is available,
you cannot connect the interfaces.

Unconnected interface input ports

Input ports of an interface that are left without connection, either explicitly (by no connecting any-
thing to those) or implicitly (in the case of an interface connection, where the respecting output port
from the other interface is optional and not defined), will be initialized with the default value specified
in the interface's specification. If a value other than the standard default value should be used for any
of these ports, a literal with the desired value should be connected to that port.

Special Cases

In some cases it is not possible to define the default value as per spec definition inside PathWave
FPGA. For example, the AXI4MM interface has some default values to depend on the width of the
data bus.

In the following table you can find the default values that PathWave FPGA is using:

Interface Default value in
Name Port Default value from spec. PathWave

width of data bus in bytes as a power of 2, default assumes a bus width of
32-bits
width of data bus in bytes as a power of 2, default assumes a bus width of
32-bits

AXI4MM awsize

AXI4MM arsize 2

Another Special case for AXI4AMM is the ID ports. If the ID port is present on a secondary AXI4AMM, the
matching primary port must have a width less than or equal to the size of the secondary ID port.

This rule is enforced so that no subtle bugs are introduced into your schematic logic.

If this does not match your expectations and the interface primary does not include this port, you
have to explicitly connect the unconnected input port to a literal with the desired default value.

Adding and Editing Comments

Adding and Editing Comments

To add a comment:

1. Position the cursor within the project where the comment is to be inserted.
2. Right-click on a blank part of the canvas and select Insert Comment... .

3. Add text to the comment text box.

4. The comment can be moved by dragging it with the mouse. Notice the comment is in the fore-
ground and appears above the project elements.

5. On right-clicking the comment, the option to copy or remove is provided.

6. Choose Copy, to create a duplicate comment.

Configuring PathWave FPGA

The Settings dialog provides options for configuring PathWave FPGA. You can specify the Vivado
path, IP repositories, and the appearance of the interface. Select Tools > Settings to open the fol-
lowing dialog:

Vivado
Installation Path

Vivado Installation
Browse Button

IP Repositories

IP loaded here will be present in all projects

C:/Temp/IP
IP Repositories
Path List

IP Repositories
Control Buttons

Appearance

Theme
CheCkbOX ¥ Use dark theme

Default Options

Infer Interfaces T
Checkbox v Infer interfaces from ports on import

Vivado Installation Path

This drop-down list displays the installation path of the Xilinx Vivado version to be used by PathWave
FPGA for the bit file generation flow as well as the Xilinx [P Import. At start-up, PathWave FPGA pop-
ulates the drop-down list with the Xilinx Vivado installations found on the local system. By default,
the latest one is selected. The drop-down list may be used to select a different Vivado version. If the
desired version is not located, the Browse Button can be used to locate a specific installation.

NOTE Vivado IP interfaces are only reloaded on a restart of PathWave FPGA.
Changing the Vivado version takes about 10 seconds. A label will
show up informing you about this when you are about to change
version.

Vivado Installation Browse Button

Opens a browse dialog for the user to locate a Xilinx Vivado installation that was not found auto-
matically.

IP Repositories Path List

Displays a list of directory paths, where PathWave FPGA will look for IP. To learn more information on
how to create an IP repository, you can review the [P Developers Guide.

The actual IP discovery process takes place either when the user clicks the — button explicitly, or
when the list is updated and the settings dialog is accepted. If a project is open at the time of loading,
the discovered IP will be loaded to the open project.

Currently, PathWave FPGA does not support having multiple IP with the same name. If more that one
IP with the same name is encountered during a project load, PathWave FPGA will only load the first
one and report an error for the others. To workaround this limitation, you can create a wrapper for
your IP with name that does not conflict with any other in the project library.

NOTE The IP repositories specified here will be available to all projects. To specify IP repositories that
will be available to a specific project, see Project Settings Dialog.

IP Repositories Control Buttons

The — button opens a browse dialog for selecting an IP Repository location. If a location is selected,
it is added to the IP Repositories Path List.

The : button removes the selected directories from the list.

The — button searches for IP inside the directories defined in the list. When IP repositories loading is
completed, an informational message is displayed. In case of errors or warnings, the errors will be
logged into a temporary file. The temporary file will exist until the closing of PathWave FPGA process.
To regenerate the log file, repeat the loading procedure.

Theme Checkbox

To use the dark theme, check the Use dark theme check box.

Infer Interfaces Checkbox

When importing VHDL or Verilog User IP, interfaces can be deduced from the naming convention of
the ports. Each time a new IP file is added, the user has the option to infer interfaces from the ports.
The default choice is controlled by this checkbox.

Designing your FPGA Logic

Contents

e Creating a New Sandbox Project

e (Creating a New Submodule Project
» Project Settings Dialog

e Design Interfaces

» |P Catalog

e Naming Conventions

« Name Collisions

Creating a New Sandbox Project

A sandbox project contains the customizable resources of the programmable FPGA of a PathWave
FPGA hardware module. When selecting a target module, the project is opened with the factory set-
tings of a standard module. The custom on-board solution is developed within this hardware project
and is saved, compiled and loaded into the hardware module (the binary can be loaded into multiple
identical modules).

Below are the steps to create a new sandbox project.

1. Select File > New... > New Sandbox Project.
2. Enter the project name.

3. Browse to select the project location.

To place the project in a subdirectory by the same name, select the Create project subdirectory
check box.

4. Click Next. If a project with the same name exists, a prompt to overwrite the project is displayed.
Click Yes to overwrite the project.

5. Choose the Board Support Package for the target hardware module and click Next.

6. Choose a Project Template and click Next. A summary of the project details is displayed. Click Fin-
ish.

7. Tosave any changes you made to the project, click the Save icon or use the menu option.

Using the shortcut menu (right-click a block), you can perform the following operations:

* Toduplicate a block, select Copy.

To flip a block horizontally, so inputs are on the right and outputs on the left, select Flip.
To redraw the connections to the block, select Redraw connections.
To remove the block, select Remove.

To view the description/properties, select Properties.

Sandbox Project Directory Structure

When a new project is created, a project folder with a corresponding project design file is created.
This project folder will contain build output and any Vivado XCI (Xilinx Core Instance) IP that you have

configured using PathWave FPGA. In the following example, the project created is named myProject.
The directory structure is shown below:

» myProject - Project folder
- myProject.kfdk - Project design file
= myProject.build - Folder containing intermediate build output
- myProject.data - Folder containing final build output and Vivado XCI IP
° bin - Folder with the final build output
° myProject_<timestamp> - Folder containing build output
° bitgen.log - Vivado build log file
° myProject.k7z - Program archive that can be downloaded into your FPGA

° myProject.spb - Program FPGA bit file that is an older format, to supported existing
instrument software for M3102A, M3202A, M3302A and associated instruments. Newer
Keysight hardware will not produce this file output.

° VivadolP - Folder to contain output for Vivado XCI IP that was configured using PathWave
FPGA

o <imported Vivado XCI> - Folder for each Vivado XCI IP configured using PathWave FPGA

° submodules - Folder to contain submodule projects. The directory structure that is created
is an IP Repository of the submodules defined in the project

° mySubmodule - Submodule with default name
° mySubmodule.data - Folder containing Vivado XCI IP

Source Control

This section will describe best practices for using a version system for tracking changes in your
PathWave FPGA project.

PathWave FPGA takes some steps to work well with source control of its project files, such as using
plain text and maintaining a consistent order of elements. If more than one person is making changes
to a PathWave FPGA project, the changes may need to be merged. However, automated merging of
significant changes should not be considered reliable. Always check for problems by opening the pro-
ject and running a synthesis build after a merge. When in doubt, manually "merge" the changes by
repeating them using the PathWave FPGA GUI.

If your project includes software source code, follow the best practices as for any other software
source control. The example projects that come with PathWave FPGA use CMake. In this case, CMake
will place the Visual Studio solution or Unix makefiles and all build artifacts in a directory, usually with
the word "build" in the name. This directory should be excluded, and most other files should be
included.

Which files should be tracked

File path Track?
projectName.kfdk Yes The project design file should be tracked.

. Backup project files are created when a project is upgraded to a newer version of
[I(gi%tiame No PathWave FPGA, or when a project is retargeted to a different BSP. If you are tracking the
T project file with source control, you already have a backup and don't need these files.
projectName.build/ No This directory contains intermediate build files which don't usually need to be stored.

Each submodule is contained within a directory in submodules. Its directory structure
mirrors that of the main project. There will never be a submoduleName.build directory, but
projectName Yes/No there may be a submoduleName.data directory containing any Vivado IP used by the
.data/submodules/ submodule. The same guidelines for the sandbox project directory apply for the
submodule directory. In the provided .gitignore file, some patterns use ** so that they
apply to both the sandbox and the submodule.

Each successful sandbox build creates a directory in bin with the .k7z file, and

ng:/c;li\rl]e;me Maybe sometimes other BSP-specific files. These files can be included or excluded
depending on your requirements.
projectName This directory contains files generated by Vivado when configuring IP. These files are only
.data/VivadolP/ip_ No created if you click Generate after configuring the IP. PathWave FPGA does not use these
user_files/ files because it always regenerates Vivado IP at the start of the build.
Each configured Vivado IP is contained in a directory inside VivadolP. Two files
. in this directory are important: the .xci and the .xm1. All other files should be
projectName

data/VivadolP/ excluded from version control.

ipName/ipName.xml You may see critical warnings from Vivado during the sandbox build if the

. Yes
projectName other files are missing, but the build will still complete correctly. To remove
_‘dzta/Vn//g(j\;)lP/ , the critical warnings, launch the Vivado IP tool from within your project, select
ipName/ipName xci _ _ T

P P all of your IP, right click and select "Reset Output Products...". This will

remove all extraneous files.

Sample .gitignore file

The following file will make git ignore the files that shouldn't be tracked. Place this file in the same dir-
ectory as the project file.

* kfdk.bak*

* . build/

*.data/bin

**/* data/VivadoIP/ip_user_files/
**/* data/VivadoIP/*/*

I¥*/* data/VivadoIP/*/*.xml

I¥*/* data/VivadoIP/*/*.xci

Creating a New Submodule Project

A submodule project allows you to organize your design hierarchically and reuse these designs in mul-
tiple projects.

Below are the steps to create a new submodule project.

1. Select File > New... > New Submodule Project, from the menu of an open sandbox project.
. Inthe New Submodule Project dialog, enter the submodule project name and click Next.
3. Define the vendor, library, name and version (VLNV) and other properties of the submodule. This
information can be modified later by selecting Project > Properties...

4. Click Next. A summary of the project details is displayed. Click Prev to make changes or Finish to
save the new submodule project. See Sandbox Project Directory Structure for information about

how submodule projects are saved.
5. Anew instance of PathWave FPGA will be started where you can edit your new submodule.

6. Inthe Change Submodule Interfaces dialog, define the interfaces into and out of the submodule.
See Configuring Submodule Interfaces for more information.The interfaces can be modified later

by selecting Project > Change Submodule Interfaces...
7. Click OK to close the Change Submodule Interfaces dialog.
8. To save any changes you made to the project, click the Save icon or use the menu option.

Project Settings Dialog

The project settings dialog provides some options for configuring your PathWave FPGA project by
adding IP repositories and constraints. Select Project > Project Settings to open the following dialog:

#CreatingaNewSandboxProject-projectdirectorystructure

Project IP Repositories

IP loaded here will be present in this project only

C:/work/Absolute_Repo
RelativeRepo

Constraints

Path Synth Impl
projectConstraint.xdc v v
C:/work/global_constraint.xdc Vv v

v v

Cancel

IP Repositories Path List

Displays a list of directory paths specific to the loaded project; PathWave FPGA will search for IP in
these directories. To learn more creating an IP repository, see the IP Developers Guide.

The actual IP discovery process takes place either when the — button is clicked, or when the list is
modified and the OK button is clicked. If a project is open at the time of loading, the discovered IP will

be loaded in the open project. After the IP discovery process, a dialog will report how many IP have
been found, and any warnings or errors that occurred.

An IP repository path may be converted to a relative path by right-clicking on the path and selecting
'Use Relative Path'in the context menu. You may convert back to an absolute path by selecting 'Use
Absolute Path'.

IP Repositories Control Buttons

The — button opens a browse dialog for selecting an IP Repository location. If a location is selected,
it is added to the IP Repositories Path List.

rﬂi
The ~ button removes the selected directories from the list.

The — button searches for IP inside the directories defined in the list. When IP repositories loading is
completed, an informational message is displayed. In case of errors or warnings, the errors will be
logged into a temporary file. The temporary file will exist until PathWave FPGA is closed. To regen-
erate the log file, repeat the loading procedure.

To specify IP repositories that will be available to all projects, specify the repositories in the
PathWave FPGA Settings dialog (see Configuring PathWave FPGA).

Constraints

Constraints are used to control timing, placement, or some other properties of the FPGA build. This
section of the Project Settings dialog lets you add constraints to the build. Press the Add button to

browse for a constraint file, which must have the file extension ".sdc" or ".xdc". Constraints may be

enabled for Synthesis or Implementation, or both, or neither. Note that constraints applied to Syn-

thesis may be propagated to Implementation automatically.

Constraints may be added with an absolute path or a relative path to the project file. When afile is
added, it will use a relative path if it is inside the project directory. Otherwise it will use an absolute
path. Right-click a constraint to switch it between absolute and relative path manually. You can also
right-click a constraint to show the file in Explorer.

If a constraint file is not found, it will be displayed in red. The FPGA build may still be run, but that con-
straint file will not be used.

Design Interfaces

To communicate between the design and what lies outside the design, i.e. the static region for sand-
box designs, or some other design for submodules, you need to instantiate a design interface block

from the design interfaces pane. Each board support package provides a unique set of design inter-
face blocks that are specific for the instrument. The design interface blocks are grouped based on the
function of their connections to the "outside world". The interfaces of a design are collapsed, in order
to show the different categories of design interfaces:

Design Interfaces

¢ Communications
F Real-time HVI

k System

Apart from categorizing, some design interface blocks can be instantiated with different types of
interfaces. For example, the interface "Hvi1" can be inserted to the schematic as a MemoryMap or
connected directly to a RegisterBank.

Design Interfaces

¢ Communications
+ Real-time HVI
b £ Hvid (x1)
v © Hvil (x1)

Memoryhap
RegisterBank
2 Hvi2 (x1)
» Hvi3 (x1)
k System

Finally, it is possible that an interface is comprised only by one port (e.g. a clock). In that case, the
interface instance will only show the slot, like in the picture below:

Clock Clock

See Also

« Keysight Standard Interfaces

e Adding a Memory Map

e Adding a Register Bank

e Configuring Submodule Interfaces

« Deciding the Address Width of an Interface

User Guide Designing your FPGA Logic

e Registering Sandbox Interfaces
e Symbol Names

Keysight Standard Interfaces

Contents

e Introduction

* Interface Descriptions

- clock
- nRst
- AXIMM
- AXlLite
- AXIS
= mem
- vector

- wire

e Addressing scheme

e Signal Types

e Data Types

» Data Packing/Extending
e Polarity

e Signal Interfaces

e Example Usage

= Discussion of Example

e Associated Files
Introduction
To facilitate connectivity between IP blocks and Design Interfaces, PathWave FPGA has standardized

on a number of interfaces. IP blocks using these interfaces will be easier to interconnect and to con-
nect to PathWave FPGA library blocks and Design Interfaces.

Interface Descriptions

Find us at www.keysight.com Page 50

The following is a brief description of the standard interfaces PathWave FPGA supports. Note that
this is only a brief description of each interface and is not meant to be a complete description. Some
interfaces (e.g. the AXI family) include optional signals that can be included or omitted in particular
implementations depending on the design requirements. This allows the user to tailor the complexity
and size of the interface while maintaining compatibility.

clock

A free running clock. Data is both sampled and changed on the rising edge of a clock.

nRst

An active low reset signal.

AXIMM
The industry standard AXI4-Memory Mapped high performance bus architecture.

 Includes address information. This is a byte-addressable interface, meaning that each address unit
addresses 8-bits of data.

e Supports data widths: 32, 64, 128, 256, 512, 1024 bits.
» Supports burst (high performance) transfers.
e Supports bi-directional flow control.

AXlLite

The AXl4-Lite bus, a lightweight version of AXIMM for simpler interfaces that don't require the per-
formance/features of full AXI4.

» Limited data width: 32 (preferred) or 64 (if needed).
¢ Only single transactions supported - no data bursting.
e Supports bi-directional flow control.

AXIS

The AXI4-Streaming interface is for streaming arbitrarily long sequences of data.

» Point-to-point streams - this interface does not include address data, though optional TID, and
TDEST signals allow some routing (addressing) information.

e Data width is any multiple of 8 bits. Unlike AXIMM and AXILite, AXIS can support, for example, 24
bit data.

- The standard allows no data (TDATA is optional). An AXIS interface without data just has the
control signals.

= PathWave FPGA will allow the data width to be non-multiples-of-8, although this is non-stand-
ard.

e Supports optional TUSER data signals. These are extra signals that are logically attached to data
samples that could be used to include auxiliary data such as triggers or data marks or timing
information.

e Supports merging/packing multiple data items into wider stream.
e Supports bi-directional flow control.

mem

Avery light weight Keysight proprietary interface.

* (Can be bi-directional.

 Includes addressing. This is a word-addressable interface, meaning that each address unit
addresses 32-bits of data.

« Does not include back-pressure - all transactions take place in one clock cycle and can not be held
off.

e Has deterministic timing.

e Used for HVI register access. Please see the Keysight KS2201A Test Sync
Executive documentation for more information on HVI.

vector

A multi-bit vector of signals without any signaling protocol. This might be used to connect a control
register to an IP block.

wire
A single bit signal. This might be used for a trigger signal.

Addressing scheme
By addressing scheme, we refer to the number of data bits each address unit is addressing.
For example, in a byte-addressing scheme, each address unit addresses 8-bits of data. That means

that if we store a 32-bit data value ‘Oxabcd0123’, in a little-endian memory structure, at address
b'11110000, then the memory will look like this :

address data (8-bit)
b'11101111 <other_data>
b'11110000 0x23
b'11110001 0x01
b'11110010 Oxcd
b'11110011 Oxab
b'11110100 <other_data>

On the other hand, for a word-addressing scheme, each address unit addresses 32-bits of data. That
means that for the same example as before, the memory will look like this :

address data (32-bit)
b'11101111 <other_data>
611110000 Oxabcd0123
b'11110001 <other_data>

In the context of PathWave FPGA, there are currently three interfaces that are using addressing:
AXI4MM, AXl4Lite and MEM. The first two (AXI4AMM, AXI4Lite) use a byte-addressing scheme while
the MEM interface uses a word-addressing scheme.

Signal Types

There are a number of different types of signals used in a typical design. These can roughly be cat-
egorized into control signals (typically used to setup, control, and monitor a measurement), and data
flow signals (the data being processed - this could be a continuous stream of data or one or more
blocks of data).

The following are the various types of signals that PathWave FPGA supports:

1. Control Bus Secondary. Typically these would be register control/status blocks where the driver
could read and write status and control data.

2. Control Bus Primary. This is for the case where the user IP wants to communicate with external
devices via the PCle (or other host control) bus, e.g. write to other modules to control multi-mod-
ule measurements.

3. Continuous Streaming Data. This is an arbitrarily long stream of continuous data, e.g. from an
ADC. Since the data may not be one sample per clock, flow control is required. Alongside the
data, there may optionally be some amount of sideband data. This is auxiliary data that flows
along with the main signal data. It could include triggers or marker info or be used to timestamp
data.

4. Block Mode Stream Data. This would be an arbitrarily long stream of discontinuous blocks of
data. Each block may represent the result of some measurement or calculation, e.g. the output of
an FFT. To properly interpret this data, the boundaries of each block would need to be delineated.

5. Memory Read / Write Data. Typically the FPGA will have access to off chip memory. There needs
to be a way for the user IP to read and write to this memory. This interface will need to include
both address and data flow, and probably needs to support burst transfers for efficiency.

6. Supersampled Data. This is a variation of #3 and #4 above where more than one sample per clock
needs to be transferred.

7. HVI. HVI needs an efficient, time deterministic mechanism to access control register.
8. Clock. One or more clocks. Signals change on and are sampled on the rising edge of clock.

9. Reset. One or more active low reset signals.

Data Types

Most of the data that PathWave FPGA will be processing is likely to be fixed point (scaled ints) of vary-
ing bit widths. To facilitate interconnection of IP, limit the amount of data width conversion, and
allow the use of standard interfaces, PathWave FPGA standardizes on data widths that are an integral
number of bytes (i.e. multiples of 8 bits). Data that is natively a different size should be padded up to
the next multiple of 8 bits by padding MSBs. Unsigned quantities are zero-extended, and signed
quantities are sign extended. Thus a 12 bit unsigned number would place those 12 bits as the 12
LSBs of the interface with the 4 MSBs being zero. So if the data was X[11:0], the interface used would
be TDATA[15:0] = {4'b0000,X[11:0]}.

The preferred format for floating point numbers in PathWave FPGA will be IEEE-754 compliant. The
two supported (preferred) sizes will be binary16 (16 bits with 11 bit fraction and 5 bit exponent) and
binary32 (32 bits with 24 bit fraction and 8 bit exponent). Note that the number of fractional bits
includes the implied leading "1" bit. The number of physical mantissa bits is one less than the num-
ber of fractional bits, and there is also sign bit. Physically, the binary32 format would have 1 sign bit,
8 exponent bits, and 23 mantissa bits.

It is not uncommon to process complex data (that is, data consisting of a real and an imaginary
component). If complex data is being sent over a single stream, the real and imaginary parts will be
sentin parallel over a wider stream with the real part will go in the least significant word. For Serial
data, the real part will come first (earlier in time).

ACLK o b 7 5 L7 L]

TVALID / \
TLAST T\ T

TDATA[11:0] X re(X0) X re(X1) X re(X2) X re(Y0) X re(Y1) X re(Y2) ¥

TDATA[27:16] 7 im(X0) X imX1) X imX2) X im(Y0) X im(Y1) X im(Y2) X~

= I e

TVALID / \

TLAST e N e W
TDATA[11:0] X re(X0) X re(X2) X re(Yo) X re(Y2) ¥
TDATA[27:16] X im(X0) X im(X2) X im(YO) X im(Y2) ¥
TDATA[43:32] X re(X1) X re(X3) X re(Y1) X re(Y3) ¥/
TDATA[59:48] X imxX1) X im(X3) X im(Y1) X im(Y3) ¥~

Above are examples of parallel complex data (one sample per clock and two samples per clock).
Below is an example of serial complex data.

RS eI eI e e s Y s Y e Y e Y e Y e I e Y s I s Y B

TVALID / \

TLAST — e N
TDATA[11:0] re(x0) _imX0) X_re(x1) Y_imx1) X re(x2) Y _imx2) Y re(v0) X _im(y0) X re(v1) X_im(¥1) X_re(v2) X_im(Y2) Y/

For performance reasons (and the limited clock rate available in FPGAs), it is sometimes desired to
transfer more than one sample per clock. This is called supersampled data. In this case, each sample
(or component of the sample for complex data) is first extended to an integral number of bytes, and
then these are packed together with the earlier in time samples occupying the lesser significant pos-
ition:

pok [1L 11

TVALID / \

TLAST / \
TDATA[11:0] X re(X0) X re(Y0) X
TDATA[27:16] X im(X0) X im(Y0) X~
TDATA[43:32] X re(X1) X re(Y1) ¥
TDATA[59:48] X im(X1) X im(Y1) ¥/
TDATA[75:64] X re(X2) X re(Y2) X
TDATA[91:80] X im(X2) X im(Y2) X

Data Packing/Extending

When connecting two blocks with different data widths, there are two different ways of converting
the signals. The AXI standard views data as a stream of bytes without explicit meaning. Going from a
narrow to a wider interface will cause the bytes to be packed. For example, going from a 16 bit inter-
face to a 32 bit interface will pack two 16 bit words into each 32 bit word. Likewise going from a wide
to a narrow interface will retain all the data bytes with the output running at a higher rate than the
input. This is desired behavior when interfacing to a memory, for example.

The other situation is when the underlying bit widths of the data changes, for example when inter-
facing a filter that uses 16 bit data to a filter using 24 bit data. When increasing the width (e.g. 16 bit
source feeding a 24 bit sink) the data should be sign extended per PathWave FPGA's policy of right
justifying fixed point data.

Polarity

The control signals for the AXI buses are generally active high. The exception is the nRST signal
which is active low. PathWave FPGA uses an active low nRST signal. The remaining control signals
should be active high. Further, PathWave FPGA should sample signals and change signals on the
rising edge of CLK.

Signal Interfaces

Signal Type
Clock

Reset

Control Bus Secondary

Control Bus Primary
Continuous Streaming Data

Block Mode Streaming Data

Memory Read/Write Data

Supersampled Streaming
Data

Mem

Interface
clock

nRst

AXIMM
AXlLite

AXIMM
AXiLite

AXIS

AXIS

AXIMM,AXILite, AXIS

AXIS

mem

Discussion
One or more free running clocks. Signals change on and are sampled
on the rising edge of clock.
One or more active low reset signals.
Most Control Bus Secondaries can probably use the simpler
AXlLite interface. A simple block of registers can easily
decode an AXILite interface with minimal logic.
If higher performance of burst access is desired, then the
higher capabilities of the full AXIMM bus could be used.
These interfaces are full featured enough to meet the needs of IP that
needs to instigate access to addressable memory/devices.
This interface supports the flow control and auxiliary data needs of
continuous data transfers.
This interface includes the TLAST signal that can be used to break the
stream into arbitrary sized packets.
Memory, particularly off-chip memary, is generally used for storing
larger amounts of data which often require high throughput accesses. If
the user IP needs random access to the memory, then AXI4 is probably
the better fit. If the memory is going to be used as a source or sink of
streaming data, using a DMA engine in the static region, then an AXI4-
Streaming interface would be a better fit.
As discussed above, if supersampled or complex data needs to be used,
it will first be extended to an integral number of bytes and then packed
into a wider AXIS interface.
Some addressable interfaces, such as HVI,have distinct, deterministic
timing performance requirements. For very simple designs, this
provides an ultra-lightweight, addressable interface.

User Guide Designing your FPGA Logic

Example Usage

Decimate
By 4
Filter

Decimate
By 2N

AXl4-Stream
Interface

AXl4

x X

Local

Oscillat
SRRSO AXi4-Lite

Frequency
Register

Sandbox

PCle
Interface

Memory Controller

|

DDR Memory

Discussion of Example

This simplified example shows how these interfaces might be utilized.

In the above example, ADCs generate three parallel 12 bit samples per clock. In the static region
these samples are converted to an AXIS bus as follows. Each sample is converted from 12 to 16 bits
by sign extension. The resulting six bytes are concatenated together to form a 48 bit wide streaming
data bus. One bit per byte of User data is added (six bits total) to contain trigger information. Note
that these are more bits than necessary, but for compliance with the specification recommendations
the extra (unneeded) bits are included.

The three real samples per clock are mixed with the output of a local oscillator to form three complex
samples (96 bits total). The user data (still one bit per byte) is now 12 bits wide. Note that even
though the interface into and out of the mixer is 16 bit data, since the user knows the data is only 12
bits wide, the internal logic of the multipliers in the mixer need only operate on 12 bits of data (ignor-
ing the 4 extension bits).

After decimating by four, the data rate has been reduced to one complex sample per clock (actually
3/4 sample per clock - thus handshaking is needed) with the real and imaginary halves each using 16
bits. For increased dynamic range, the Decimate by 2N block operates on 24 bit data rather than 12

Find us at www.keysight.com Page 58

bit. An expander widens the bus to 24 bit data (time two because it is complex). Note that the AXIS
bus need not be a power of 2. It only has to be an integer number of bytes.

The output of the Decimate by 2N block flows into a DMA Engine. This is designed to FIFO up the
data and burst data via an AXIMM bus to the memory controller in the static region that will interface
to the external DDR memory.

The Host controls the DMA Engine via the PCle interface. The static region contains the PCle inter-
face and passes an AXIMM bus into the Sandbox. Since the registers controlling the DMA Engine are
simple, there is no need for the DMA Engine to implement a full blown AXIMM interface. Instead, the
AXIMM bus from the PCle interface is converted to the simpler AXILite bus which feeds the registers
in the DMA Engine.

For allowing synchronous measurements with other modules, the Frequency Register is controlled
via time deterministic PC-Mem bus. The output of the Frequency Register is a plain Vector without
control signals or handshake. This output controls the frequency of the Local Oscillator the output of
which feeds the mixer.

Associated Files
AX| Reference Guide

Adding a Memory Map

Some addressable design interfaces can be instantiated into the design using a different interface
type from the one of the interface of origin. This is to simplify user's design by eliminating the use of
an explicit converter, when such conversion is required. At build time, PathWave FPGA recognizes
this type of interface instances and automatically generates the conversion logic between the design
interface and the interface instance.

The design interfaces that support this function can be identified by the existence of the option
MemoryMap underneath the interface name, as can be seen in the following image for interface HviT:

Design Interfaces

¢ Communications
+ Real-time HVI
b © HviD (x1)
* & Hvil (x1)

Memoryhap
RegisterBank
2 Hvi2 (x1)
2 Hvi3 (x1)
k System

When double-clicking on the MemoryMap option, the new interface instance block dialog will
appear. In the dialog, the Interface Type section provides a list of available conversions for this inter-
face. The first item in the list is always the type of the design interface. If there is only one available

https://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf

option (i.e. only the design's interface type), then this one is automatically picked and the Interface
Type section is not shown.

In the following image, the available options for the Host interface of M3XXXA modules are shown:

¥ Block: Host et

Description Addressing

Interface to communicate to host through the RSP API

Interface Type

aximm
axilite

Cmem

address width
[1,18]

Cancel

Adding a Register Bank

PathWave FPGA is dedicated to helping customers get their designs ready and tested fast; to facil-
itate this, PathWave FPGA created Register Banks.

Register Banks are a type of block that can be placed inside the PathWave FPGA schematic. When a
register bank is placed in the schematic, PathWave FPGA will generate behind-the-scenes logic to
connect the signals that are displayed on the schematic to a memory mapped bus that the customer
can access from the Host. By moving this address logic creation inside PathWave FPGA, the user
does not have to worry about address overlaps, or decoding blocks. This allows customers to focus
their attention on the important parts of their design, and not have to worry about boilerplate com-
ponents.

How to Create and Update a Register Bank

Below are the steps for creating a Register Bank, and then updating a register bank.

Launching the Register Bank Dialog

1. With a project open, in the Design Interfaces pane, expand Communications then expand the inter-
face to which the Register Bank will connect. For the M3102A and M3202A, this will be called
Host. Under this interface there will be a selection called RegisterBank.

2. Either double click on RegisterBank or drag RegisterBank onto the design canvas to open the
Register Bank Dialog.

Creating a Register Bank Using the Register Bank Dialog
With the Register Bank Dialog open you are able to start designing a Register Bank. Register Banks
consist of a configurable group of registers with a contiguous address space.

B Register Bank >

Interface: Host | Clock: Clock
Addressing: Byte | Reset: nRst

Name: |Register_Bank|

Registers: : o i L

Mame Address Offset
myReg 0x0

Cancel

Figure 1: Register Bank Dialog when opened into a new project.
Below are main features of the Register Bank Dialog

1. Register Bank Name - This is the name that will be displayed on the block when itis placed in the
schematic.
a. The Register Bank Name must be unique, and valid HDL syntax (see Naming Conventions).

2. Register Bank Information - The top right of the dialog displays what Clock and Reset are con-
nected to and which Interface is being used.
a. Addressing - This is the unit used by the Address Offset column.

3. Registers - You can view and edit registers that are contained within the Register Bank here.
a. Name column - Double left click on an entry to edit a register name. A register name must be
unique within the register bank, and have valid HDL syntax (see Naming Conventions).
I. Ifanissue is detected, the text will turn red and display a tool tip stating the reason for the
failure.

b. Address Offset column - This column displays the address offset of a register. These are dis-
played for informational use only and cannot by directly edited.

c. Adding Registers - Click the "+" button on the dialog to add a register to the bottom of the list.

d. Removing Registers - Select a register (or multiple registers by selecting one, then holding
shift and clicking another) and click the "x" button on the dialog or press the delete key.

e. Reordering Registers - A register or multiple registers can be moved by selecting them and
either dragging them or using the up and down arrow buttons on the dialog. This changes the
address offset field of the moved register and updates offsets of other registers affected by the
move.

4. OK/Cancel - Click OK to create a Register Bank that can be placed on the schematic, or Cancel to
close the dialog with no other actions taken.
a. Ifthe dialog detects any issues with the Register Bank, it will disable the "OK" button and dis-

play the text "Issue Detected". Please look for the red text to see why the Register Bank is
invalid.

Placing the Register Bank in the Schematic
Now that we are done editing the Register Bank, it is time to place the block onto the schematic. To
place the block onto the schematic, hit the "OK" button. The block will now be hovered below your

cursor. At the location you want to place the block, left click. Below is an example block that was cre-
ated with default values.

As the block instance name, the '"Name' defined in the dialog earlier is used, followed by the asso-
ciated interface name inside square brackets.

Register_Bank[Host]
myReg_Din(31:0) myReg_Dout(31:0)

myReg_Din_v myReg_Dout_v

Figure 2: Register Bank block when placed onto the schematic.

Once in the schematic, Register Banks are treated the same as any other block. You are able to move,
copy, flip ports, and remove. To use them in your design, just connect the signals displayed on the
block to the logic you wish to interact with from the host. PathWave FPGA will handle all of the rout-
ing logic for Simulation and Building. You are able to recognize the individual registers in a Register
Bank by looking at the names of the signals. The more registers you add to the Register Bank, the
more signals will be available. Below is an example of a register block with two registers added to it.

Register_Bank_1[Host]

myReg_Din(31:0) myReg_Dout(31:0)
myReg_Din_v myReg_Dout_v

myReg_1_Din(31:0) myReg_1_Dout(31:0)
myReg_1_Din_v myReg_1_Dout_v

Figure 3: Register Bank block that has two RW registers in it.
Updating Register Banks
A unique feature of Register Banks, is their ability to be modified after they are placed on the schem-

atic. To update the Register Bank we have in Figure 2 to the Register Bank we have in figure 3 we will
open the Register Bank Dialog up from the block. There are two ways of opening this dialog.

1. Double click on the Register Bank that you wish to update.
2. Right click on the Register Bank you wish to update, and select "Properties...".

The Register Bank Dialog will open up and display the information that describes the Register Bank
you will update.

To add in the second register to our Register Bank, click "Add", then click "OK". Your Register Bank
will now have the signals associated with the second register.

If you wish to return your register to the state it was in before the update, simply click the "Undo" Icon
in the Icon bar, or use "Ctrl + z".

Register Bank Operation

A Register Bank is a collection of N 32-bit registers. For each register within the register bank, there
is an internal data register. The data in this internal register may be updated either by a host write
access or from the Din port if Din_v is asserted for that register. If both Din_v is asserted and the host
writes to the register, then the host write will take precedence (though if Din_v remains asserted, then
the data in the internal register that the host wrote will up replace by the Din value on the next clock
cycle). Thus if Din_v is tied high, then the register becomes essentially a read only register.

The Dout port is driven by the value of the internal register. A host read access will return the value of
the internal register.

The Dout_v signal is asserted high for one clock period when new data is written. This is any time a
host write occurs or when Din_v is asserted.

When Din_v is asserted, the internal register is updated from Din (unless the host is also writing to the
register at the same time). This value may then be read by a host read access. This value will also be
sent out the Dout port one clock later.

Configuring Submodule Interfaces

PathWave FPGA submodules contain interfaces to connect to blocks in the parent design. When a
submodule project is created, the Change Submodule Interfaces dialog will open automatically. To
open it again, select Project > Change Submodule Interfaces... or click the Change Submodule Inter-
faces button in the Design Interfaces section of the main window. This menu option and button will
only appear when editing a submodule project.

B Change Submodule Interfaces 24

..

Name and Description
Interface List

Interface Role
Category

Interface Control

Buttons Parameters

Optional Ports
Component

Preview

.
...

Synchronous Properties

...................... OK and Cancel buttons

......................

Interface List

This table lists the interfaces in the submodule, with their name, interface type, and interface role.
When you select an interface in this table, it will be the target of any changes made with the other
controls in the dialog. Interfaces can also be reordered by dragging them to their desired position
within this table.

Component Preview

This shows the submodule as it will appear when added to another design. Secondary interfaces are
placed on the left, and Primary interfaces are placed on the right. The interface that is selected in the
table above is colored blue.

Interface Control Buttons

When you click the * Add button, you can select an interface from a list. This will add a new interface
of that type.

The - Remove button will delete the selected interface.

1 4
The Upand Down buttons will move the selected interface in the table and the Component Pre-
view.

Name and Description

The Name field changes the name of the interface.
The Display Name is what will appear in PathWave FPGA.

The text entered in the Description field is shown when adding instances of this interface to the sub-
module. It is also shown in the Properties dialog for the interface when the submodule is used in
another design.

Interface Role

The Interface Role controls whether the interface will be a Primary/output
or Secondary/input. Primary and Secondary are defined in terms of using the submodule in another
design, from the outside looking in.

Category

The Category controls where the interface will appear in the Design Interfaces section of the main win-
dow.

Parameters

Some interfaces have one or more parameters, which control the width of some of the ports in the
interface. In the example diagram, the AXI Lite interface has two parameters. Address Width must be
between 1 and 64 bits. Data Width has two options, 32 and 64 bits. The parameter values are verified
to be within the limits when you click the OK button. If they are not within the limits, they must be cor-
rected. If a parameter controls the width of an optional port and that port is disabled, the parameter
field will be disabled (grayed-out).

Optional Ports

Some interfaces have one or more optional ports. The check-box for each port determines whether
that port will be present in the interface. The Select All and Deselect All buttons will enable or disable
all optional ports.

Synchronous Properties

Some interfaces must be associated with a clock and reset. If there are any synchronous interfaces in
the submodule, there must be at least one clock and one reset. If there is more than one clock or
reset, then the Associated Clock or Associated Reset menu allows you to choose the associated clock
or reset for each interface.

OK and Cancel Buttons

The OK button will apply the changes to the submodule interfaces. If there are any parameter errors
or missing associated clock/resets, you will need to correct them before the changes can be applied.

The Cancel button will discard the changes to the submodule interfaces.

Changes to the Sandbox

After pressing Ok on the dialog, if there were no errors, the sandbox is automatically updated with the
new changes.

Removing an Interface

If an interface is removed, then all Design Interfaces blocks with that interface are removed.

Changing an Interface

If any modifications are made (except changing Interface Role), then those changes are made reflec-
ted in all Design Interfaces blocks with that interface. This may result in connections being lost if they
were connected to an optional port which was removed.

Changing the interface role results in the Design Interfaces blocks with the interface being removed.

Replacing an Interface

If you remove an interface and replace it with a compatible interface with an identical name, then
all Design Interface blocks that had the old interface are replaced with blocks that have the new inter-
face.

If you remove an interface and replace it with an incompatible interface with an identical name, then
all Design Interface blocks that had the old interface are removed as if the interface was removed.

Currently the only interface types compatible with each other are axilite and aximm. They are also con-
sidered compatible if the original interface type is the same as the new one (e.g. axilite to axilite).

For example, you could replace an aximm named 'host' with an axilite called 'host' and it will sub-
stitute the appropriate Design Interface blocks. But you could not replace an aximm interface named
'host' with a mem interface named 'host'.

Adding an Interface

The interface was just added, so no blocks with the interface will be in the Submodule.

Deciding the Address Width of an Interface

If an addressable secondary interface is available for a design, the user is allowed to configure the
address width for the instances of this interface.

Selecting the address width value is straightforward when only one instance of an interface is instan-
tiated. Deciding the correct value when there are multiple instances of an interface, and Register
Banks, can become a complicated job. If we include to the above scenario the usage of interface

instances with different addressing schemes, the probability of exceeding the available address space
is high.

PathWave FPGA assists by calculating, on-the-fly, the address space mapping of the instances of an
interface and provides this information to the user in the instance's block dialog, as shown below.

B Block: axilite_input X

Description Addressing Advanced

Addressing Unit: Byte Addressed
Mapped Address Space: Ad d reSS! n g .
Mapped Address Space (others): I nfo rm atl on SeCtI on

Total Address Space:

Expand/Collapse
Unmapped Address Space: 0x0 B Utton

Interface Type
axilite
Parameters

address width
[1,20]

Cancel

Addressing Information Section

» Addressing Unit: Displays the data bits addressed by each addressable unit which depends on the
addressing scheme of the selected interface instance. For the case of 8-bits and 32-bits address-
able data bits, Byte Addressed and Word Addressed are used respectively.

* Mapped Address Space: Displays the address space, in Addressing Unit, that is mapped by the cur-

rent interface instance.

If there is an error in the calculation, the value turns to red and an error symbol, €3, is displayed
at the left side of the value. Hovering over the) symbol provides more information about the

error in a tool-tip.

For important information regarding the calculation, an information symbol, i, is displayed at
the left side of the value. Hovering over the i) symbol provides more important information in a

tool-tip.

* Mapped Address Space (others): Displays the address space, in Addressing Unit, that is mapped

by other interface instances, and register banks, in the design.

= If other instances exist, an information symbol, {{J, is displayed at the left side of the value.
Hovering over the i} symbol provides a list of all the other instances and registers along with

their mapped address space as a tool-tip.

» Total Address Space: Displays the address space, in Addressing Unit, that is available by the inter-
face.

» Unmapped Address Space: Displays the address space, in Addressing Unit, that s left unmapped
for the interface.

Expand/Collapse Button

This button is used to show/hide some of the addressing information. When collapsed, the only
information visible to the user is the Addressing Unit and the Mapped Address Space.

Exceeding the available address space

In case of multiple interface instances (and/or registers) for a design interface, it is possible that more
than the available address space is required by the user's design. In that case, the calculator of the
address space will identify the issue and display error to the user through the block dialogs of the
interface instances or register banks.

#KeysightStandardInterfaces-Addressingscheme

For example, let's take the case of a byte-addressed axilite interface with 20-bits of address width.
This will give a total of '0x100000" bytes available address space to be mapped.

If we create one instance of this interface using an address width of 19-bits, the mapped, and
unmapped, address space will become "0x80000'.

n axilite_input_axilite_1 (axilite_input_axilite) X

Description Addressing Advanced
Symbol name: axilite_input_axilite_1
Addressing Unit: Byte Addressed

Mapped Address Space: 0xB0000

Mapped Address Space (others): 0x0

Total Address Space: 0x100000

LInmapped Address Space: OxB80000

Parameters

address width
[1,20]

Cancel Apply

If we now create a second instance of this interface selecting to use 20-bits, the calculator will detect
the overflow and report error, as shown in the following picture:

B Block: axilite_input >

Description ® Addressing Advanced

Addressing Unit: Byte Addressed
Mapped Address 5

Mapped Address Space (others): i 0x80000

0x100000

0x0
Interface Type
axilite
Parameters

address width
[1,20]

Cancel

By adjusting the address width value of the new instance, the user can find the value that satisfies the
space limits:

B Block: axilite_input et

Description Addressing Advanced

Addressing Unit: Byte Addressed

0x10000

0x100000

0x70000

Interface Type

axilite

Parameters

address width
[1,20]

Cancel

Showing address space calculation errors in Register Banks

Register Banks are related to a design's interface and are taken into account for the calculation of the
address space of an interface. If creating a Register Bank, or increasing the number of registers in an
existing one, leads to required space overflow, an error message is displayed at the lower left corner

of the Register Bank dialog. By hovering over the — symbol, the exact issue is described.

n Register Bank

Interface: axilite_1 | Clock: clock_1

Mame: |Register_Bank i
Addressing: Byte Reset: nRst_1

Registers: * i 1

Mame Address Offset
myReg 0x0

Cancel

ERROR: Total mapped address space for this interface (0x101000) exceeds maximum (0x100000).

Registering Sandbox Interfaces

Registering a sandbox interface is the process of adding a register stage for the interface, just after it
has crossed the sandbox boundary (and therefore, has entered the sandbox design).

The purpose of this procedure is to control the timing closure of the design. By placing a register
stage at the boundary crossing from the static region to the sandbox, the path from the origin of the
interface signals to their destination is made shorter. This makes meeting the timing requirements of
the design easier. On the downside, this extra registration stage increases the latency in the path.

PathWave FPGA allows the user to control the registration of the sandbox interfaces when register
stages are supported by the BSP. When register stages are supported by the BSP, a check box will
appear in the properties dialog of a Design Interface block.This checkbox allows the user to choose
whether or not to place the register stage in the design. When register stages are not supported by
the BSP, this checkbox will not be shown.

Modifying the default value of the 'Generate Register Stage' checkbox is an
advanced feature. If not done properly, it can lead to timing violations or invalid
operation of the design. Always read the BSP documentation before applying any
modifications to the default values.

An example of the properties dialog of a Design Interface block that supports register stages is shown
below:

B Block: axis_input >

Description Advanced

v Generate Register Stage

Cancel

For more information about closing timing for sandbox designs, consult the Xilinx Vivado Design Suite
User Guide - Partial Reconfiguration document, particularly the "Reconfigurable Partition Interfaces"
section.

Symbol Names

PathWave FPGA generates symbol names for the interfaces of a design (sandbox or submodule). The
purpose of these names is to be used at run-time for easier access to properties of the respective
interface. Currently, they are used to get the memory address of addressable interfaces in an instru-
ment driver application.

Symbol Name of a Memory Mapped Interface

The symbol name of a memory mapped interface instance is the same as the display name of that
instance, so long as the display name follows the Naming Conventions rules (This is always true at the
creation of a new instance). In case the display name of an instance is updated to a non-compliant
one, the last valid symbol name is preserved.

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_3/ug909-vivado-partial-reconfiguration.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_3/ug909-vivado-partial-reconfiguration.pdf

n aximm_input_axilite_1 (aximm_input_axilite) >

Description Addressing Advanced

Addressing Unit: Byte Addressed

Mapped Address Space: 0x100000

Parameters

address width
[1,20]

Cancel

Symbol name of a Register

The symbol name of a register is constructed as the concatenation with an underscore () of the
Register Bank name and the Register name. In the Register Bank shown in the picture below, the sym-
bol name for register myReg will be Register_Bank_myReg.

¥ Register Bank x

Interface: Host | Clock: Clock

Mame: [Reqgister_Bank
4 g " 'I Addressing: Byte | Reset: nRst

Registers:

MName Address Dffset

myReg 0x0

Cancel

Symbol names for submodule interfaces
The symbol name for an interface inside a submodule design is constructed as the concatenation with
a period (.) of the name(s) of the parent submodule(s) and the symbol name of the interface.

For example, imagine a sandbox design has an instance of the submodule topSubmodule named
topSubmodulelnstance. Inside this submodule is an instance of bottomSubmodule

named bottomSubmodulelnstance. Inside bottomSubmodule is an interface instance named sub-
modulelnterface, creating a hierarchy that looks like this:

» Sandbox design
- topSubmodulelnstance
° bottomSubmodulelnstance
° submodulelnterface

The symbol name for the interface instance submodulelnterface would be topSub-
modulelnstance.bottomSumbodulelnstance.submodulelnterface.

Similar to memory mapped interfaces, the symbol name will be the display name as long as it
follows the Naming Conventions rules. Otherwise, it will retain its last valid name.

IP Catalog

PathWave FPGA comes with a catalog of IP components for you to use inside your design. PathWave
FPGA also provides several methods to add your own IP or IP repositories.

The IP Catalog pane shows the the IP available for use in your project. You can customize how the IP
is grouped into a hierarchy and which columns of information are visible. The color of the icon
depends on the import method (as a standalone IP or as part of a repository) or the IP type (e.g.
Vivado IP, Submodule IP).

IP Catalog

MName « ‘ersion
k Basic
¢ BSP
¢ Connectors
» DSP
* Vivadolp
. counter
i ila
F Math
* Memory
F4: DualPortRam
F4: DualPo
F3: Mem_mux

F3: Mem_m

F4: Stream

F4: Streamer3
 Submodule

B mySubmodule
w VHDL Files

. Testip

Customizing the IP Catalog window

Customizing which columns are displayed

To customize the visible columns in the /P Catalog window, right-click on the header of the table.
Click on an option to show or hide that column. By default, the Name and Version are displayed. The
additional columns are Vendor, Library, VLNV, and Module Name. the Name header is always visible.

IP Catalog

- Wlmemi Dn
b

Group by

Vendor

Library

Version
k Mal VLNY

* Mex
Fi Module Name

F4: DualPortRam_stream 1.0

F3: Mem_mu [1.0

F: Merm_mux_d 1.0

F4: Streamer3 1.0

I Streamer 1.0
w Submodule

B mySubmodule 1.0.0
+ VHDL Files

. Testip

Customizing how the IP is grouped

To customize the way the IP are grouped in the IP Catalog, right-click on the header of the /P Catalog
table, hover over the Group by option, and click an option to enable or disable it.

IP Catalog

» B Group by 3 Vendor

L o + Library
b Con
» DSF Vendor v Category

K Library
m v Version
F Mal VLNY
* Met
r Module Mame
F3: DualPortRam_stream 1.0
F3: Mem_mu (1.0
Fa: Mem_mux_d 1.0
F4q: Streamer3 1.0
F4: Streamer 1.0
 Submodule
B mySubmodule 1.0.0
w VHDL Files
. Testip

By default, the IP are grouped by Library and Category. Additionally, you can group the IP by Vendor.

If all options are deselected, a list of all available IP will be displayed without any king of grouping:

IP Catalog

~ \ersion
I: Adder 1.
I: Adder_stream
I: Adder_streamFC
- AnalogTrigger
- AnalogTrigger_x1
AxidliteTolem
AxidToMemn
|- axis_broadcaster_2x
|- axis_broadcaster_d4x
I- Combineltol
- Combiner
- Comparison
I: Complex2Real
- Concat
- Concat_stream
- Concat_streamFC
counter
- Cross_clk_domains
teByS
nateBySComplex
|- Decombiner
- Delay
I: Delay_stream
- DualPortRam
I: DualPortRam_stream
E]

) N

fa
2

IP icon color coding

AlLIP are displayed with a "chip" icon at the left of their name. This icon can take one of the following
colors based on the import method or type of the IP:

Red - : This is used for IP that are coming from an IP repository, either the PathWave FPGA default
one, the BSP specific one or a user imported one.

Green E: This is used for PathWave FPGA submodule IP that are loaded into the project.
o |
Yellow :Thisis used for Vivado IP.

Blue " :Thisis used for user IP imported as an external block.

See Also

e PathWave FPGA IP Repository
» Basic IP Blocks

e Connector Blocks

e Math Blocks

e DSP Blocks

e Memory Blocks

e DSP Library IP Blocks

e |P Repositories

¢ Imported User IP

 Vivado XCI (Xilinx Core Instance)
e PathWave FPGA Submodule

PathWave FPGA IP Repository
PathWave FPGA includes some IP blocks that a user can incorporate into their FPGA design. The IP
blocks are categorized into different libraries so that similar blocks are grouped together.

Some of the IP blocks are designed so that they can optionally process multiple samples in the same
clock. Thisis called supersampling. For blocks that support this, there is a parameter called super-
sample that denotes the number of parallel samples. For example, a 32 bit adder with super-
sample=1 would add two 32 bit numbers. A 32 bit adder with supersample=2 would add two pairs of
16 bit numbers. This can be useful when processing data at a higher sample rate than the clock rate
of the FPGA.

See Also

» Basic IP Blocks

e Connector Blocks

* Math Blocks

* DSP Blocks

e Memory Blocks

e DSP Library IP Blocks

Basic IP Blocks
This page describes the following Basic IP Blocks that you can use with Pathwave FPGA:

User Guide

e BitCount

e Combiner

e Concat

e Concat_stream

e Concat_streamFC

e Concat2...Concat10

e Concat2_stream...Concat10_stream
e Counter

e (Cross_clk_domains

e Decombiner

e Delay

e Delay_stream

e Duplicate

¢ Duplicate_stream

e FdsRxEndpoint

e FdsTxEndpoint

e Latch

e LatchClr

o Mux2, Mux4, Mux8

e Read_mux

* Reg_xN

e Sample_delay

e Sample_delayFC

e sign_extension

e sign_extension_stream
¢ sign_extension_streamFC
e slice

e slice_stream

e slice_streamFC

e Slice2...Slice10

e Slice2_stream...Slice10_stream

Find us at www.keysight.com

Designing your FPGA Logic

Page 81

BitCount

BitCount_1

clk

nRst Cnt =
— Data tdata(4:0)
tdata(15:0) tvalid
tvalid

Count the number of "1" bits in the input data word. The input and output interfaces are AXI-stream-
ing.

This block will sum the number of "1" bits in groups of either 4 (Pipeline=1) or 8 (Pipeline=0) input
bits. Then either 4 or 8 (depending on Pipeline) of these sums are then summed. This continues until
all the bits are summed. If the number of input bits is N, then the latency of this block will be ceil(log_
4(N)) if Pipeline=1, or ceil(log_8(N)) if Pipeline=0. Setting Pipeline=0 can potentially reduce the
latency through the block while setting Pipeline=1 can potentially allow the block to run at a higher
clock speed. For example, if the input is N=40 bits wide, then the latency if Pipeline=1 is ceil(log_4
(40)) = ceil(2.66) = 3 clocks. If Pipeline=0, then the latency is ceil(log_8(40)) = ceil(1.77) = 2 clocks.

Parameters

Data size: Sets the number of bits in the input data word. Variable from 1 to 1024. Defaultis 16.

Pipeline: When set, this adds extra pipelining as described above.

Combiner

Combiner_1
Din[0]
Din[1]
Din[2]
Din[3] Dout(7:0)

Din[4]
Din[5]
Din[6]
Din[7]

Combines N single-bit inputs into a single N-bit output vector.

Parameters
Din width: Sets the number of single bit inputs. Variable from 1 to 1024. Default is 8.

Concat

Concat_1
DinH(7:0) Dout(15:0)

DinL(7:0)

Concatenates two input signals into one single signal. DinH is the most significant half of Dout, and
DinL is the least significant half of Dout.

This module does not introduce extra delay.

Parameters
DinH width: Sets the data width of DinH. Variable from 1 to 1024. Default is 8.

DinL width: Sets the data width of DinL. Variable from 1 to 1024. Default is 8.

supersample: Sets the supersample amount. Variable from 1 to 64. Defaultis 1.

Concat_stream

Concat_stream_1
= DinH
tdata(7:0) Dout =
tvalid tdata(15:0)

= DinL tvalid
tdata(7:0)
tvalid

Streaming version of the concat block.

Concatenates two input signals into one single signal. DinH is the most significant half of Dout, and
DinL is the least significant half of Dout.

This module does not introduce extra delay.

Note that both streaming inputs must assert and deassert tvalid at the same time.
Parameters

DinH width: Sets the data width of DinH. Variable from 1 to 1024. Default is 8.
DinL width: Sets the data width of DinL. Variable from 1 to 1024. Default is 8.

supersample: Sets the supersample amount. Variable from 1 to 64. Defaultis 1.

Concat_streamFC

Concat_streamFC_1
Clk
nRst
= DinH
tdata(7:0)
tlast Dout —
tready tdata(15:0)
tuser(0:0) tlast
tvalid tready
— DinL tuser(0:0)
tdata(7:0) tvalid
tlast
tready
tuser(0:0)
tvalid

Streaming flow controlled version of the concat block.

Concatenates two input signals into one single signal. DinH is the most significant half of Dout, and
DinL is the least significant half of Dout

This module introduces minimum 2 clock delay.

Parameters

DinH width: Sets the data width of DinH. Variable from 1 to 1024. Default is 8.
DinL width: Sets the data width of DinL. Variable from 1 to 1024. Default is 8.
tuser width: Sets the data width of tuser. Variable from 1 to 8. Default is 1.

supersample: Sets the supersample amount. Variable from 1 to 64. Defaultis 1.

Concat2Concat10

concat2_1
din1(0:0) dout(1:0)
din2(0:0)

concat9_1
din1(0:0)
din2(0:0)
din3(0:0)
din4(0:0)
din5(0:0) dout(8:0)
din6(0:0)
din7(0:0)
din8(0:0)
din9(0:0)

concat3_1
din1(0:0)
din2(0:0) dout(2:0)
din3(0:0)

concat10_1

din1(0:0)

din2(0:0)

din3(0:0)

din4(0:0)

din5(0:0) dout(9:0)
din6(0:0)

din7(0:0)

din8(0:0)

din9(0:0)

din10(0:0)

These blocks will concatenate between 2 and 10 input vectors into one output vector (only versions
with 2, 3,9, and 10 input ports shown). The sizes of the input vectors can vary between inputs. They
don't have to all be the same size. The size of the output vector is the sum of the sizes of the input

vectors. This block supports supersampled data.

Parameters

sizel...size10: Sets the data width of the corresponding input vector.

supersample: Sets the supersample amount. Defaultis 1.

Concat2_streamConcat10_stream

concat2_stream_1
= din1

tdata(0:0) dout =
tvalid tdata(1:0)

= din2 tvalid

tdata(0:0)

Wellle

concat3_stream_1

= dinT
tdata(0:0)
tvalid
= din2
tdata(0:0)
tvalid
— din3
tdata(0:0)
tvalid

dout =
tdata(2:0)
tvalid

concat10_stream_1
= dinT
tdata(0:0)
concat9_stream_1 tvalid
= din = din2
tdata(0:0) tdata(0:0)
tvalid tvalid
= din2 = din3
tdata(0:0) tdata(0:0)
tvalid tvalid
= din3 = dind
tdata(0:0) tdata(0:0)
tvalid tvalid
= dind = din5
tdata(0:0) tdata(0:0) dout =
tvalid tvalid tdata(9:0)
= din5 dout = = din6 tvalid
tdata(0:0) tdata(8:0) tdata(0:0)
tvalid tvalid tvalid
— din6 = din7
tdata(0:0) tdata(0:0)
tvalid tvalid
= din7 = din8
tdata(0:0) tdata(0:0)
tvalid tvalid
= din8 - din9
tdata(0:0) tdata(0:0)
tvalid tvalid
= din9 = din10
tdata(0:0) tdata(0:0)
tvalid tvalid

These blocks will concatenate between 2 and 10 input axi streams into one output axi stream (only
versions with 2, 3,9, and 10 input streams shown). The data sizes of the input streams can vary
between inputs. They don't have to all be the same size. The size of the output data stream is the
sum of the sizes of the input streams. This block supports supersampled data. This block does not
support reverse flow control (TREADY). Note that all the streaming inputs must assert and deassert
tvalid at the same time.

Parameters

sizel...size10: Sets the data width of the corresponding input stream.

supersample: Sets the supersample amount. Defaultis 1.

Counter

Clk

nRst

CntEn

Clear Count(7:0)

Preset TC
DownCnt

Increment(7:0)

PresetVal(7:0)

Up/down presetable counter. The counter supports clearing, preseting, counting up or down, and
rolling over or stopping upon reaching Terminal Count (the last value before rolling over).

The Modulus parameter determines how far the counter will count. By default, itis set to O which is
interpretted as QB'tW'dth, or a normal binary counter. To make a decade counter, for example, set
Modulus to 10.

The amount that the counter is changed for every count can be set. By default, thisvalueis 1. If a dif-
ferent counter increment amount is desired, for example a counter that counts by 3s, then the Incr
parameter can be changed. This parameter defaults to 1, and a non-zero value denotes a fixed

counter increment. In this case, the Increment port is ignored. If Incris zero, then the counter's incre-
ment value is determined by the Increment port. This allows changing the increment value in real
time. This feature can be used to make a rudimentary accumulator.

DownCnt determines which direction the counter will count. If DownCnt=0, it is an up counter so
Count <= Count+Incr. If DownCnt=1, it is a down counter so Count <= Count-Incr.

TC (Terminal Count) is asserted when Count is about to roll over. For an up counter, TC is asserted
when Count >= Modulus-Incr. For a down counter, TC is asserted when Count<Incr.

Rollover determines if the counter will roll over after TC or stop. If Rollover=1, then after the Terminal
Count the counter will rollover. For example, if Modulus=10, Incr=4, DownCnt=0, and Count=8, then
the new Count value would be 2 (Count+Incr-Modulus or 8+4-10). If Rollover=0, then the counter will
stop counting at the Terminal Count value. So for a down counter with Incr=1, the counter will count
down to zero and then stop.

Asserting Clear will set the counter to Reset Value (a parameter).

Asserting Preset will set the counter to PresetVal (a port).

CntEn enables the counter. If asserted, the counter will count up or down depending on DownCnt.
Note that neither Clear nor Preset need CntEn to be asserted in order to function.

When multiple control signals are asserted (e.g. Clear and Preset) at the same time, the order of pre-
cedence is:

1. (highest) nRst
2. Clear
3. Preset
4. (lowest) CntEn

Parameters

Bitwidth: determines number of bits in counter.

Modulus: determines how far the counter will count before rolling over or stopping with a default
value of 1. Modulus=0 means 2Bitwidth,

Incr: sets the fixed increment for the counter with a default of 1. If Incr=0, then the Increment port is
used for a Variable increment value. If Incr>0, the Increment port is ignored.

Rollover: determines if the counter rolls over (Rollover=1) or stops (Rollover=0) at the Terminal Count.

Reset Value: sets the value the counter will take when Clear is asserted.

Cross_clk_domains

Cross_clk_domains_1
clk_data_in
clk_data_out pulses_out(0:0)
resetn_data_in levels_out(0:0)

resetn_data_out rdy(0:0)
pulses_in(0:0)
levels_in(0:0)

Logic to handle the crossing of signal levels and pulses to and from arbitrarily related clock domains.

Logic high pulses on the input clock domain are synchronously transferred to logic high pulses on the
output clock domain. An output logic pulse will always have a pulse width of one 'clk_data_out' cycle,
regardless of the pulse width of the input logic pulse.

Logic levels on the input clock domain are synchronously transferred to logic levels on the output
clock domain.

The transfer delay of signals from the input clock domain to the output clock domain depends upon
the frequency and phase relationship between the two clock domains. Input signal levels are

assumed to be relatively static compared with the clock frequencies. Input signal pulses cannot be
repeated until each pulse has fully propagated through the block. The 'rdy' output signal should be
used to determine when the block is ready to transfer an input pulse to the output, especially if input
signal pulses may otherwise occur in rapid succession. When a bit in the 'pulses_in" input port is asser-
ted high, the corresponding 'rdy' bit will be asserted low. When the 'rdy' bit is again asserted high, the
'pulses_in' input may again be asserted high. The 'rdy' output signal is synchronous with the 'clk_
data_in' clock.

Regardless of the input and output clock frequencies, if a level input and pulse input are asserted sim-
ultaneously, the corresponding level output will be asserted either simultaneous with or before the
pulse output is asserted.

Note that positive transitions are detected in the 'pulses_in' input to determine that a pulse input has
occurred. Consequently, if a 'pulses_in' input is asserted high and remains high, only one pulse will be
output.

'resetn_data_in'is an active low reset signal, synchronized to the 'clk_data_in' clock.

'resetn_data_out' is an active low reset signal, synchronized to the 'clk_data_out' clock.

Note that this block is available only for sandboxes which include more than one clock.

Parameters
pulses_width: Sets the data width of pulses_in, pulses_out and rdy
levels_width: Sets the data width of levels_in and levels_out

levels_reset value: Sets the reset value of levels_out

Decombiner

Decombiner_1
Dout[0]
Dout[1]
Dout[2]
Dout[3]

Dout[4]
Dout[5]
Dout[6]
Dout[7]

Converts a single N-bit input vector into N single-bit output signals.

Parameters
Din width: Sets the Din data width. Variable from 1 to 1024. Default is 8.

Delay

Delay_1

Din(15:0)
Clk Dout(15:0)
nRst

Delays input N cycles.

Parameters

bus width: Sets the bus width of Din and Dout. Variable from 1 to 1024. Default is 16.
latency: Sets the latency through the delay block. Variable from 1 to 1024. Default is 1.

Reset Value: Sets the value of the delay registers when nRst is asserted low. It should be the same
size is Din. Defaultis O.

Delay_stream

Delay_stream_1

— delayln
tdata(15:0) delayOut —

W] tdata(15:0)
Clk tvalid
nRst

Streaming version of the delay block.

Delays input N cycles.

Parameters

bus width: Sets the bus width of delayln and delayOut. Variable from 1 to 1024. Default is 16.
latency: Sets the latency through the delay block. Variable from 1 to 1024. Default is 1.

Reset Value: Sets the value of the delay registers when nRst is asserted low. It should be the same
size as tdata. DefaultisO.

Duplicate

Duplicate_1

din(15:0) dout(31:0)

Duplicate input vector into N concatenated copies of the input. For example, if supersample is set to
five, then dout will be five concatenated copies of din. This block supports complex input data.

This is combinatorial and adds no delay.

Parameters

Dsize: Sets the number of bits in each input sample. For real data, the din port will be Dsize bits wide,
the dout port will be Supersample*Dsize bits wide. For complex data, these ports will be twice as
wide.

Supersample: Sets the number of copies of din to place into dout.

Complex: Indicates if the data to be duplicated is real or complex.

Duplicate_stream

Duplicate_stream_1
= din dout =

tdata(15:0) tdata(31:0)
tvalid tvalid

Duplicate input axi-stream into N concatenated copies of the input. For example, if supersample is
set to five, then dout_tdata will be five concatenated copies of din_tdata. This block supports com-
plex input data.

This is combinatorial and adds no delay.

Parameters

Dsize: Sets the number of bits in each input sample. For real data, the din_tdata port will be Dsize
bits wide, the dout_tdata port will be Supersample*Dsize bits wide. For complex data, these ports
will be twice as wide.

Supersample: Sets the number of copies of din to place into dout.

Complex: Indicates if the data to be duplicated is real or complex.

FdsRxEndpoint

FdsRxEndpoint_1

data(95:0)
address(7:0) strobe[0]
GEYETEHY)) strobe[1]
end strobe[2]
ready
start
valid

Fast Data Sharing Receive Endpoint.

This creates a FDS Rx Endpoint with N registers. These registers are all packed into the data port
with the least significant bits being the lowest address. A slice2...slice10 block can be used to unpack
the data port in the appropriate number of vectors. This image shows a FdsRxEndpoint with three
32-bit registers.

The register at address O uses data[31:0] and strobe[0]. The register at address 1 uses data[63:32]
and strobe[1]. The register at address 2 uses data[95:64] and strobe[2].

When a new value is written from the FDS interface, the corresponding strobe output will be asserted
for one clock cycle.

Parameters

Number of Registers: Sets the number of registers to create.

Data size: Sets the number of bits in each register. This must be a multiple of 4 with a default value of
32 bits.

Starting address: Sets the FDS address for the first (lowest addressed) register. The remaining
registers will addresses incrementing from this address. The default is O.

FdsTxEndpoint

FdsTxEndpoint_1

Tx =

address(7:0)

clk data(3:0)
nRst end
data(31:0) ready
start

valid

strobe[0]

Fast Data Sharing Transmit Endpoint.

This creates a FDS Tx Endpoint with N registers. These registers are all packed into the data port with
the least significant bits being the lowest address. A concat2...concat10 block can be used to pack
the appropriate number of vectors into one vector for the data input port. Thisimage shows a
FdsTxEndpoint with one 32-bit register.

The register at address 0 uses data[31:0] and strobe[0]. In this example, there are no other registers.
When a new value is read by the FDS interface, the corresponding strobe output will be asserted for

one clock cycle.

Parameters

Number of Registers: Sets the number of registers to create.
Data size: Sets the number of bits in each register. This must be a multiple of 4 with a default value of

32 bits.
Starting address: Sets the FDS address for the first (lowest addressed) register. The remaining
registers will addresses incrementing from this address. The default is O.

Latch

Latch_1

Din(31:0)
CE Dout(31:0)

Clk
Rstn

32 bit latch with write enable.

Parameters
Bus width: Sets the register bus width. Variable from 1 to 1024. Default is 32.

LatchClr

LatchCir_1

clk
nRst

Din(31:0) Dout(31:0)
Clr
CE

Latch with clock enable and synchronous clear.

If nRst = 0, then Dout is set to the initialization value (typically 0).

If nRst =1 and CE =0, Dout remains unchanged.

IfnRst=1,CE=1,andClr =1, Dout is set to the initialization value on the rising edge of clk.
IfnRst=1,CE =1, and Clr =0, Dout is set to Din on the rising edge of clk.

Parameters

Bus width: Sets the register bus width. Variable from 1 to 1024. Default is 32.
Init: Sets the value that the latch resets/clears to. Defaultis O.

Mux2, Mux4, Mux8

Mux4_1

Sel(1:0)
Mux2_1 In0(7:0)

Sel(0:0) In1(7:0) Result(7:0)
In0(7:0) Result(7:0) In2(7:0)
In1(7:0) In3(7:0)

Mux8_1
Sel(2:0)
In0(7:0)
In1(7:0)
In2(7:0)
In3(7:0) Result(7:0)
In4(7:0)
In5(7:0)
In6(7:0)
In7(7:0)

Theseare2to1,4to 1,and 8 to 1T multiplexers. The value of the Sel input determines which of the
various In ports connect to Result.

These are combinatorial.

Parameter
width: Sets the bus width of the In ports and Result.

Read_mux

Read_mux_1
Clk
nRst
= Mem_port
address(9:0)
rdData(31:0)

rdEn
wrData(31:0)
wrEn
Din[0](31:0)
Din[1](31:0)

Read data from multiple sources.

Address port is used to select one of N, 32 bit data sources. If the address index is larger than the
number of input data sources, this block will return zeros.

Parameters
Number of inputs: Sets the number of 32 bit data sources. Default is 2.

Reg_xN

clk
nRst
= mem
address(31:0)
rdData(31:0) Dout[0](31:0)
rdEn Dout[1](31:0)

wrData(31:0) Dout_v[0]
wrEn Dout_v[1]
Din[0](31:0)

Din[1](31:0)

Din_v[0]

Din_v[1]

Captures N, 32 bit data inputs and drives to outputs. The internal data register may be updated
through a write access on the 'mem' port indexed by the address value. The internal data register
may also be updated to the Din value by asserting the corresponding Din_v signal[n]. When both
updates are attempted at the same time, the mem write value will take precedence. The values of the
internal data registers are driven out the Dout[n] ports.

Note that the Reg_xN block uses the Mem interface which uses word addressing, not byte address-
ing.

Mem read access will return the value of the indexed internal data register.

The Dout_v[n] signal is asserted high for one clock period when new data is written. This is any time a
mem write occurs or when Din_v[n] is asserted.

Parameters
Number of Registers: Variable from 1 to 1024. Default is 2.

Address width: Variable from 1 to 32. Default is 32.

Sample_delay

Sample_delay_1

clk

nRst
= din dOut —
tdata(15:0) tdata(15:0)
tlast tlast
tuser(0:0) tuser(0:0)
WELT WENT
integerDelay(9:0)

fractionalDelay(7:0)

The Sample_delay IP block delays the input data stream by a programable number of samples. The
delay does not have to be a multiple of the supersample value.

The integerDelay input port sets the delay amount to a multiple of the supersample rate and the frac-
tionalDelay input sets the delay amount to a fraction of the supersample rate. The maximum integer
number of supersample delays is determined by the depth of the internal block ram and is set by the
block ram address width parameter when the Sample_delay block is instantiated. The maximum num-
ber of fractional sample delays is determined by the supersample rate. The valid range for frac-
tionalDelay is O to (Supersample Rate - 1). For a supersample rate of 5x, the value of fractionalDelay
can be between 0 and 4. The total delay in samples is (Supersample Rate * integerDelay +
fractionalDelay). For example, with a supersample rate of 5x (5 parallel samples per clock cycle) to
get a delay of 7 samples set the integerDelay to 1 and the fractionalDelay to 2.

Parameters

Data width: data width (bits) of each sample. The dIn and dOut tdata ports are (Supersample Rate *
Data Width) bits wide. Default is 16.

Memory Address Width: Address width (bits) of the internal block ram. Default is 10.
Supersample Rate: Number of parallel supersampled samples. Defaultis 1.

Tuser width: Number of Tuser bits for each sample. The Tuser ports are (Supersample Rate * Tuser
size) bits wide. Default is 1.

Sample_delayFC

sample_delayFC_1

clk

nRst

= din dOout =
tdata(15:0) tdata(15:0)
tlast tlast
tready tready
tuser(0:0) tuser(0:0)
tvalid tvalid
integerDelay(9:0)

fractionalDelay(7:0)

The Sample_delayFC IP block is the same as the Sample_delay IP block, but has reverse flow control.
The Sample_delayFC IP block delays the input data stream by a programmable number of samples.
The delay does not have to be a multiple of the supersample value.

The integerDelay input port sets the delay amount to a multiple of the supersample rate and the frac-
tionalDelay input sets the delay amount to a fraction of the supersample rate. The maximum integer
number of supersample delays is determined by the depth of the internal block ram and is set by the
block ram address width parameter when the Sample_delay block is instantiated. The maximum num-
ber of fractional sample delays is determined by the supersample rate. The valid range for frac-
tionalDelay is O to (Supersample Rate - 1). For a supersample rate of 5x, the value of fractionalDelay
can be between 0 and 4. The total delay in samples is (Supersample Rate * integerDelay +
fractionalDelay). For example, with a supersample rate of 5x (5 parallel samples per clock cycle) to
get a delay of 7 samples set the integerDelay to 1 and the fractionalDelay to 2.

Parameters

Data width: data width (bits) of each sample. The dIn and dOut tdata ports are (Supersample Rate *
Data Width) bits wide. Default is 16.

Memory Address Width: Address width (bits) of the internal block ram. Default is 10.
Supersample Rate: Number of parallel supersampled samples. Default is 1.

Tuser width: Number of Tuser bits for each sample. The Tuser ports are (Supersample Rate * Tuser
size) bits wide. Default is 1.

sign_extension

Sign_extension_1

Din(7:0) Dout(15:0)

Sign extends the input vector.

Parameters
Din width: Sets the Din bus width. Variable from 1 to 1024. Default is 8.
Dout width: Sets the Dout bus width. Variable from 1 to 1024. Default is 16.

supersample: Sets the supersample amount. Variable from 1 to 64. Defaultis 1.

sign_extension_stream

Sign_extension_stream_1
= Din Dout =

tdata(7:0) tdata(15:0)
tvalid WELT

Sign extends the input data stream.

Parameters

Din width: Sets the Din bus width. Variable from 1 to 1024. Default is 8.
Dout width: Sets the Dout bus width. Variable from 1 to 1024. Default is 16.

supersample: Sets the supersample amount. Variable from 1 to 64. Defaultis 1.

sign_extension_streamFC

Sign_extension_streamFC_1
Clk
nRst Dout =
— Din tdata(15:0)
tdata(7:0) tlast

tlast tready
tready tuser(0:0)
tuser(0:0) tvalid
tvalid

Sign extends the input data stream using full flow control.

This block adds a minimum delay of 2 cycles.

Parameters

Din width: Sets the Din bus width. Variable from 1 to 1024. Default is 8.
Dout width: Sets the Dout bus width. Variable from 1 to 1024. Default is 16.
Tuser width: Sets the tuser bus width. Variable from 1 to 8. Default is 1.

supersample: Sets the supersample amount. Variable from 1 to 64. Defaultis 1.

slice

Slice_1

Din(15:0) Dout(15:0)

Selects certain number of bits from a vector signal input.

This does not introduce extra delay.

Parameters

Din width: Sets the bus width of Din. Variable from 1 to 1024. Default is 16.

offset: Sets the starting LSB position to extract bits from Din [Dout(bus_out_width:0) = Din(bus_in_
width:offset_lower_bit)]. Default is O.

Dout width: Sets the bus width of Dout. Variable from 1 to 1024. Default is 16.

supersample: Sets the supersample amount. Variable from 1 to 64. Defaultis 1.

slice_stream

Slice_stream_1
= Din Dout =

tdata(15:0) tdata(15:0)
tvalid tvalid

Streaming version of the slice block.

Selects certain number of bits from a vector signal input.

This does not introduce extra delay.

Parameters

Din width: Sets the bus width of Din. Variable from 1 to 1024. Default is 16.

offset: Sets the starting LSB position to extract bits from Din [Dout(bus_out_width:0) = Din(bus_in_
width:offset_lower_bit)]. Default is O.

Dout width: Sets the bus width of Dout. Variable from 1 to 1024. Default is 16.

supersample: Sets the supersample amount. Variable from 1 to 64. Defaultis 1.

slice_streamFC

Slice_streamFC_1
Clk
nRst Dout =
— Din tdata(15:0)
tdata(15:0) tlast

tlast tready
tready tuser(0:0)
tuser(0:0) tvalid
tvalid

Streaming version of the slice block supporting full flow control.

Selects certain number of bits from a vector signal input.

This block adds a minimum delay of 2 cycles.

Parameters

Din width: Sets the bus width of Din. Variable from 1 to 1024. Default is 16.

Offset: Sets the starting LSB position to extract bits from Din [Dout(bus_out_width:0) = Din(bus_in_
width:offset_lower_bit)]. Default is O.

Dout width: Sets the bus width of Dout. Variable from 1 to 1024. Default is 16.
Tuser width: Sets the bus width of tuser. Variable from 1 to 8. Defaultis 1.

Supersample: Sets the supersample amount. Variable from 1 to 64. Defaultis 1.

Slice2Slice10

slice3_1
slice2_1 dout1(0:0)
din(1:0) dout1(0:0) din(2:0) dout2(0:0)
dout2(0:0) dout3(0:0)

slice10_1
dout1(0:0)
dout2(0:0)
dout3(0:0)

slice9_1

dout1(0:0)
dout2(0:0)
dout3(0:0) dout4(0:0)
dout4(0:0) dout5(0:0)
dout5(0:0) dout6(0:0)
dout6(0:0) dout7(0:0)
dout7(0:0) dout8(0:0)
dout8(0:0) dout9(0:0)
dout9(0:0) dout10(0:0)

These blocks will divide an input vector into between 2 and 10 output vectors (only versions with 2, 3,
9, and 10 output ports shown). The sizes of the output vectors can vary between outputs. They don't
have to all be the same size. The size of the input vector is the sum of the sizes of the output vectors.
This block supports supersampled data.

Parameters

sizel...size10: Sets the data width of the corresponding output vector.

supersample: Sets the supersample amount. Defaultis 1.

Slice2_streamSlice10_stream

slice3_stream_1

doutl =

tdata(0:0)

slice2_stream_1 tvalid
doutl = — din dout2 =

= din tdata(0:0) tdata(2:0) tdata(0:0)
tdata(1:0) tvalid tvalid tvalid
Wellle dout2 = dout3 =
tdata(0:0) tdata(0:0)

tvalid tvalid

slice10_stream_1

doutl =

tdata(0:0)

slice9_stream_1 tvalid
doutl = dout2 =

tdata(0:0) tdata(0:0)

tvalid tvalid

dout2 = dout3 =

tdata(0:0) tdata(0:0)

tvalid tvalid

dout3 = dout4d =

tdata(0:0) tdata(0:0)

tvalid tvalid

doutd = dout5 =

tdata(0:0) = din tdata(0:0)

tvalid tdata(9:0) tvalid

= din dout5 = tvalid douté =
tdata(8:0) tdata(0:0) tdata(0:0)
tvalid tvalid tvalid
dout6 = dout7 =

tdata(0:0) tdata(0:0)

tvalid tvalid

dout7 = dout8 =

tdata(0:0) tdata(0:0)

tvalid tvalid

dout8 = dout9 =

tdata(0:0) tdata(0:0)

tvalid tvalid

dout9 = dout10 =

tdata(0:0) tdata(0:0)

tvalid tvalid

These blocks will divide an input axi stream into between 2 and 10 output axi streams (only versions
with 2, 3, 9, and 10 output streams shown). The sizes of the output streams can vary between
outputs. They don't have to all be the same size. The size of the input stream is the sum of the sizes
of the output streams. This block supports supersampled data. This block does not support reverse
flow control (TREADY).

Parameters

sizel...size10: Sets the data width of the corresponding output stream.

supersample: Sets the supersample amount. Defaultis 1.

Connector Blocks

This page describes the following Connector Blocks that you can use with Pathwave FPGA:

o Axi4liteToMem
e Axi4Tomem

o AX|Stream_Broadcaster

Axi4liteToMem

AxidliteToMem_1

clk
Rstn
— s_axi
araddr(7:0)
arprot(2:0)
arready
arvalid
awaddr(7:0)
awprot(2:0) Mem -

awready
awvalid
bready
bresp(1:0)
bvalid

address(5:0)
rdData(31:0)
rdEn
wrData(31:0)
wrEn

rdata(31:0)
rready
rresp(1:0)
rvalid
wdata(31:0)
wready
wstrb(3:0)
wvalid

Converts Axi4Lite secondary interface to PC_Mem primary interface.

Parameters

Axi address width: Sets the AXI interface address width. Default is 8.
Since the Mem interface uses word addressing while the Axi4Lite interface uses byte addressing, the
size of the Mem interface address bus is two bits smaller.

User Guide Designing your FPGA Logic

Axi4Tomem

Find us at www.keysight.com Page 112

AxidToMem_1

Clk
nRst

= S_axi
araddr(7:0)
arburst(1:0)
arcache(3:0)
arid(3:0)
arlen(7:0)
arlock
arprot(2:0)
arready
arsize(2:0)
arvalid
awaddr(7:0)
awburst(1:0)
awcache(3:0)
awid(3:0)
awlen(7:0)
awlock
awprot(2:0)
awready
awsize(2:0)
awvalid
bid(3:0)
bready
bresp(1:0)
bvalid
rdata(31:0)
rid(3:0)
rlast
rready
rresp(1:0)
rvalid
wdata(31:0)
wilast
wready
wstrb(3:0)
wvalid

Mem =
address(5:0)
rdData(31:0)

rdEn
wrData(31:0)
wrEn

Converts Axi4MM secondary interface to PC_Mem primary interface.

Parameters

Axi address width: Sets the AXl interface address width. Default is 8.

Since the Mem interface uses word addressing while the Axi4 interface uses byte addressing, the size
of the Mem interface address bus is two bits smaller.

AXIStream_Broadcaster

axis_broadcaster_2x_1

M1_axis =

Clk tdata(31:0)
Rstn tready
— S_axis tuser(0:0)
tdata(31:0) tvalid
tready M2_axis —
tuser(0:0) tdata(31:0)
tvalid tready
tuser(0:0)

tvalid

axis_broadcaster_4x_1

Clk
Rstn

— S_axis
tdata(31:0)
tready
tuser(0:0)
tvalid

M1_axis —
tdata(31:0)
tready
tuser(0:0)
tvalid
M2_axis —
tdata(31:0)
tready
tuser(0:0)
tvalid
M3_axis =
tdata(31:0)
tready
tuser(0:0)
tvalid
M4_axis —
tdata(31:0)
tready
tuser(0:0)
tvalid

Broadcasts AXI4 streaming data from one AXI4 primary to multiple AXI4 secondaries.

Parameters

Tdata bitwidth, default is 32. Tuser bitwidth, defaultis 1.

User Guide Designing your FPGA Logic

Math Blocks
This page describes the following Math Blocks that you can use with Pathwave FPGA:

e Adder

e Adder_stream

e Adder_streamFC

¢ CMultiplier, CMultStream, CMultStreamFC
e Comparison

e Integrator

e Integrator_stream

¢ Integrator_streamFC
e Logic_NOT

e Logicgate

e Multiplier

e Multiplier_stream

e Multiplier_streamFC
e Saturator

e Saturator_stream

e Saturator_streamFC
e Shift

e Shift_stream

e Shift_streamFC

Adder

Adder_1

Dout(15:0)

Signed adder.

Find us at www.keysight.com Page 115

Inputs are expected to have the same length.

Overflow and underflow check is done when saturate is enabled.

Output width is increased by 1T when full precision is enabled.

Subtraction changes operation from A+B to A-B.

This module adds a delay of 1 cycle.

When latch input is enabled, 1 extra cycle of delay is added.

Parameters

input width: Sets the bus width of the A and B inputs. Default is 16.

Adder implementation: Selects saturate or full precision adder modes. Default is Saturate.
latch input: When enabled the data on the A and B inputs is latched. Default is no latch.
subtract: When enabled the adder operation is changed from A+B to A-B. Default is add.

supersample: Sets the supersample amount. Variable from 1 to 64. Defaultis 1.

Adder_stream

Adder_stream_1

Dout =
tdata(15:0) tdata(15:0)

tvalid tvalid
- B

tdata(15:0)

tvalid

Signed adder with streaming interface.
Inputs are expected to have the same length.
Overflow and underflow check is done when saturate is enabled.

Output width is increased by 1 when full precision is enabled.

Subtraction changes operation from A+B to A-B.

This module adds a delay of 1 cycle.

When latch input is enabled, 1 extra cycle of delay is added.

Parameters

input width: Sets the bus width of the A and B inputs. Default is 16.

Adder implementation: Selects saturate or full precision adder modes. Default is Saturate.
subtract: When enabled the adder operation is changed from A+B to A-B. Default is add.

supersample: Sets the supersample amount. Variable from 1 to 64. Default is 1.

Adder_streamFC

Adder_streamFC_1

tdata(15:0)

tlast Dout =
tready tdata(15:0)
tuser(0:0) tlast

tvalid tready
- B tuser(0:0)

tdata(15:0) tvalid

tlast

tready

tuser(0:0)

tvalid

Signed adder with streaming interface with full flow control support.
Inputs are expected to have the same length.
Overflow and underflow check is done when saturate is enabled.

Output width is increased by 1T when full precision is enabled.

Subtraction changes operation from A+B to A-B.

This module adds a delay of 4 cycles.

Parameters

Input Width: Sets the bus width of the A and B inputs. Default is 16.

User Width: Sets the bus width of the tuser input. Variable between 1 and 8. Defaultis 1.
Adder Implementation: Selects saturate or full precision adder modes. Default is Saturate.
Subtract: When enabled the adder operation is changed from A+B to A-B. Default is add.

Supersample: Sets the supersample amount. Variable from 1 to 64. Defaultis 1.

CMultiplier, CMultStream, CMultStreamFC

CMultStream_1

clk

rstn
CMultiplier_1 - A Dout =
tdata(31:0) tdata(31:0)
tvalid tvalid
- B

Clk
nRst Dout(31:0)

A(31:0) tdata(31:0)
B(31:0) tvalid

CMultStreamFC_1

tdata(31:0)

tlast Dout =
tready tdata(31:0)
tuser(0:0) tlast
W tready
- B tuser(0:0)
tdata(31:0) tvalid
tlast

tready

tuser(0:0)

tvalid

Complex multipliers. CMultiplier has vector inputs and output. CMultStream has streaming inputs
and output with forward flow control. CMultStreamFC has streaming inputs and output with full flow
control. In CMultStream it is assumed that both inputs A and B are valid at the same times (i.e. A_
tvalid == B_tvalid). Output is generated when either A_tvalid or B_tvalid is asserted.

The input and output data values are always signed. The A and B ports can be real, complex, or com-
plex conjugate. The latter means that the input is conjugated (the imaginary component is negated)

before the multiply. The output is always complex (even in the case where both A and B are real in
which case the imaginary part of Dout will always be zero). Data may be supersampled.

If the real and imaginary parts of each input represent numbers +/-1.0, then the magnitude of the
complex input is less than sqrt(2), and the magnitude of the product is less than two. If the scale para-
meter is set to 0, then this is how the math is done with the output scaled to +/-2.0. However, some-
times it is known that the A and B inputs have magnitudes less than one. An example of thisis if Ais
real and B is the output of the LO block. In a case like this, it is known that the product has a mag-
nitude less than one. In this case, the scale parameter can be set to 1 and then the output is scaled to
+/- 1.0 rather than 2.0. If scale is setto 1T and the output exceeds +/-1.0, the output will be clipped.

If scale=0, then the internal multiplier length is the sum of the A and B lengths. If scale=1, then itis
one bit less than this. The largest output width is the same as the internal multiplier length. If the out-
put width is smaller than this, then the result is rounded and the MSBs are sent out.

CMultiplier and CMultStream can be combinatorial or pipelined. Latching the input adds a pipeline
delay and between 0 and 2 more pipeline delays may be added to facilitate timing. CMultStreamFC
always adds at least four clocks of latency.

Parameters

A width: Sets the bus width of each component of each A input sample.

A Complex: Selects whether the A samples are Real (0), Complex (1), or Complex Conjugate (2).
B width: Sets the bus width of each component of each B input sample.

B Complex: Selects whether the B samples are Real (0), Complex (1), or Complex Conjugate (2).
Dout width: Sets the bus width of each component of each Dout output sample.

Supersample: Sets the supersample amount.

Scale: If set, then the output is scaled to represent +/-1.0. If not set, then the output is scaled to rep-
resent +/-2.0.

Latch input: Input data is latched when selected.

Pipeline: This adds between 0 and 2 stages of pipelining.

Comparison

Comparison_1[A==B]
A(15:0) Dout

)

Comparisons between inputs A and B.

Output is set to one when the comparison set by the operation parameter is true.
Parameters

operation: Select between A==B, Al=B, A>B, A<B, A>=B, and A<=B. Default is A==B.
data size: Sets the bus width of the A and B inputs. Default is 16.

sign: Select when the data on the A and B inputs is signed. Default is unsigned.

Integrator

Integrator_1

Clk

nRst Dout(31:0)
Clr

Din(15:0)

Data integrator.

When selecting signed input, sign extension is automatically applied.

The internal accumulator can be reset by the nRst or Clr inputs.

When supersample > 1, all the input samples are summed into the same internal accumulator.
This module adds a delay of T cycle by default.

When latch input is enabled, an extra cycle of delay is added.

Parameters
input_width: Sets the bus width of the input samples. Variable from 1 to 1024. Defaultis 16.

output_width: Sets the bus width of the internal accumulator and the output. Variable from 1 to
1024. Defaultis 32. The output_width must be greater than or equal to input_width.

input_signed: When enabled, the input samples represent signed values and will be sign extended
prior to accumulation. Default is unsigned.

latch input: When enabled, the input data is latched prior to accumulation. This adds a cycle of delay.
Default is no latch.

supersample: Sets the supersample amount. All the input samples are summed into the same
internal accumulator. Variable from 1 to 64. Defaultis 1.

Integrator_stream

Integrator_stream_1
Clk
nRst Dout =
Clr tdata(31:0)

— Din tvalid
tdata(15:0)
tvalid

Data integrator with streaming interface.

When selecting signed input, sign extension is automatically applied.

The input samples are accumulated only when the Din tvalid signal is asserted.

The internal accumulator can be reset by the nRst or Clr inputs.

When supersample > 1, all the input samples are summed into the same internal accumulator.
This module adds a delay of T cycle by default.

When latch input is enabled, an extra cycle of delay is added.

Parameters
input_width: Sets the bus width of the input samples. Variable from 1 to 1024. Defaultis 16.

output_width: Sets the bus width of the internal accumulator and the output. Variable from 1 to
1024. Defaultis 32. The output_width must be greater than or equal to input_width.

input_signed: When enabled, the input samples represent signed values and will be sign extended
prior to accumulation. Default is unsigned.

latch input: When enabled, the input data is latched prior to accumulation. This adds a cycle of delay.
Default is no latch.

supersample: Sets the supersample amount. All the input samples are summed into the same
internal accumulator. Variable from 1 to 64. Defaultis 1.

Integrator_streamFC

Integrator_streamFC_1
clk
nRst Dout =
clr tdata(31:0)
= Din tlast

tdata(15:0) tready
tlast tuser(0:0)
tready tvalid
tuser(0:0)

tvalid

Data integrator with streaming interface with full flow control support.
When selecting signed input, sign extension is automatically applied.
The internal accumulator can be reset by the nRst or Clr inputs.

The Clr input will only clear the internal accumulator but allow input samples to pass through while
asserted.

When supersample > 1, all the input samples are summed into the same internal accumulator.
This module adds a delay of 3 cycles by default.

When latch input is enabled, an extra cycle of delay is added.

Parameters
input_width: Sets the bus width of the input samples. Variable from 1 to 1024. Defaultis 16.

output_width: Sets the bus width of the internal accumulator and the output. Variable from 1 to
1024. Defaultis 32. The output_width must be greater than or equal to input_width.

tuser_width: Sets the bus width of the tuser input. Variable between 1 and 8. Defaultis 1.

input_signed: When enabled, the input samples represent signed values and will be sign extended
prior to accumulation. Default is unsigned.

latch input: When enabled, the input data is latched prior to accumulation. This adds a cycle of delay.
Default is no latch.

supersample: Sets the supersample amount. All the input samples are summed into the same
internal accumulator. Variable from 1 to 64. Defaultis 1.

Logic_NOT

Logic_NOT_1

A(15:0) Dout(15:0)

Logic NOT operation.

Parameters
data size: Sets the bus width of the A and Dout ports. Variable from 1 to 1024. Default is 16.

Logicgate

Logicgate_1[AND]
A(15:0) Dout(15:0)

B(15:0)

Output is the logical operation between inputs A and B.

The operation parameter determines which logical operation is performed from AND, OR, XOR,
NAND, NOR, and XNOR.

Parameters
data size: Sets the bus width of the A, B, and Dout ports. Variable from 1 to 1024. Default is 16.

operation: Selects one of the logic operations listed above. Default is AND.

Multiplier

Multiplier_1

(¢

nRst Dout(15:0)
A(15:0)

B(15:0)

Multiplier (DSP core).
Input lengths and signedness are configurable.

When both inputs are signed, the multiplication product length is the sum of both input lengths
minus 1. Otherwise, the product length is the sum of both input lengths.

When the Dout length is less than the product length, Dout will consist of the upper (most significant)
bits of the product. The maximum Dout length is the product length.

When both inputs are signed, the product -FullScale times -FullScale can not be represented in the
output. Instead, +FullScale is output, which is one less than the real product.

This block adds a delay of 1 cycle.

Latch input increases the total delay by an additional clock cycle.

Pipeline increases the total delay by an additional clock cycle.

Parameters

A width: Sets the bus width of the A input. Variable between 1 and 1024. Default is 16.
A signed: Select when the A input data is signed. Default is unsigned.

B width: Sets the bus width of the B input. Variable between 1 and 1024. Defaultis 16.

B signed: Select when the B input data is signed. Default is unsigned.

Dout width: Sets the bus width of the Dout port. Variable between 1 and 1024. Default is 16.
Latch input: Input data is latched when selected. Default is no latch.

supersample: Sets the supersample amount. Variable between 1 and 64. Default is 1.

pipeline: When selected a pipelined multiplier is used. Default is no pipelining.

Multiplier_stream

Multiplier_stream_1

Dout =
tdata(15:0) tdata(21:0)
tvalid tvalid

- B
tdata(5:0)
tvalid

Multiplier (DSP core) with streaming interface.
Input lengths and signedness are configurable.

When both inputs are signed, the multiplication product length is the sum of both input lengths
minus 1. Otherwise, the product length is the sum of both input lengths.

When the Dout length is less than the product length, Dout will consist of the upper (most significant)
bits of the product. The maximum Dout length is the product length.

When both inputs are signed, the product -FullScale times -FullScale can not be represented in the
output. Instead, +FullScale is output, which is one less than the real product.

This block adds a minimum delay of 1 cycle.

Pipeline increases the total delay by an additional clock cycle.

Parameters

A width: Sets the bus width of the A input. Variable between 1 and 1024. Default is 16.

A signed: Select when the A input data is signed. Default is unsigned.

B width: Sets the bus width of the B input. Variable between 1 and 1024. Default is 16.

B signed: Select when the B input data is signed. Default is unsigned.

Dout width: Sets the bus width of the Dout port. Variable between 1T and 1024. Default is 16.
pipeline: When selected a pipelined multiplier is used. Default is no pipelining.

supersample: Sets the supersample amount. Variable between 1 and 64. Default is 1.

Multiplier_streamFC

Multiplier_streamFC_1

tdata(15:0)

tlast Dout =

tready tdata(15:0)

tuser(0:0) tlast

tvalid tready
- B tuser(0:0)

tdata(15:0) tvalid

tlast

tready

tuser(0:0)

W

Multiplier (DSP core) with streaming interface and full flow control support.
Input lengths and signedness are configurable.

When both inputs are signed, the multiplication product length is the sum of both input lengths
minus 1. Otherwise, the product length is the sum of both input lengths.

When the Dout length is less than the product length, Dout will consist of the upper (most significant)
bits of the product. The maximum Dout length is the product length.

When both inputs are signed, the product -FullScale times -FullScale can not be represented in the
output. Instead, +FullScale is output, which is one less than the real product.

This block adds a minimum delay of 4 cycles.

Pipeline increases the total delay by an additional clock cycle.

Parameters

A width: Sets the bus width of the A input. Variable between 1 and 1024. Default is 16.

A signed: Select when the A input data is signed. Default is unsigned.

B width: Sets the bus width of the B input. Variable between 1 and 1024. Default is 16.

B signed: Select when the B input data is signed. Default is unsigned.

Tuser width: Sets the bus width of the tuser input. Variable between 1 and 8. Defaultis 1.
Dout width: Sets the bus width of the Dout port. Variable between 1T and 1024. Default is 16.
pipeline: When selected a pipelined multiplier is used. Default is no pipelining.

supersample: Sets the supersample amount. Variable between 1 and 64. Default is 1.

Saturator

Saturator_1

Clk
nRst Dout(7:0)

Din(15:0)
Thid(7:0)

Output data is set to a saturation value (set by Thld port) whenever input data is equal or greater than
that value.

For signed data, output data is set to a saturation value (-Thld) whenever input data is less than that
value.

Saturation value can not be greater than the maximum possible value of the output vector.

Parameters

Din signed: Select when the data on the Din input is signed. Default is signed.
Din width: Sets the Din bus width. Variable between T and 1024. Default is 16.

Dout width: Sets the Dout bus width. Variable between 1 and 1024. Default is 8. The Dout width must
be less than or equal to Din width.

supersample: Sets the supersample amount. Variable between 1 and 64. Default is 1.

Saturator_stream

Saturator_stream_1
Clk
nRst Dout =
Thid(7:0) tdata(7:0)

— Din tvalid
tdata(15:0)
tvalid

Data saturator with streaming interface.

Output data is set to a saturation value (set by Thld port) whenever input data is equal or greater than
that value.

For signed data, output data is set to a saturation value (-Thld) whenever input data is less than that
value.

Saturation value can not be greater than the maximum possible value of the output vector.
Parameters

Din signed: Select when the data on the Din input is signed. Default is signed.

Din width: Sets the Din bus width. Variable between 1 and 1024. Default is 16.

Dout width: Sets the Dout bus width. Variable between 1 and 1024. Default is 8. The Dout width must
be less than or equal to Din width.

supersample: Sets the supersample amount. Variable between 1 and 64. Default is 1.

Saturator_streamFC

Saturator_streamFC_1
Clk
nRst Dout =
Thid(7:0) tdata(7:0)
= Din tlast

tdata(15:0) tready
tlast tuser(0:0)
tready tvalid
tuser(0:0)

tvalid

Data saturator with streaming interface with full flow control support.

Output data is set to a saturation value (set by Thld port) whenever input data is equal or greater than
that value.

For signed data, output data is set to a saturation value (-Thld) whenever input data is less than that
value.

Saturation value can not be greater than the maximum possible value of the output vector.
This block adds a minimum delay of 3 cycles.

Parameters

Din signed: Select when the data on the Din input is signed. Default is signed.

Din width: Sets the Din bus width. Variable between 1 and 1024. Default is 16.

Tuser width: Sets the tuser bus width. Variable between 1T and 8. Defaultis 1.

Dout width: Sets the Dout bus width. Variable between 1 and 1024. Default is 8. The Dout width must
be less than or equal to Din width.

supersample: Sets the supersample amount. Variable between 1 and 64. Defaultis 1.

Shift

Shift_1

Din(15:0) Dout(15:0)

Signal shifter with configurable input size, direction and number of shifts.

This block does not introduce extra delay.

Zeros are introduced on the shifted side.

Parameters

bus width: Sets the data width of the Din and Dout ports. Variable between 1 and 1024. Default is 16.

shift direction: Sets the direction to shift the Din data. Possible options are Left shift or Right shift.
Default is Left shift.

shift amount: Sets the number of bits to shift. Default is O.

supersample: Sets the supersample amount. Variable between 1 and 64. Default is 1.

Shift_stream

Shift_stream_1
= Din Dout =

tdata(15:0) tdata(15:0)
tvalid tvalid

Signal shifter with configurable input size, direction and number of shifts using streaming interfaces.
This block does not introduce extra delay.
Zeros are introduced on the shifted side.

Parameters
bus width: Sets the data width of the Din and Dout ports. Variable between 1T and 1024. Default is 16.

shift direction: Sets the direction to shift the Din data. Possible options are Left shift or Right shift.
Default is Left shift.

shift amount: Sets the number of bits to shift. Default is O.

supersample: Sets the supersample amount. Variable between 1 and 64. Default is 1.

Shift_streamFC

Shift_streamFC_1
Clk
nRst Dout =
= Din tdata(15:0)
tdata(15:0) tlast

tlast tready
tready tuser(0:0)
tuser(0:0) tvalid
WET

Signal shifter with configurable input size, direction and number of shifts using streaming interfaces
with full flow control.

This block adds a minimum delay of 2 cycles.

Zeros are introduced on the shifted side.

Parameters

bus width: Sets the data width of the Din and Dout ports. Variable between 1 and 1024. Default is 16.
tuser width: Sets the tuser bus width. Variable between T and 8. Defaultis 1.

shift direction: Sets the direction to shift the Din data. Possible options are Left shift or Right shift.
Default is Left shift.

shift amount: Sets the number of bits to shift. Default is O.

supersample: Sets the supersample amount. Variable between 1 and 64. Default is 1.

DSP Blocks
This page describes the following DSP Blocks that you can use with Pathwave FPGA:

User Guide Designing your FPGA Logic

e CombineTtoN

« AWGN - Additive White Gaussian Noise
e Complex2Real / Real2Complex

¢ ConvertBitWidth / ConvertBitWidth_stream
e DecimateByb

e DecimateBy5 Complex

¢ FreqCnt

 InterpolateByb

 InterpolateByb Complex

e O

e Lob_dc

e Lob_uc

¢ PowerZDecimator

* PowerZ2Interpolator

¢ PRBS - Pseudo Random Bit Sequence
e Reorder/ Reorder_stream

e ReshapeM1 / ReshapePT

¢ ReshapeDown / ReshapeUp

e ssDecim?2

» ssinterp? / ssinterp2fc

e TraceAccum

e Trigger / TriggerM3x

Find us at www.keysight.com Page 133

Combine1toN

Combine1toN_1

Clk

nRst Dout =
= Din tdata(79:0)

tdata(31:0) tlast

tlast tready
tready tuser(3:0)
tuser(0:0) tvalid
WET

Combines N AXI-streaming samples into one AXI-streaming sample that is N times wider. The input
is not supersampled while the output is supersampled by N.

Parameters

Tdata size: This sets the data width of Din_tdata. Dout_tdata will be N or N+1/2 times this value in
width.

Tuser size: This sets the data width of Din_tuser. Dout_tuser will be N or N+2 times this value in
width.

N: This sets how many input samples are combined into one output sample.

Add 1/2 to N: When selected, combine N+1/2 samples into the output rather than N samples.

AWGN - Additive White Gaussian Noise

Awgn_1

noise =
tdata(23:0)

tready
tvalid

This block generates samples of Gaussian noise. The supersample value and the size of the output
noise samples can be varied.

Parameters

Seed: This is a 16 bit seed value for the LFSR random number generators. It can be changed to make
multiple AWGN generators that generate different noise sequences.

Supersample: This sets the number of samples per clock to be generated.
bitsSigma: One standard deviation of the noise will be 201sSigMa jn size.

bitsTotal: This sets the size of the output noise sample word.

Complex2Real / Real2Complex

Real2Complex_1
Clk
Complex2Real_1 nRst
Real_out — — Real_in
tdata(15:0) tdata(15:0)
Clk tlast tlast Cmplx_out =
nRst tready tready tdata(31:0)
— Cmplx_in tuser(0:0) tuser(0:0) tlast

tdata(31:0) tvalid tvalid tready
tlast Imag_out - — Imag_in tuser(0:0)
tready tdata(15:0) tdata(15:0) tvalid
tuser(0:0) tlast tlast
tvalid tready tready
tuser(0:0) tuser(0:0)
tvalid WET

Converts between one complex stream of data using interleaved real and imaginary parts and two
separate streams, one for real and one for imaginary parts. These can be used to split off the real and
imaginary streams into different destinations or to combine two real streams into one complex
stream.

Parameters

Tdata size: This sets the data width of the real and imaginary parts of each sample.

Tuser size: This sets the tuser bits per sample.

supersample: This sets the number of samples per clock in the input and output streams.

ConvertBitWidth / ConvertBitWidth_stream

ConvertBitWidth_stream_1
Clk
nRst Dout =
= Din tdata(31:0)
tdata(15:0) tlast

tlast tready

tready tuser(0:0)
ConvertBitWidth_1 tuser(O:O) tvalid

Din(15:0) Dout(31:0) tvalid

Convert sample data between different bit widths with or without rounding/clamping.

The justification of the data needs to be specified. If the data is left justified, then the MSBs of the
input and output samples will be the same (subject to rounding). This is typically the case when the
data is a fixed point value representing values between +/-1. If the data is right justified, then the
LSBs of the input and output will be the same (subject to clamping). This is typically the case when
the data represents integers.

When the sample size increases (the output data width > input data width), then for left justified data
the data is zero padded on the LSB side to extend the length, and for right justified data, the MSBs are
either zero padded or sign extended, depending on whether the data is signed or not), on the MSB
side to extend the length.

When the sample size decreases (the output data width < input data width), then there is the pos-
sibility of data loss. These IP blocks can do this safely by rounding and/or clamping as necessary.
This adds some amount of logic latency but prevents data rollover and any truncation bias. If the user
knows that the input data will fit in the output data size without problem, the IP can be set to not
round or clamp. In this case the IP adds zero delay to the signal as it then becomes just wires.
However in this case left justified data will be truncated possibly introducing a bias and right justified
data may roll over.

The rounding algorithm used is convergent rounding. Numbers with a fractional part less than 1/2
will round down. Numbers with a fractional part greater than 1/2 will round up. Numbers with a frac-

tional part of exactly 1/2 will round towards the even integer. This rounding minimizes rounding noise
while being unbiased for large enough signals.

The ConvertBitWidth IP block is purely combinatorial. If registering is needed for timing, then it
should be added externally to this block. The ConvertBitWidth_stream IP block supports full flow con-
trolled AXI-streaming interfaces. This block optionally always adds a register stage which can assist
with timing closure. If this is not included, then the data path between the input and output is
combinatorial. If the register stage is included, then this block will add latency.

Parameters
Supersample: This sets the number of samples per clock in the input and output streams.

Input Data Width: This sets the number of data bits in each input sample. The Din size is Super-

sample*Input Data Width bits for real data, and 2*Supersample*Input Data Width bits for complex
data.

Output Data Width: This sets the number of data bits in each output sample. The Dout size is Super-

sample*Output Data Width bits for real data, and 2*Supersample*Output Data Width bits for complex
data.

Justify: Indicates if the data is left justified (the MSBs are the more important) or right justified (the
LSBs are the more important). The two choices are "Left (Keep MSBs)" and "Right (Keep LSBs)".

Round/Clamp: Indicates if the bit width conversion should use rounding/clamping or not. The two
choices are "Round/Clamp" and "No Round/Clamp".

Signed Data: Indicates if the data is signed or unsigned.
Complex Data: Indicates if the data is complex or real only.

Register: When selected, this adds a register stage to the output, else the IP block is purely com-
binatorial (only on ConvertBitWidth_stream).

Tuser size: This sets the number of tuser bits per sample in the axi-streaming interface (only on Con-
vertBitWidth_stream).

DecimateBy5

DecimateBy5_1
clk filter_out —
resetn tdata(15:0)
— filter_in tlast
tdata(79:0) tready

tlast tuser(0:0)
tready tvalid
tuser(4:0) delayOut(2:0)
tvalid

Decimate bx supersampled streaming input by a factor of 5. Decimation is achieved using a poly-
phase FIR filter. This block offers a choice of two filter bandwidths. The default 60% filter prevents
any aliasing but only has a passband that is 60% of the Nyquist rate. The 80% filter's passband
extends to 80% of Nyquist. With the 80% filter, the passband is alias protected though there may be
aliasing in the transition band.

tlast may be used when an input sample stream includes packetized data.

filter_in_tuser may be used to tag a particular sample of the input stream. There are User Data
Width bits for each of the five input samples.

filter_out_tuser will be asserted to indicate the corresponding sample of the output stream. If User
Data Width is greater than one, then the tuser input will have 5 * User Data Width bits and the tuser
output will have User Data Width bits.

Parameters

Data Width: This sets the input and output sample widths. Note the input tdata width is b x Data
Width bits

User Data Width: This sets the number of TUSER data bits per sample. The use of these TUSER bits
are used defined.

Bandwidth Select: This selects which filter to use with the allowable choices being either 60 (default)
or 80.

Pipeline: (Rev 1.1 and later) When checked, this adds two extra pipeline stages in the calculations to
facilitate timing.

DecimateBy5 Complex

DecimateBy5Complex_1

clk filter_out —
nRst tdata(31:0)
— filter_in tlast
tdata(159:0) tready

tlast tuser(0:0)
tready tvalid
tuser(4:0) delayOut(2:0)
tvalid

Decimate a complex bx supersampled streaming input by a factor of 5. Decimation is achieved using
a polyphase FIR filter. The real and imaginary parts of each sample are interleaved with the real part
occupying the less significant (lower bit number) word. The lower order Data Width bits of the output
are real output data and the upper Data Width bits of the output are imaginary output data. This
block offers a choice of two filter bandwidths. The default 60% filter prevents any aliasing but only
has a passband that is 60% of the Nyquist rate. The 80% filter's passband extends to 80% of Nyquist.
With the 80% filter, the passband is alias protected though there may be aliasing in the transition
band.

tlast may be used when an input sample stream includes packetized data.

filter_in_tuser may be used to tag a particular sample of the input stream. There are User Data
Width bits for each of the five input samples.

filter_out_tuser will be asserted to indicate the corresponding sample of the output stream. If User
Data Width is greater than one, then the tuser input will have 5 * User Data Width bits and the tuser
output will have User Data Width bits.

Parameters
Data Width: This sets the input and output sample widths. Note the filter_in_tdata width is ten times
Data Width bits, and the filter_out_tdata width is twice Data Width bits.

User Data Width: This sets the number of TUSER data bits per sample. The use of these TUSER bits
are used defined.

Bandwidth Select: This selects which filter to use with the allowable choices being either 60 (default)
or 80.

Pipeline: (Rev 1.1 and later) When checked, this adds two extra pipeline stages in the calculations to
facilitate timing.

FreqCnt

FreqCnt_1
clk
nRst Cnt(31:0)
Trig(4:0) Period(31:0)

TrigValid Status(1:0)
Start
MeasLength(31:0)

FregCntis a frequency counter block. It measures an integral number of periods during the meas-
urement interval and reports the number of trigger events (the number of signal periods) and the time
between the first and last trigger event during the measurement interval. The input is the Trig port
which consists of one bit per supersampled data. These trigger signals might come from the Trigger
IP block. FreqCnt supports supersampled data.

MeaslLength sets the length of the measurement interval in clock cycles (which is the sample rate
divided by the supersample factor). Note that FreqCnt only counts clocks when TrigValid is asserted.
For a given value of MeasLength, if the Trig values only come in every other clock, the elapsed time
for the measurement will be twice as long as it would be if Trig values come in every clock.

Start begins a new measurement. Note that Start can be tied high in which case a new measurement
will start immediately after the previous measurement. The Cnt and Period outputs are latched at the
end of a measurement so they may be read while a new measurement is in progress. Depending on
the SyncStart parameter, the measurement interval will either begin when Start is asserted (Syn-
cStart = 0) or on the first trigger event after Start is asserted (SyncStart=1).

Cnt outputs the number of whole signal periods during the measurement interval. This is one less
than the total number of trigger events (each indicated by a Trig bit being 1).

Period outputs the time between the first and last trigger event measured in samples. The frequency
of the input signal can then be calculated f = f; * Cnt / Period where fg is the sample rate.

Status indicates the internal state of the measurement. Status[0] = 1 indicates that a measurement is
in progress. Note that if Start is tied high, a measurement will almost always be in progress since the
next measurement will start immediately after the previous one finishes. Status[1] =1 indicates that

the the first trigger event has been observed. If SyncStart = 1 and Status[1:0] = 01, it means that the
FregCnt is awaiting the first trigger event which will then start the actual measurement interval.

Parameters

Supersample: This sets the supersample value and determines how many parallel samples are pro-
cessed at the same time. This also sets the bit width of the Trig port.

SyncStart: If set to one, the measurement interval will start on the first trigger event after Start has
been asserted. If set to zero, the measurement interval starts immediately after Start has been asser-
ted.

CntlLen: This sets the bit width of the internal counters in the FreqCnt block. This also sets the size of
the Measlength, Cnt, and Period ports. It defaults to 32 bits.

InterpolateBy5

InterpolateBy5_1

clk

resetn filter_out —
— filter_in tdata(79:0)
tdata(15:0) tlast
tlast tready
tready tuser(4:0)
tuser(0:0) tvalid
W

Interpolate an input stream by a factor of b. Interpolation is achieved using an oversampled FIR filter.
This block offers a choice of two filter bandwidths. The default 60% filter prevents any aliasing but
only has a passband that is 60% of the Nyquist rate. The 80% filter's passband extends to 80% of
Nyquist. With the 80% filter, the passband is alias protected though there may be aliasing in the
transition band.

tlast may be used when an input sample stream includes packetized data.

filter_in_tuser may be used to tag a particular sample of the input stream.

filter_out_tuser will be asserted to indicate the corresponding sample of the output stream. There
are User Data Width bits for each of the five input samples.

If User Data Width is greater than one, then the tuser input will have User Data Width bits and the
tuser output will have 5 * User Data Width bits.

Parameters
Data Width: Sets the bus width of filter_in_tdata. Default is 16.

User Data Width: This sets the number of TUSER data bits per sample. The use of these TUSER bits
are used defined.

Bandwidth Select: This selects which filter to use with the allowable choices being either 60 (default)
or 80.

InterpolateBy5 Complex

InterpolateBy5Complex_1
clk
nRst filter_out —
= filter_in tdata(159:0)
tdata(31:0) tlast

tlast tready
tready tuser(4:0)
tuser(0:0) tvalid
tvalid

Interpolate a complex input stream by a factor of 5. Interpolation is achieved using an oversampled
FIR filter. This block offers a choice of two filter bandwidths. The default 60% filter prevents any ali-
asing but only has a passband that is 60% of the Nyquist rate. The 80% filter's passband extends to
80% of Nyquist. With the 80% filter, the passband is alias protected though there may be aliasing in
the transition band.

tlast may be used when an input sample stream includes packetized data.
filter_in_tuser may be used to tag a particular sample of the input stream.

filter_out_tuser will be asserted to indicate the corresponding sample of the output stream. There
are User Data Width bits for each of the five input samples.

If User Data Width is greater than one, then the tuser input will have User Data Width bits and the
tuser output will have 5 * User Data Width bits.

Parameters

Data Width: Sets the data width for each of the real and imaginary samples. Default is 16 (32 total
bits for | and Q data). The filter_in_tdata will be twice this size and the filter_out_tdata will be ten
times this size.

User Data Width: This sets the number of TUSER data bits per sample. The use of these TUSER bits
are used defined.

Bandwidth Select: This selects which filter to use with the allowable choices being either 60 (default)
or 80.

Lo

tdata(31:0)
tlast
tready

tuser(0:0)
tvalid
A(24:0)
B(23:0)
SetFreq
phRst

Y p—
tdata(31:0)
tlast
tready
tuser(0:0)
tvalid

Parameterized Local Oscillator/Mixer. By default it generates a local oscillator signal and mixes (mul-
tiplies) this LO signal with the X input to generate the Y output. Optionally the block can output just
the local oscillator signal without mixing it with the input.

The LO block handles supersampled or non-supersampled data, and either the input and/or the out-
put can be real or complex. Additionally, the output mixer may be bypassed so that the output Y inter-

face outputs a full scale local oscillator signal (the sine and cosine values). In this case, the input X
interface is ignored.

A and B control the local oscillator's frequency. Let S be the amount of supersampling, and let T be
the smallest power of 2 greater than or equal to S (so that S<=T<2S).

The LO frequency is given by f = f, * (A+B/570)/((S/T)*2?°). Note that f, represents the signal's
sample rate, not the FPGA clock rate. Forasample rate, fg, of 1 Gs/s, this results in an even decimal
frequency resolution of 0.1 Hz. Frequencies can be positive or negative. Valid input ranges for A and
B are such that -1/2 <= 1/f; <=1/2. Values of A and B that are outside this range will give incorrect
results.

When asserted, phRst will reset the phase of the phase accumulator to zero and flush data in the LO's
pipelines without resetting the programmed frequency. For phase continuous frequency changes,
leave phRst negated. Note that in this case due to pipeline stages, the results of the frequency
change will not be visible at the output for several samples. To eliminate this delay in seeing the
effects of frequency changes, assert phRst on or after the new frequency is set. This may easily be
done by driving phRst with the same signal as setFreq. Note that phRst should not be tied high as
that will prevent operation of the LO.

Parameters

Tdata size: Sets the data width for each sample (real data) or for each of the real and imaginary parts
of each sample (complex data).

Tuser size: Sets the number of tuser bits per sample.
Complex Input: If set, then the input data is complex. If cleared, then the input data is real only.

Complex Output: If set, then the output data is complex. If cleared, then only the real part of the out-
put data is generated.

Supersample: This sets the supersample value and determines how many parallel samples are pro-
cessed at the same time.

Shift Direction: If Shift Direction = 0, the input is multiplied by elWt (shift frequencies up).
If Shift Direction = 1, the input is multiplied by e Wt (shift frequencies down).

Dither: Enables phase dithering to help convert spurious signals into more noise like signals (default
is Dither=1 or enabled).

Trig Only: Enables output of the LO's trig functions and bypasses the mixer. If enabled, the X inter-
face is ignored.

Pipeline: (Version 1.1 and later) When checked, this adds an extra pipeline stages in the phase accu-
mulator and sine/cosine calculation to facilitate timing (default is Pipeline=1 or enabled).

Lo5 dc

Lo5_dc_1

Y —
tdata(79:0) tdata(159:0)
tlast tlast

tready tready
tuser(4:0) tuser(4:0)
tvalid tvalid
A(24:0)
B(23:0)
SetFreq

Note: This block is deprecated and not recommended for new designs. New designs should use the
Lo block instead.

Down converting Local Oscillator for use in digitizers with 5X supersampled ADCs. Input is 5X super-
sampled real data while the output is a 5X supersampled data stream representing complex output
data.

A and B control the local oscillator's frequency.

The LO frequency is given by f = f, * (A+B/510)/(5*222). For a sample rate, f,, of 1 Gs/s, this results in
an even decimal frequency resolution of 0.01 Hz. Note that for this block 7/f is limited to the range
+/-0.4.

Parameters

Tdata size: This sets the data width of the samples. Since the data is 5X supersampled, the input
tdata width is five times this value and the output tdata width is ten times this value.

Tuser size: This sets the tuser bits per sample.

Lo5 uc

Lo5_uc_1

Y —
tdata(159:0) tdata(79:0)
tlast tlast

tready tready
tuser(4:0) tuser(4:0)
tvalid tvalid
A(24:0)
B(23:0)
SetFreq

Note: This block is deprecated and not recommended for new designs. New designs should use the
Lo block instead.

Up converting Local Oscillator for use in sources with 5X supersampled DACs. Input is a 5X super-
sampled data stream representing complex input data. Output is one 5X supersampled real data
stream.

A and B control the local oscillator's frequency.

The LO frequency is given by f = f, * (A+B/510)/(5*222). For a sample rate, f,, of 1 Gs/s, this results in
an even decimal frequency resolution of 0.01 Hz. Note that for this block 7/f is limited to the range
+/-0.4.

Parameters

Tdata size: This sets the data width of the samples. Since the data is 5X supersampled, the input
tdata width is five times this value and the output tdata width is ten times this value.

Tuser size: This sets the tuser bits per sample.

Power2Decimator

Power2Decimator_1
Clk
nRst Y =
- X tdata(31:0)
tdata(31:0) tlast

tlast tready
tready tuser(0:0)
tuser(0:0) tvalid
WE| DelayOut(15:0)
nDecim(4:0)

This is a power of two decimation filter that operates on real or complex data. It accepts real or com-
plex data at up to one sample per clock. It filters and decimates the data by 2, where N=0...16. It
offers a choice of two filter bandwidths. The default 60% filter prevents any aliasing but only has a
passband that is 60% of the Nyquist rate. The 80% filter is a halfband filter with flatter passband that
extends to 80% of Nyquist. With the 80% filter, the passband is alias protected though there may be
aliasing in the transition band.

Parameters

Tdata size: This sets the data width of the samples. For a real filter, this is the size of the tdata buses.
For a complex filter, the widths of the tdata busses are twice this value.

Tuser size: This sets the tuser bits per sample.

Bandwidth Select: This selects which filter to use with the allowable choices being either 60 (default)
or 80.

Complex: If this is checked, then the filter operates on complex data. If unchecked, then the filter
operates on real only data.

Power2Interpolator

Power2interpolator_1

Y -

tdata(31:0)
tdata(31:0) tlast
tlast tready
tready tuser(0:0)
tuser(0:0) tvalid
tvalid
ninterp(4:0)

This is a power of two interpolation filter that operates on real or complex data. It accepts data and
interpolates and filters the data by 2\, where N=0...16, generating up to one real or complex output
sample per clock. It offers a choice of two filter bandwidths. The default 60% filter prevents any ali-
asing but only has a passband that is 60% of the Nyquist rate. The 80% filter is a halfband filter with
flatter passband that extends to 80% of Nyquist. With the 80% filter, the passband is alias protected
though there may be aliasing in the transition band.

Parameters

Tdata size: This sets the data width of the samples. For a real filter, this is the size of the tdata buses.
For a complex filter, the widths of the tdata busses are twice this value.

Tuser size: This sets the tuser bits per sample.
Bandwidth Select: This selects which filter to use with the allowable choices being either 60 or 80.

Complex: If this is checked, then the filter operates on complex data. If unchecked, then the filter
operates on real only data.

PRBS - Pseudo Random Bit Sequence

clk
nRst prbs(0:0)

enable state(23:0)
init
initvVal(23:0)

This is a Pseudo Random Bit Sequence generator. It can generate both Galois and Fibonacci PRBS
sequences using a customizable polynomial. It can generate one or multiple new bits every clock.

The size of the internal state register is determined by the polynomial chosen. The number of bits in
the state register is $clog2(polynomial). The number of new PRBS bits to output can be inde-
pendently chosen.

When nRst is asserted, the internal state register is assigned the resetVal value. Otherwise if initis
asserted, the internal state register is set to initVal. Otherwise if enable is asserted the state register
is advanced multiple bits as specified by the Advance parameter.

The parameters for the polynomial and reset value are broken into two separate parameters each,
one consisting of the MSBs (bits 63:32) and one consisting of the LSBs (bits 31:0).

Parameters
Polynomial (MSBs): This is bits 63:32 of the polynomial to be used.
Polynomial (LSBs): This is bits 31:0 of the polynomial to be used.

Nbits: This is the number of new PRBS bits to generate each clock cycle. Nbits=1 generates one new
bit each clock, whereas Nbits=8 will advance the state register 8 iterations to generate 8 new bits
each clock.

Type: This determines the type of LFSR to use. Type=0 is a Galois LFSR. Type=1 is a Fibonacci LFSR.
Reset value (MSBs): This is bits 63:32 of the Reset value to be used when nRst is asserted.
Reset value (LSBs): This is bits 31:0 of the Reset value to be used when nRst is asserted.

XNOR: When checked, this uses XNORs instead of XORs in the feedback path.

Reorder / Reorder_stream

Reorder_stream_1
Clk
nRst Dout =
= Din tdata(79:0)
tdata(79:0) tlast

tlast tready

tready tuser(4:0)

Reorder_1 tuser(4:0) tvalid
Din(79:0) Dout(79:0) tvalid

These blocks will reorder the samples in supersampled data. These blocks can reserve the sample
ordering within the supersampled word as well as optionally swap real/imaginary parts of each
sample.

Reversing the samples would change {x5,x4, x3, x2, x1} to {x1,x2,x3,x4,x5}.

Reversing complex data would change {i3,r3,i2,r2,i1,r1} to {i1,r1,i2,r2,i3,r3}. Note that the complex
samples are reordered, but the ordering of real/imag is preserved.

Reversing and swapping complex data would change {i3,r3,i2,r2,i1,r1} to {r1,i1,r2,i2,r3,i3}. Note that
the complex samples are reordered, and the ordering of real/imag is swapped.

Just swapping complex data would change {i3,r3,i2,r2,i1,r1} to {r3,i3,r2,i2,r1,i1}. Note that the order
of complex samples is preserved, and the ordering of real/imag is swapped.

Both of these blocks are purely re-routing. There is no logic or delay/latency added. The Reorder_
stream block does not use the Clk or nRst ports. However, these ports are included for compliance
with the AXI-streaming specification.

Parameters

Supersample: This sets the number of samples per clock in the input and output streams.

Data Width: This sets the number of data bits in each sample. The Din/Dout sizes are Super-
sample*Data Width bits for real data, and 2*Supersample*Data Width bits for complex data.

Reverse: This will reverse the order of samples in the supersampled word.
Complex Data: Indicates if the data is complex or real only.

Swap: This will swap the real and imaginary parts of complex data. This is ignored for real data.

Register: When selected, this adds a register stage to the output, else the IP block is purely com-
binatorial (only on ConvertBitWidth_stream).

Tuser size: This sets the number of tuser bits per sample in the axi-streaming interface (only on Con-
vertBitWidth_stream).

ReshapeM1 / ReshapeP1

reshapeM1_1 reshapeP1_1

clk clk

nRst dataOut = nRst dataOut —
— dataln tdata(159:0)

tdata(191:0) tlast

— dataln tdata(191:0)
tdata(159:0) tlast

tready tuser(4:0) Azt tuser(5:0)

tuser(5:0) tvalid tuser(4:0) tvalid
tvalid tvalid

tlast tready

These blocks will reshape supersampled streaming data streams to convert between an odd number
of samples per clock and an even number of samples per clock. For reshapeM1, dataOut will have
one less (Minus 1) samples per clock than dataln. For reshapeP1, dataOut will have one more (Plus 1)
samples per clock than dataln. Typically reshapeP1 is used between multiple instances of ssDecim?2
since ssDecim?2 requires the input supersample value to be even. Typically reshapeM1 is used
between multiple instances off ssinterp2 since ssinterp? always has an even output supersample
value. Note that the reshapeP1 block only supports forward flow control (TVALID) and does not sup-
port reverse flow control (TREADY). The reshapeM1 block does support reverse flow control
(TREADY).

Parameters

Supersample In: This sets the input supersample value (how many parallel samples per clock on the
dataln interface). For the reshapeM1 block the output supersample value is one less than this. For
the reshapeP1 block, the output supersample value is one more than this.

Data size: This sets the data width of each sample. For real data, the width of the dataln/tdata port
will be (Supersample In)*(Data size) while for complex data, the width of the dataln/tdata port will be
2*(Supersample In)*(Data size).

Tuser size: This sets the number of tuser bits per sample. The width of the dataln/tuser port will be
(Supersample In)*(Tuser size).

Complex: If checked, this indicates that the data is complex. If unchecked, then the data is real only.

ReshapeDown / ReshapeUp

ReshapeDown_1 ReshapeUp_1

clk
nRst dataOut =
— dataln tdata(79:0)
tdata(127:0) tlast
tlast tready
tready tuser(4:0)
tuser(7:0) tvalid
tvalid

clk

nRst dataOut =
— dataln tdata(127:0)
tdata(79:0) tlast
tlast tusen(7:0)
tuser(4:0) tvalid
tvalid

These blocks will reshape supersampled streaming data streams to convert between different num-
bers of samples per clock. With reshapeDown, dataOut will have fewer samples per clock than
dataln. For reshapeUp, dataOut will have more samples per clock than dataln. Note that the
reshapeUp block only supports forward flow control (TVALID) and does not support reverse flow con-
trol (TREADY). The reshapeDown block does support reverse flow control (TREADY).

Parameters

Supersample In: This sets the input supersample value (how many parallel samples per clock on the
dataln interface).

Supersample Out: This sets the output supersample value (how many parrallel samplers per clock on
the dataOut interface). For reshapeDown, Supersample Out must be less than Supersample In. For
reshapeUp, Supersample Out must be greater than Supersample In.

Data size: This sets the data width of each sample. For real data, the width of the dataln/tdata port
will be (Supersample In)*(Data size) while for complex data, the width of the dataln/tdata port will be
2*(Supersample In)*(Data size).

Tuser size: This sets the number of tuser bits per sample. The width of the dataln/tuser port will be
(Supersample In)*(Tuser size).

Complex: If checked, this indicates that the data is complex. If unchecked, then the data is real only.

ssDecim?2

ssDecim2_1

clk Filter_out =
nRst tdata(95:0)
= Filter_in tlast
tdata(191:0) tuser(2:0)
tlast WELIT
tuser(5:0) DelayOut
tvalid

This is a supersampled half-band decimate by two block. It can operate on real or complex super-
sampled data. The input supersample value must be an even number. If desired, the reshapeP1
block can be used to convert from an odd supersample value to the required even supersample value.
The output supersample value is half of the input supersample value.

The characteristics of the filter used in the decimator can be selected from a family of choices. The
stopband attenuation can be chosen as either 70dB or 80dB. The fractional passband size can be
selected from 10%, 20%, 40%, or 80% of Nyquist. This allows trading off filter performance and
resource utilization.

The step response of these filters is not monotonic. The step response will show some amount of
ringing. The DC gain through the filter can be set to one (if Shift Input is not checked) or one-half (if
Shift Input is checked). To avoid clipping for an arbitrary input, the Shift Input parameter should be
checked to set the DC gain to one-half. However, if the input signal is known to not cause clipping
(e.g. if the ssDecim?2 block is preceded by another ssDecim2 block) then the Shift Input parameter
should not be checked to set the DC gain to one.

This block only supports forward flow control. It does not support reverse flow control (TREADY).

Parameters

Supersample: This sets the input supersample value (how many parallel samples per clock on the Fil-
ter_In interface). This must be an even number for this block. The output supersample value will be
half this value.

Data size: This sets the data width of each sample. For real data, the width of the Filter_In/tdata port
will be (Supersample)*(Data size) while for complex data, the width of the Filter_In/tdata port will be
2*(Supersample)*(Data size).

Tuser size: This sets the number of tuser bits per sample. The width of the Filter_In/tuser port will be
(Supersample)*(Tuser size).

Complex: If checked, this indicates that the data is complex. If unchecked, then the data is real only.

Shift Input: If checked, the input data is shifted down one bit to set the DC gain of the filter to one-
half. This can be useful to avoid output clipping. If not checked, the DC gain of the filter is unity.

Bandwidth Select: This chooses how wide the passband of the filter should be. Choices are 10%,
20%, 40%, and 80% of Nyquist.

Stop Band Rejection: This chooses the amount of stopband rejection in the filter. Choices are 70dB
and 80dB.

Duplicate Resets: If checked, this will internally duplicate the reset signal. This incurs a one clock
latency in the reset signal. This can be used in high speed designs with large supersample values to
help timing. It defaults to off.

ssinterp2 / ssinterp2fc

ssinterp2fc_1

ssinterp2_1 clk
clk nRst Filter_out =

nRst LT = — Filter_in tdata(191:0)
— Filter_in tdata(191:0) tdata(95:0) tlast

tdata(95:0) tlast tlast tready
tlast tuser(5:0) tready tuser(5:0)
tuser(2:0) tvalid tuser(2:0) tvalid
tvalid tvalid

These are supersampled half-band interpolate by two blocks. They can operate on real or complex
supersampled data. The output supersample value is twice of the input supersample value.

The characteristics of the filter used in the interpolator can be selected from a family of choices. The
stopband attentuation can be either 70dB or 80dB. The fractional passband size can be selected
from 10%, 20%, 40%, or 80% of Nyquist. This allows trading off filter performance and resource util-
ization.

The step response of these filters is not monotonic. The step response will show some amount of
ringing. The DC gain through the filter can be set to one (if Shift Input is not checked) or one-half (if
Shift Input is checked). To avoid clipping for an arbitrary input, the Shift Input parameter should be
checked to set the DC gain to one-half. However, if the input signal is known to not cause clipping
(e.g. if the ssInterp2 block is preceded by another ssInterp2 block) then the Shift Input parameter
should not be checked to set the DC gain to one.

The ssInterp2 block only supports forward flow control. It does not support reverse flow control
(TREADY). The ssinterp2fc block includes extra hardware in order to support reverse flow control
(TREADY). This is required if this block will drive the reshapeM1 block.

Parameters

Supersample: This sets the input supersample value (how many parallel samples per clock on the Fil-
ter_In interface). The output supersample value will be twice this value (and hence always even).

Data size: This sets the data width of each sample. For real data, the width of the Filter_In/tdata port
will be (Supersample)*(Data size) while for complex data, the width of the Filter_In/tdata port will be
2*(Supersample)*(Data size).

Tuser size: This sets the number of tuser bits per sample. The width of the Filter_In/tuser port will be
(Supersample)*(Tuser size).

Complex: If checked, this indicates that the data is complex. If unchecked, then the data is real only.

Shift Input: If checked, the input data is shifted down one bit to set the DC gain of the filter to one-
half. This can be useful to avoid output clipping. If not checked, the DC gain of the filter is unity.

Bandwidth Select: This chooses how wide the passband of the filter should be. Choices are 10%,
20%, 40%, and 80% of Nyquist.

Stop Band Rejection: This chooses the amount of stopband rejection in the filter. Choices are 70dB
and 80dB.

Duplicate Resets: If checked, this will internally duplicate the reset signal. Thisincurs a one clock
latency in the reset signal. This can be used in high speed designs with large supersample values to
help timing. It defaults to off.

TraceAccum

TraceAccum_1

Sum =

tdata(31:0)

tdata(15:0) tuser(0:0)
tuser(0:0) tvalid

tvalid AccumCount(15:0)
Start Done
Abort State(1:0)
NumAccum(15:0)

Length(16:0)

TraceAccum will accumulate data from multiple input traces. A trace is a fixed length sequence of
consecutive input samples that begin with the assertion of X_tuser[0]. This block, along with a divider
block (e.g. the Vivado IP Catalog's divider IP) can be used to average some number of input traces.
This block only accumulates (sums) the traces. The first sample of the output will be the sum of the
first sample of each of the input traces. The second output sample will be the sum of the second
sample of each input trace, etc.

The length of each input trace is set at run time by the Length input port. This port should not change
values during a measurement. The number of samples in each trace is Supersample*Length samples.
That is, it is assumed that the length of the input trace is a multiple of Supersample.

The maximum value of Length is determined by the size of the Length port which is set by the Mem
Size parameter.

The number of accumulations is set at run time by the NumAccum input port. The number of bits in
NumAccum, which set the maximum number of accumulations, is set via design time parameters.

Data is always signed and may be supersampled. The number of bits in the X (input) and Sum (out-
put) ports are specified by the parameters Data Size and Accum Size. Note that the Accum Size must
be larger than Data Size to account for data growth during the accumulation process. The maximum
number of accumulations is determined by the size of the NumAccum port. This size is the difference
Accum Size - Data Size.

This block uses FPGA block memory to hold the data during the measurement. The amount of
memory used is Supersample * Accum Size * 2Mem Size bits.

The TraceAccum block operates as follows. During the first trace of a measurement, the input data is
merely stored into internal ram. No output is generated. For the next NumAccum - 2 traces, the new
input data is summed with the data in the internal ram and re-saved into ram. Again, no output is
generated at this time. During the final trace, the sum of the input and the ram data is output from
the Sum interface.

The TraceAccum block has an internal state machine which can be in one of three states: Idle (0),
Wait (1), and Run (2). In the Idle state, the TraceAccum block is not doing anything. It is waiting for a
new measurement to start. A new measurement is started by asserting the Start input. This moves
the state machine to the Wait state. Here, the block will wait for the start of the next input trace delin-
eated by tuser[0] being asserted. This condition moves the state machine into the Run state. Atthe
end of this input trace (determined by Length), one of two things happens. If this is the final trace in
the measurement, the state machine will return to the Idle state in preparation for the next
measurement. The Done output is briefly asserted to indicate that the measurement is completed. If
it is not the final trace, the state machine will return to the Wait state to await the start of the next
trace. The State output indicates what state the state machine isin. The Abort input port can be
used to abort any measurement in progress and return the state machine to the Idle state.

During a measurement, the AccumCount output indicates which accumulation is in progress.
AccumCount starts at 1 at the start of the measurement and increments to NumAccum at the end of
the measurement.

Parameters

Data Size: This sets the data width of each input sample. The width of the X_tdata port will be (Super-
sample)*(Data Size).

Supersample: This sets the input supersample value (how many parallel samples per clock).

Accum Size: This sets the data width of the accumulator and each output sample. The width of the
Sum_tdata port will be (Supersample)*(Accum Size).

Mem Size: This sets the size of the internal memory at 2MeM Siz€ entries. Each entry has Supersample
samples of Accum Size bits each. This drives the maximum trace length.

Trigger / TriggerM3x

Trigger_1 TriggerM3x_1

clk

nRst
— Data

tdata(79:0) TriggerOut(4:0)
tvalid Trig_valid
Threshold(15:0)

Mode(1:0)

Hysteresis(15:0)

clk

nRst
= Ctrl

tdata(23:0) TriggerOut(4:0)
tvalid
= Data

tdata(79:0)

tvalid

Trigger is an analog trigger block that supports hysteresis. It will generate a single clock wide Trig-
gerOut pulse for each detected trigger event. Triggers can be off (Mode=0), rising edge (Mode=1),
falling edge (Mode=2), or both (Mode=3). A rising edge trigger is detected when the input signal goes
below Threshold-Hysteresis and then rises above Threshold. A falling edge trigger is detected when
the input signal goes above Threshold+Hysteresis and then falls below Threshold. Both edge triggers
will detect both of these event. The hysteresis amount is an unsigned value that can either be set at
run-time or can be connected to a constant value.

The latency through the Trigger block from Data/tdata to TriggerOut is 2 clock cycles. Trig_valid is
Data/tdata delayed by two clocks. Trig_valid indicates when TriggerOut may be driven. When Trig_
valid is negated, TriggerOut will always be driven to zero.

TriggerM3x is the Trigger block inside a wrapper that makes the ports of TriggerM3x compatible with
the ports of the AnalogTrigger blocks in the M3xxxx series of digitizers. The sample size is fixed at 16
bits, and the amount of hysteresis is fixed as a parameter to the block. TriggerM3x has a "super-
sample" parameter that should be set to 1 or to 5 depending on whether the digitizer module is super-
sampled or not.

Parameters

Supersample: This sets the input supersample value (how many parallel samples per clock). This also
sets the bit width of the TriggerOut port.

Datasize: This sets the data width of each sample. The width of the Data/tdata port will be (Super-
sample)*(Data size). [Trigger block only]

Signed: If checked, then the data and threshold are signed values. If not checked, then data and
threshold are unsigned. [Trigger block only]

Hysteresis: This unsigned value sets the amount of hystersis in the trigger. [TriggerM3x block only]

Memory Blocks
This page describes the following Memory Blocks that you can use with Pathwave FPGA:

¢ DualPortRam

¢ DualPortRam_stream

e Mem_mux_2x

e Mem_mux_4x

e Streamer32x2 and Streamer32x2b

DualPortRam

DualPortRam_1

Clk
nRst

= PortA
address(9:0)
rdData(15:0)
rdEn
wrData(15:0)
wrEn

= PoriB
address(9:0)
rdData(15:0)
rdEn
wrData(15:0)
wrEn

Dual port Block Ram up to 1024 bits x 65536 positions using PC MEM interfaces.

Read latency is 1 cycle.

Parameters
Data width: Sets the PortA and PortB data widths. Variable between 1 and 1024. Default is 16.

Address width: Sets the PortA and PortB address widths. Variable between 1 and 16. Default is 10.

DualPortRam_stream

DualPortRam_stream_1

Clk

nRst

— Addr_A

tdata(49:0)

tvalid Dout_ A —
— Din_A tdata(79:0)
tdata(79:0) tvalid
W Dout B -
— Addr_B tdata(79:0)
tdata(49:0) tvalid
tvalid

— Din_B

tdata(79:0)

tvalid

Dual port Block Ram up to 1024 bits x 65536 positions using AXI Streaming interfaces.

Note that the tvalid for Addr and Din inputs must be asserted high and low at the same time for inter-
faces A or B.

Read latency is 1 cycle.

Parameters

Data width: Sets the PortA and PortB data widths. Variable between 1 and 1024. Default is 16.
Address width: Sets the PortA and PortB address widths. Variable between 1 and 16. Default is 10.

supersample: Sets the supersample amount. Variable between 1 and 64. Default is b.

Mem_mux_2x

Mem_mux_2x_1
MemO —
address(12:0)
Clk rdData(31:0)
nRst rdEn
= Mem wrData(31:0)
address(13:0) wrEn

rdData(31:0) Mem1 —
rdEn address(12:0)
wrData(31:0) rdData(31:0)
wrEn rdEn
wrData(31:0)
wrEn

MEM interface 1 to 2 multiplexor.

Input address space size = 2°(AXI4 Secondary Address Width)
Output address space size = Input address space size / 2
MEMO offset = 0.

MEMT1 offset = Output address space size.

Parameters

AXl4 Secondary Address Width: Sets the address width on the Mem interfaces. Variable between 2
and 32. Default is 14.

Mem_mux_4x

Mem_mux_4x_1

Clk
nRst

= Mem
address(13:0)

rdData(31:0)
rdEn
wrData(31:0)
wrEn

Mem0 —
address(11:0)
rdData(31:0)
rdEn
wrData(31:0)
wrEn

Mem1 —
address(11:0)
rdData(31:0)
rdEn
wrData(31:0)
wrEn

Mem2 -
address(11:0)
rdData(31:0)
rdEn
wrData(31:0)
wrEn

Mem3 —
address(11:0)
rdData(31:0)
rdEn
wrData(31:0)
wrEn

MEM interface 1 to 4 multiplexor.

Input address space size = 2°(AX|4 Secondary Address Width)

Output address space size = Input address space size / 4

MEMO offset = 0.

MEMT offset = T*Output address space size.

MEM?2 offset = 2*Output address space size.

MEM3 offset = 3*Output address space size.

Parameters

AXl4 Secondary Address Width: Sets the address width on the Mem interfaces. Variable between 2
and 32. Default is 14.

Streamer32x2 and Streamer32x2b

Streamer32x2_1 Streamer32x2b_1
clock clock
nRst nRst
= host = host
araddr(16:0) araddr(16:0)
arburst(1:0) arburst
arid(0:0) arid(0:0)
arlen(7:0) arlen(7:0)
arlock arlock
arprot(2:0) arprot(2:0)
arqos(3:0) arqos(3:0)
arready arready
arsize(2:0) DDRtoStr0 — arsize(2:0) DDRtoStr0 —
arvalid tdata(31:0) arvalid tdata(31:0)
awaddr(16:0) tkeep(3:0) awaddr(16:0) tkeep(3:0)
awburst(1:0) tlast awburst(1:0) tlast
awid(0:0) tready awid(0:0) tready
awlen(7:0) tvalid awlen(7:0) tvalid
awlock DDRtoStr1 = awlock DDRtoStr1 =
awprot(2:0) tdata(31:0) awprot(2:0) tdata(31:0)
awqos(3:0) tkeep(3:0) awqos(3:0) tkeep(3:0)
awready tlast awready tlast
awsize(2:0) tready awsize(2:0) tready
awvalid tvalid awvalid tvalid
bid(0:0) DDR — bid(0:0) DDR —
bready araddr(31:0) bready araddr(31:0)
bresp(1:0) arburst(1:0) bresp(1:0) arburst(1:0)
bvalid arcache(3:0) bvalid arcache(3:0)
rdata(31:0) arlen(7:0) rdata(31:0) arlen(7:0)
rid(0:0) arlock rid(0:0) arlock
rlast arprot(2:0) rlast arprot(2:0)
rready arqos(3:0) rready arqos(3:0)
rresp(1:0) arready rresp(1:0) arready
rvalid arregion(3:0) rvalid arregion(3:0)
wdata(31:0) arsize(2:0) wdata(31:0) arsize(2:0)
wlast arvalid wlast arvalid
wready awaddr(31:0) wready awaddr(31:0)
wstrb(3:0) awburst(1:0) wstrb(3:0) awburst(1:0)
wvalid awcache(3:0) wvalid awcache(3:0)
- ctrl awlen(7:0) - ctrl awlen(7:0)
araddr(11:0) awlock araddr(11:0) awlock
arprot(2:0) awprot(2:0) arprot(2:0) awprot(2:0)
arready awqos(3:0) arready awqos(3:0)
arvalid awready arvalid awready
awaddr(11:0) awregion(3:0) awaddr(11:0) awregion(3:0)
awprot(2:0) awsize(2:0) awprot(2: awsize(2:0)
awready awvalid EVICED Y awvalid
awvalid bready awvalid bready
bready bresp(1:0) bready bresp(1:0)
bresp(1:0) bvalid bresp(1:0) bvalid
bvalid rdata(127:0) bvalid rdata(127:0)
rdata(31:0) rlast rdata(31:0) rlast
rready rready rready rready
rresp(1:0) rresp(1:0) rresp(1:0) rresp(1:0)
rvalid rvalid rvalid rvalid
wdata(31:0) wdata(127:0) wdata(31:0) wdata(127:0)
EEL T wlast wready wlast
wstrb(3:0) wready wstrb(3:0) wready
wvalid wstrb(15:0) wvalid wstrb(15:0)
~ StToDDRO whalid — StrToDDRO whalid
tdata(31:0) tdata(31:0)
tkeep(3:0) tkeep(3:0)
tlast tlast
tready tready
tvalid tvalid
— StrToDDR1 — StrToDDR1
tdata(31:0) tdata(31:0)
tkeep(3:0) tkeep(3:0)
tlast tlast
tready tready
tvalid tvalid

NOTE: The Streamer32x2 IP block uses the Vivado 2017.3 AXI DMA IP block. This IP block has a 23 bit
transfer length register. This means the largest DMA transfer size allowed is 8 Mbyte. If a larger trans-
fer size is needed, use the Streamer32x2b IP block. The Streamer32x2b IP block uses the Vivado
2018.1 AXI DMA IP block that has a 26 bit transfer length register. This allows DMA transfers up to 64
Mbyte.

The AXI DMA IP block requires that for the StrToDDR interfaces, the TLAST signal for final sample of a
DMA transfer must be asserted. For example, if the Streamer block is programmed to transfer 1024
samples from the stream interface into DDR, then the 1024th sample of the stream data must have its
TLAST signal asserted.

As a convenience, the Streamer block can be configured to automatically generate this TLAST signal
(in which case the external TLAST port signal is ignored). In order for this to correctly work, the
stream must be inactive (that is, the TVALID signal is negated) until after the DMA transfer is started.
As an example, if data is being read from DDR, sent to the stream (via the DDRtoStr interface), pro-
cessed, and the results sent back to DDR (via the StrToDDR interface), then the StrToDDR DMA oper-
ation should be started before the DDRtoStr is started. When autoTlast is asserted, an internal
counter will count the samples after the DMA is started and internally assert TLAST on the appro-
priate sample.

On the streaming interface side of the IP block the number of clock cycles per data word and the num-
ber of data words per packet burst vary depending on the hardware module used and the number of
IP blocks accessing the DDR interface. The streamer efficiency is calculated as the total number of
data words transfered divided by the total number of clock cycles for a streaming transaction. An effi-
ciency of 100% would mean each data word only required one clock cycle to transfer. The streamer
was benchmarked and will run with about 97% efficiency on the M3302A module. This performance
was measured with all 4 streaming interfaces running using the M3302A 100 MHz clock and when no
other IP was accessing the DDR. The efficiency of the streamer IP block may be less on other modules
or when other IP blocks are accessing the DDR interface.

Parameters

autoTlast: if this box is checked, then the Streamer block will automatically generate the TLAST signal
for the StrToDDRO/1 ports. In this case the TLAST signal supplied to the StrToDDRO/1 interface is
ignored.

Signals

Signal
name
clock
nRst

host

ctrl

DDR

DDRtoStr0
DDRtoStr1
StrToDDRO

StrToDDR1

Width
(bits)

Multiple

Multiple

Multiple

Multiple
Multiple
Multiple

Multiple

Description

Clock input

Reset input (active low)

Host AXI-MM secondary interface with 17 address bits and 32 data bits for random access to
DDR memory.

This should be connected to a Host_aximm interface.

Control AXI-Lite secondary interface with 12 address bits and 32 data bits for accessing the
control registers in the streamer and DMA blocks.

This should be connected to a Host_axilite interface.

DDR AXI-MM primary interface with 32 address bits and 128 data bits for accessing DDR
memory.

This should be connected to the DDR interface.

The channel O AXI-streaming primary interface. Data from the DDR will stream out this interface
using flow control.

The channel 1 AXI-streaming primary interface. Data from the DDR will stream out this interface
using flow control.

The channel O AXI-streaming secondary interface. Data will stream from this interface into DDR
using flow control.

The channel 1 AXI-streaming secondary interface. Data will stream from this interface into DDR
using flow control.

Block Diagram

Version
Reg
R Page
Reg T
Host < Q) ,\
Interface l/
Control
Interface /l l\
AXI N d
> DDR
StrToDDRO DMA 0 AXI
Interface ——» » DDRtoStr0 | Arbiter <\l:(>lnterface
Interface
% N
R AXI AN d
StrToDDR1 | DMA 1 —» DDRtoStr1
Interface Interface

Ctrl Interface Address Map

It is anticipated that an instrument driver APl will be used for controlling the Stream32x2 block.
Hence low level register access to this block should not be needed.

The Stream32x2 block consists of two copies of the Xilinx AXI DMA v7.1 block used in the Direct
Register Mode, a page register, and AXl interconnects. More information on the Xilinx AXI DMA IP
block can be found in the Vivado pg021 AXI DMA v7.1 LogiCORE IP Product Guide.

The address space size of the DDR interface is considerably larger than the address space size avail-
able from the Host interface. In order to access the full memory space of the DDR memory, a page
register is used to provide the MSBs of the DDR address (the LSBs of the address are provided by the
address provided by the Host interface). Since the host interface uses 17 address bits, only 2!/ bytes
or 128 kB can be accessed without changing the page register. Bits 14:0 of the page register
provides bits 31:17 of the DDR address.

Start Address

Size
Block (Byte (Bytes)
Addressing)
DMAO O 1024
DMAT1 1024 1024
Page 2048 4
Version 2052 4

Version register

Description

Control Registers for DMA channel O

Control Registers for DMA channel 1

Page Register that provides the MSBs of the address when using the
Host interface to access DDR (Write only)

Version register (Read only)

The version register is used to identify the version and configuration of the Stream-

er32x2/Streamer32x2b IP block.

Bits Description

7:0 Version of the Streamer32x2/Streamer32x2b IP block

15:8 Number of streaming channels

23:16 Streaming channel data width (bits)

30:24 Transfer length register size

31 0=Simple DMA, T1=Scatter/gather DMA

Example Program

The DDRExample contains a PathWave FPGA project and a C++ program that demonstrates how to
use the Streamer32x2 IP block. The DDRExample is in the PathWave FPGA installation directory
example folder, which is typically C:\Program Files\Keysight\{PathWave FPGA Install}\examples.
Please see the DDRExample readme.md file for more information about this example.

DSP Library IP Blocks

Contents

e Scope

» Data Formats

e Handling of TUSER and TLAST
e Decimation Trigger Corrections
¢ Detail IP Block Descriptions

e Design Examples

Included in the PathWave FPGA IP Repository (Path\Wave FPGA IP Repository) is a library of signal
processing blocks that can be used to create things such is Digital Down Converters (DDCs) or Digital
Up Converters (DUCs). These blocks do functions such as frequency translation (mixing with an
internally generated local oscillator) and sample rate changes (both decimation and interpolation).
While all of these IP blocks are general purpose, some of them are optimized for use in the M3xxx
series of boards.

Scope

The purpose of this document is to explain the operation of the signal processing blocks, the purpose
of their ports and interfaces, and how to modify the blocks via parameters. Itis not intended to
explain the underlying signal processing theory of sample rate changes. Itis assumed the user has an
understanding of basic signal processing such as the concept of aliasing as well as an understanding
of sample rate changes (decimation and interpolation).

Data Formats

These IP blocks operate on streaming data using the AXI-streaming bus interface as described in Key-
sight Standard Interfaces. This data could be either arbitrarily long streams of data (e.g. from an
ADC) or a finite block of data (e.g. data read from DDR memory). These blocks support Variable data
bit widths (controlled via parameters) with the default width being 16 bit data as used in the M3xxx
series of modules.

Sometimes the data is "supersampled". This means that multiple samples are processed for every
clock. This allows processing of data sample rates faster than the allowed clock rate of the FPGA. In
the M3xxx series of modules, the streaming sandbox interfaces (e.g. the ADC data or the AWG data) is
supersampled by 5. Thus on every clock, five 16 bit samples are transferred using a 5*16 = 80 bit
wide data bus. Note that this wider bus does not appear as b separate ports. The data for all five
samples are combined into one wider bus. This shows up as one TDATA bus that is 80 bits wide

rather than five busses each being 16 bits wide. With supersampled data, the least significant
samples (e.g. bits 15:0) represent samples earlier in time while the most significant samples represent
samples later in time.

Many of these IP blocks operate on complex data. This means that each sample consists of a real
part and an imaginary part. Thus for complex data using 16 bit samples, the entire complex sample
uses 32 bits of data width. Both the real and imaginary parts of each complex sample are sent on the
same AXI-streaming bus in an interleaved fashion. The details of how supersampled and/or complex
data is encoded in the data stream can be found in Keysight Standard Interfaces. For each complex
sample, the real part occupies the less significant word (e.g. bits 15:0) while the imaginary part rep-
resents the more significant word (e.g. bits 31:16).

For supersampled complex data the real and imaginary parts of a sample are kept adjacent in the
bus. Thus for 5X supersampled complex data, if (RO, R1, R2, R3, R4, R5, R6, R7, ...) represents the
real samples with RO being earlier in time, and (10,11,12,13,14,15,16,17, ...) represents the imaginary
samples, as shown (time increasing from left to right):

RO RI R2 R3 R4 R R6 RY
0 1 2 13 14 15 16 17

then TDATA for one bus transaction would look like {14,R4,13,R3,12,R2,11,R1,I10,R0} where RO is the
LSBs of TDATA and |4 is the MSBs of TDATA as shown:

TDATA(159:144) 14(15:0) 19(15:0)
TDATA(143:128) R4(15:0) R9(15:0)
TDATA(127:112) 13(15:0) 18(15:0)
TDATA(111:96) R3(15:0) R8(15:0)
TDATA(95:80) 12(15:0) 17(15:0)

TDATA(79:64) R2(15:0) R7(15:0)
TDATA(B3:48) 11(15:0) 16(15:0)
TDATA(47:32) R1(15:0) R6(15:0)
TDATA(31:16) 10(15:0) 15(15:0)

TDATA(15:0) RO(15:0) R5(15:0)

These blocks support full AXI streaming flow control (forward flow control and backward flow
control). TVALID is the forward flow control signal, sent from Primary to Secondary, indicating that
the Primary has valid data on TDATA. TREADY is the reverse flow control signal, optionally sent from
the Secondary to the Primary, indicating that the Secondary is ready to accept data (if TREADY is not
used, then it is assumed that the secondary can always accept data at any time). Data is transferred
when both TREADY and TVALID are asserted. Please see the the AXl4Lite specification for more
details.

In addition to the streaming interfaces, some IP blocks use the Vector interface for control
information. This might be the frequency value for a local oscillator or the bandwidth information for
an adjustable filter. This signals can be tied to constants or connected to a user controllable register.

Handling of TUSER and TLAST

These IP blocks support the optional AXI-streaming signals TUSER and TLAST in addition to the main
data bus TDATA. The connection or use of TUSER or TLAST is not required. These signals may be
ignored if they are not being used. The TLAST signal indicates the last sample in a data block. Itis
passed through the IP block unchanged along with the data. For decimators where multiple input
samples correspond to each output sample, the TLAST of all those samples are OR'ed together to
form the TLAST of the corresponding output sample.

TUSER bits can be used to associate some data with some particular sample. Some example uses
include triggers and overload/overflow information. The TUSER bits follow the data through the IP
block accounting for things like pipeline delays and filter group delay. This is the best mechanism for
associating an output sample with a particular input sample.

The number of TUSER bits per data sample can be changed from the default one via a parameter.
Typically TUSER[O] is used to mark or tag a sample with trigger or timestamp information. For the
decimation blocks, TUSER[0] is used internally, as well being passed through, to latch the state of the
decimation counter when TUSER[O]=1. This latched information can be used to determine for which
input sample TUSER[0] was asserted.

For blocks that include filtering, such as the decimators and interpolators, the TUSER bits are delayed
to correspond to the group delay of the filter. For example, if the input stream was a single impulse,
and if the TUSER input was asserted for this sample, then the TUSER output will be asserted at the
midpoint (peak) of the output impulse response. TUSER[O] is the only TUSER bit used internally. Any
other TUSER bits are merely passed to the output. Note that the TLAST bit is not delayed to account
for group delay. Thus if TUSER and TLAST are asserted for the same input sample, they will occur at
different output samples. For decimators where multiple input samples correspond to each output
sample, the TUSER vector of all those samples are bitwise OR'ed together to form the TUSER of the
corresponding output sample.

Note that some blocks may require the use of these optional signals. For example, the Streamer32x2
and Streamer32x2b IP blocks require the TLAST signal be asserted on the last sample of a DMA trans-
fer (unless they are configured to internally generate the required TLAST signal). Please see Stream-
er32x2 IP documentation for more details.

Decimation Trigger Corrections

The TUSER[0] signal can be used as a trigger signal to associate an output sample with a particular
input sample as noted in the previous section. However, in the case of decimation filters, where the
input sample rate is N times the output sample rate, there is some inherent ambiguity in the timing of
this TUSER signal. Since the output sample rate is lower than the input sample rate, asserting the
input TUSER for any of N different input samples would result in the output TUSER being asserted on
the same output sample. The input to the decimation filter has a time resolution of the input sample
rate whereas the output only has a time resolution of the output sample rate which is N times worse.
If the output sample rate trigger resolution is sufficient for one's application, nothing further needs to
be done. However, it is possible to increase the trigger resolution to the input sample rate by means
of the DelayOut value. Asthe TUSER signal propagates through the decimation filter, the state of
each decimation is recorded. After the output TUSER signal has been asserted, the DelayOut value
reflects the state of each decimation.

#PathWaveFPGAIPRepository-StreamerBlocks
#PathWaveFPGAIPRepository-StreamerBlocks

Input Output

A A,

0123

For example, if the filter is decimating by a factor of four there is only one output sample for every four
input samples. A trigger for any of the four red input samples would result in the same red output
sample being marked. The DelayOut out value indicates which of these four actually caused the trig-
ger event. A DelayOut value of 0 means the first red sample caused the trigger event. A value of 1
means the next red sample caused the trigger event, etc.

There is another, equivalent way to consider trigger corrections. When corrected for the filter's group
delay, the time of an input trigger event corresponds to a particular output time. Due to the decim-
ations in the filter, this output time may fall upon one of the output samples, or it may fall upon one of
the samples that has been decimated away. The output TUSER signal indicates the latest sample on
or before the ideal output trigger time. The DelayOut value reflects the time from the marked output
sample to when the ideal trigger time would have been, as a fraction of the output sample period.

Inpu Output

A AL

A

0123 1\1\1

0

In this example, if the input sample labeled "0" had TUSER asserted, then the ideal output trigger
time would be the time marked "0". The red sample would have TUSER asserted, and DelayOut
would be zero. If the sample labeled "1" had TUSER asserted, then the ideal output trigger time
would be the time marked "1". Note that this does not correspond to any output samples. Instead,
the red sample would have TUSER asserted, and DelayOut would be one. Likewise for times two and

three. The delay from the marked output sample to the ideal trigger time is DelayOut/N where N is
the decimation ratio.

Decimation Trigger Corrections for DecimateBy5 Blocks

The DelayOut for the DecimateByb5 blocks operates in the same way though with a slight
modification. The DecimateByb blocks take as input five supersampled samples per clock. Aftera
trigger event, the DelayOut indicates which of the 5 supersampled values caused the trigger.
DelayOut = 0 means that filter_in_tuser[Q] caused the trigger. DelayOut = 1 means that filter_in_tuser
[User Data Width] caused the trigger. In general, the trigger was caused by filter_in_tuser
[(DelayOut)*(User Data Width).

To find the ideal output trigger time, an offset needs to be subtracted from the DelayOut value. The
ideal trigger time is (DelayOut-1.5)/5 output samples after the output trigger. Note that this value
may be negative, in which case the ideal trigger time is just before the marked output sample.

Detail IP Block Descriptions

Local Oscillator

This is a general purpose local oscillator/mixer block configured through the use of parameters. By
default it generates a local oscillator signal and mixes (multiplies) this LO signal with the X input to
generate the Y output. Optionally the block can output just the local oscillator signal without mixing
it with the input.

It supports both supersampled and non-supersampled data. Both the input and output data can be
independently selected as real or complex data. The Lo can be chosen to mix up (multiply by elWt) or
mix down (multiply by e w?).

tdata(31:0)
tlast
tready

tuser(0:0)
tvalid

Y -
tdata(31:0)
tlast
tready
tuser(0:0)

A(24:0) tvalid
B(23:0)

SetFreq

phRst

This block supports supersampled data. In this description let S be the supersample factor. For non-
supersampled data, set Sto 1. The bit width of each data sample can be changed via the "Tdata size"
parameter. Note that this parameter denotes the width of each individual sample, not the super-
sampled data width. The width of a real tdata port will be S times the Tdata size parameter while the
width of complex tdata port will be 2S times the Tdata size parameter.

When the input port is set to real data, the imaginary part is assumed to be zero. When the output
port is set to real data, only the real part is calculated - the imaginary part is discarded.

Optionally the output mixer stage can be bypassed. In this case the LO outputs the full scale local
oscillator signal and ignores the input X interface. If Shift Direction is 0, then Y is /%t so that the real
part of Y is cos(wt) and the imaginary part (if complex output is selected) is sin(wt). If Shift Direction
is 1, then Y is e Wt so that the real part of Y is cos(wt) and the imaginary part (if complex output is
selected) is -sin(wt). The output is scaled to full scale based on Tdata size. The resolution of the
underlying trig lookup tables are fixed. The output data is merely shifted to present a full scale output
depending on Tdata size. When Trig Only is selected the X interface (including the X_tvalid signal) is
ignored. Y_tready will still control how fast output samples are generated.

By default, there are S TUSER bits, one bit per sample. The number of TUSER bits per sample can be
changed via the "Tuser size" parameter. The TUSER and TLAST signals are not used inside these
blocks - they are just passed from input to output with the data.

A and B control the local oscillator's frequency. Let T be the smallest power of 2 greater than or
equal to S (so that S<=T<2S). The LO frequency is given by f = f, * (A+B/570)/((S/T)*2?5). Fre-
quencies can be positive or negative. Valid input ranges for A and B are such that -1/2 <= f/f; <= 1/2.
Values of A and B that are outside this range will give incorrect results. Note that f4 is the sample rate

of the data, not the clock rate of the FPGA which is 1/S of the sample rate. The LO is designed so that
with a sample rate 7 of T Gs/s, the LO can produce LO frequencies with a decimal frequency res-
olution of 0.1 Hz or better. Thatis to say, any frequency that is a multiple of 0.1 Hz can be produced
without frequency error. The internal frequency value of the LO block is updated when SetFreq is
asserted. This allows A and B to be changed at different times and still have the LO cleanly change
frequencies. It can also be used to change the frequency of multiple LOs synchronously if all the
SetFreq signals are asserted at the same time. If this feature isn't required, SetFreq can be tied high
and the LO will change frequency whenever A or B changes.

When asserted, phRst will reset the phase of the phase accumulator to zero and flush data in the LO's
pipelines without resetting the programmed frequency. For phase continuous frequency changes,
leave phRst negated. Note that in this case due to pipeline stages, the results of the frequency
change will not be visible at the output for several samples. To eliminate this delay in seeing the
effects of frequency changes, assert phRst on or after the new frequency is set. This may easily be
done by driving phRst with the same signal as setFreq. Note that phRst should not be tied high as
that will prevent operation of the LO.

If the input is complex, sufficiently large values of the real and imaginary parts of X can result in a
magnitude of the complex X being larger than the full scale input value (for example if both the real
and imaginary parts of X are +full_scale, then the magnitude of X would be /2 times full_scale). In
this case, the calculated output may not fit within the full scale output range. If this happens, the out-
put will be clamped to tfull scale. Note: this will cause distortion so it is recommended that the mag-
nitude of the complex input be kept less than full scale.

When calculating the phase values (used to calculate the local oscillator value for each sample) typ-
ically dithering is used. Dithering adds a pseudorandom value smaller than 1 LSB to each phase
value prior to the phase-to-amplitude lookup. This can convert potential spurious errors into more
noise like errors. Note that this means that even when the LO's period is an integral number of
samples, the waveform may not exactly repeat period to period. If thisis not desired (e.g. for repeat-
able simulation results), it can be disable by setting the Dither parameter to O.

Starting at version 1.1 a new parameter Pipeline has been added. When checked (set to 1) this adds
a pipeline stage to the phase accumulator and several pipeline stages to the sine/cosine calculation.
This improves the speed of the LO block and can facilitate meeting timing in higher performance
designs. These pipeline stages do not change the LO calculation - for the same input one would get
the same output. It does increase the time after a reset before the LO will start outputting data by
four clock cycles. It also slows down the effect of changing LO frequency by the same amount.

Parameters

Tdata size: Sets the data width for each sample (real data) or for each of the real and imaginary parts
of each sample (complex data).

Tuser size: Sets the number of tuser bits per sample.

Complex Input: If set, then the input data is complex. If cleared, then the input data is real only.

Complex Output: If set, then the output data is complex. If cleared, then only the real part of the out-
put data is generated.

Supersample: This sets the supersample value and determines how many parallel samples are pro-
cessed at the same time.

Shift Direction: If Shift Direction = 0, the input is multiplied by elWt (shift frequencies up).
If Shift Direction = 1, the input is multiplied by e Wt (shift frequencies down).

Dither: Enables phase dithering to help convert spurious signals into more noise like signals (default
is Dither=1 or enabled).

Trig Only: Enables output of the LO's trig functions and bypasses the mixer. If enabled, the X inter-
face is ignored.

Pipeline: (Version 1.1 and later) When checked, this adds an extra pipeline stages in the phase accu-
mulator and sine/cosine calculation to facilitate timing (default is Pipeline=1 or enabled).

Behavior of phRst

The calculation of local oscillator signal (phase accumulator and phase-to-amplitude converter)
includes several stages of pipelining. This pipeline is normally kept full. One effect of this is that if the
LO's frequency is changed, the results of that change is not seen by the data stream until several data
samples have been processed. In this case, it is possible to update or change the LO frequency in a
phase continuous manner. This means that the frequency changes without discontinuities in the LO
waveform.

Sometimes the delay between setting the frequency and having the frequency change seen in the
data stream is not desired. One example is block mode processing where a block of data is read from
memory, and run through the LO. In this case, it is desired to have the programmed LO frequency
available immediately. Otherwise the first few output points would be indeterminate based on the
contents of the LO pipeline. To prevent the initial output values using old pipeline data, the LO
pipeline can be flushed by asserting phRst. This will clear out old pipeline data so that the first output
sample would reflect new frequency values. To do this, assert phRst on or after the new frequency is
set (using SetFreq) and before data is streamed through the LO. One way to do this is to connect the
phRst to the same signal as SetFreq (note: if so, then these signals can't be tied high permanently
else the LO would be held in reset). If phRst is used to flush the LO pipeline, that will result in non-
phase continuous behavior. That is, frequency changes (and the flushing of the LO pipeline) will res-
ult in the LO waveform being discontinuous at the frequency change.

In continuous real time processing, such as when used with ADCs or DACs, phase continuous fre-
qguency changing is probably desirable.

In block mode processing, non-continuous frequency changing (without the pipeline delay before the
new frequency is seen) is probably desirable.

Frequency Programming

The frequency of the LO is controlled by two inputs, A and B. A can be thought of as the coarse fre-
guency setting and B as the fine frequency setting. Ais a signed 25 bit number and B is a 24 bit
number. The LO frequency is given by f = f, * (A+B/579)/((S/T)*2?°) where S is the supersample value
and T is defined above. The following pseudocode can be used to calculate A and B. Itis us to the
user to ensure this math is done with sufficient precision for their application.

Let x=(f/f)*((S/T)*2%°)
Let A=int(x)
Let B=int((x-A)*510)

Example 1

Consider using the LO in a M3202A AWG. The clock rate in the FPGA is 200 MHz and data is 5X
supersampled so the sample rate, f;, is 1 Gsps. In this case S=5, and T would be 8 (next power of two
greater than or equal to 5). Sof= (1 GHz) * (A+B/519)/((5/8)*22%). Suppose the desired LO fre-
quency, f, was 123,456,789.1 Hz. Then:

x= (f/f,)*((S/T)*22%) = (123456789.1/109)%((5/8)*225) = 2589076.5217464320

A= int(x) = 2589076

B= int((x-A)*5'0) = 5095180

and f exactly matches the desired frequency.

Example 2

Consider an LO processing data from an M8131A digitizer. In this example, the data is 16X super-
sampled with an FPGA clock of 400 MHz so the sample rate, f, is 6.4 Gsps. In this case S=16,and T
would also be 16 (next power of two greater than or equal to 5). So f = (6.4 GHz) * (A+B/5'9)/(229).
Suppose the desired LO frequency, f, was 1,234,567,891.2 Hz. Then:

x= (f/f)*((S/T)*22%) = (1234567891.2/(6.4*109))*(22°) = 647269.13054 146560

A= int(x) = 647269

B= int((x-A)*510) = 2982565

and f exactly matches the desired frequency.

Porting Legacy Designs

To port designs using the legacy Lob5_dc and Lob_uc block to use the new Lo block, use the following
parameter values:

For Lo5_dc:

e Supersample =5

e Complex Input=0
e Complex Output =1
 Shift Direction =1

For Lob_uc:

e Supersample =5

Complex Input =1
e Complex Output=0
Shift Direction =0

Local Oscillator (Legacy - not recommended for new designs)

Note: due to pipeline latency in the calculation of local oscillator waveform, these blocks have uncer-
tain behavior for several samples following a reset. Itis recommended that new designs use the Lo
block described above which is more flexible and does not have these start up issues.

The DSP library contains two local oscillator blocks, Lo5_dc which is designed for down converter
applications, and Lo5_uc which is designed for up converter applications. The difference between
these is that Lo5_dc has real input data and complex output data while Lo5_uc has complex input
data and real output data.

Lo5_dc_1

tdata(79:0) tdata(159:0)
tlast tlast
tready tready
tuser(4:0) tuser(4:0)
tvalid tvalid
A(24:0)
B(23:0)
SetFreq

Lo5_uc_1

Y -
tdata(159:0) tdata(79:0)
tlast tlast

tready tready

tuser(4:0) tuser(4:0)
tvalid tvalid
A(24:0)
B(23:0)
SetFreq

These blocks operate on 5X supersampled data, thus they process five samples in parallel. The bit
width of each data sample can be changed via the "Tdata size" parameter. Note that this parameter
denotes the width of each individual sample, not the 5X supersampled data width. The width of the
Lob_dc X_tdata port will be 5 times the Tdata size parameter while the width of the Y_tdata port will
be 10 times the Tdata size parameter (since the output is complex while the input is real, the output is
twice as wide due to having both real and imaginary components for each sample).

By default, there are 5 TUSER bits, one bit per sample. The number of TUSER bits per sample can be
changed via the "Tuser size" parameter. The TUSER and TLAST signals are not used inside these
blocks - they are just passed from input to output with the data.

The two input vectors A and B determine the frequency of the local oscillator. If the sample rateis fg,
then the LO frequency is fg * (A+B/570)/(5%222) . Note that fsis the sample rate of the data, not the
clock rate of the FPGA which is 1/5 of the sample rate. The LO is designed so that with a sample

rate fy of 1T Gs/s, the LO can produce LO frequencies with a decimal frequency resolution of 0.01 Hz.
That is to say, any frequency that is a multiple of 0.01 Hz can be produced without frequency error.
The internal frequency value of the LO block is updated when SetFreq is asserted. This allows A and
B to be changed at different times and still have the LO cleanly change frequencies. It can also be
used to change the frequency of multiple LOs synchronously if all the SetFreq signals are asserted at
the same time. If this feature isn't required, SetFreq can be tied high and the LO will change fre-
guency whenever A or B changes.

Lo5_dc will multiply the real input stream X with the complex local oscillator and generate the com-
plex output stream Y. This block multiplies the real input by e JWt.

Lob_uc will multiply the complex input stream X with the complex local oscillator and output the real
part of the result as the real output stream Y. This block multiplies the complex input by eWlangd
takes the real part for output. Since the input is complex, sufficiently large values of the real and ima-
ginary parts of X can result in a magnitude of the complex X being larger than the full scale input
value (for example if both the real and imaginary parts of X are +full_scale, then the magnitude of X
would be /2 times full_scale). In this case, the calculated output may not fit within the full scale out-
put range. If this happens, the output will be clamped to +full scale. Note: this will cause distortion
so it is recommended that the magnitude of the complex input be kept less than full scale.

Note that for these blocks 7/ fgis limited to the range +/- 0.4.

DecimateByb5/InterpolateBy5

There are both real and complex versions of the DecimateByb and InterpolateByb5 blocks. These
blocks are used to convert between 5X supersampled data (5 samples per clock) and 1X super-
sampled data (1 sample per clock).

DecimateBy5_1
clk filter_out —
resetn tdata(15:0)
= filter_in tlast
tdata(79:0) tready

DecimateBy5Complex_1
clk filter_out =
nRst tdata(31:0)

= filter_in tlast
tdata(159:0) tready

tlast tuser(0:0)
tready tvalid
tuser(4:0) delayOut(2:0)
tvalid

tlast tuser(0:0)
tready tvalid
tuser(4:0) delayOut(2:0)
tvalid

InterpolateBy5_1 InterpolateBy5Complex_1
clk clk
resetn filter_out = nRst filter_out =
— filter_in tdata(79:0) — filter_in tdata(159:0)
tdata(15:0) tlast tdata(31:0) tlast

tlast tready tlast tready
tready tuser(4:0) tready tuser(4:0)
tuser(0:0) tvalid tuser(0:0) tvalid
tvalid WELT

The DecimateByb block first low pass filters the input to protect against aliasing and then decimates
by 5 (discarding 4 of every 5 output samples). The InterpolateBy5 block first interpolates by 5 by
inserting 4 zero samples between each input sample and then low pass filtering to protect against
aliasing. Both IP blocks can use one of two filters. One filter has a passband approximately 60% of
Nyquist. This filter eliminates any aliasing at the expense of passband width. The other filter has a
passband of 80% of Nyquist. It has an alias protected passband though there may be aliasing in the
transition bands. These filters have the frequency responses:

10 — Magnitude Response

60% bw
80% bw

-20

30 -

dB

|
-50 |- b

70 ‘ “

i i (YAvivat
N A
|

OX“\\&F“-I“(‘\“
90 |- M ‘H‘\w |\ ‘I‘ ‘ || ‘u I

| AR I | U 1 “ 11) \»‘M ‘/\ w"%

0 0.05 0 0.15 0. 25 0.35 0.4
fifs

“‘ (‘ | ‘\‘:‘
\“‘ Ir h‘” ‘l‘ll‘ M‘V ‘\‘I

Note that the x-axis frequency is normalized to fg, where fg is the higher sample rate of the filter.
That is the input sample rate for the decimator and the output sample rate for the interpolator. For
the 60% filter, the passband extends up to 0.0625 fy with the stopband starting at 0.1 f, . For the
80% filter, the passband extends up to 0.08 f; with the stopband starting at 0.12 f,. For example,
the M3102 digitizer has a sample rate of 500 Ms/s. Thus for the 60% filter, fy/2is 2560 MHz and the
passband is +/- 31.25 MHz with the stopband above 50 MHz. For the 80% filter, the passband is +/-
40 MHz with the stopband above 60 MHz. Note that these numbers are only for a sample rate of 500
Ms/s. For other sample rates, the passband and stopband frequencies would scale accordingly.

Power2Decimator/Power2Interpolator

These blocks operate on non-supersampled (a maximum of 1 sample per clock) data that can be
either real or complex, and can decrease or increase the sample rate by 2N where N=0to 16. (N=0is
a bypass mode where the data is passed through the filter unchanged).

Power2Decimator_1

tdata(31:0)
tdata(31:0) tlast
tlast tready
tready tuser(0:0)
tuser(0:0) WEI|
tvalid DelayOut(15:0)
nDecim(4:0)

Power2interpolator_1

Y_

tdata(31:0)
tdata(31:0) tlast
tlast tready
tready tuser(0:0)
tuser(0:0) tvalid
WET
ninterp(4:0)

Conceptually, the Power2Decimator can be thought of as a set of 16 cascaded decimate by 2 stages
(the internal design uses a more efficient architecture). Each stage first low pass filters its input and
then decimates by two. A MUX controlled by nDecim selects the output of one of these filters.

.
= = z = =z =
Data In [L = [[- — [[
o o o o o o
- - - - - -
nDecim MUX

Data Out

The Power2Interpolator does the reverse. It can be thought of as 16 cascaded interpolate by 2
stages. Each stage first interpolates by 2 by inserting a zero between each input sample and then low
pass filters to eliminate aliased signals. In this case, ninterp selects which stage receives the input
data stream. All stages after that use the output of the previous stage.

Both the Power2Decimator and Power2Interpolator can use one of two filters. One filter has a pass-
band approximately 60% of Nyquist. This filter eliminates any aliasing at the expense of passband
width. The other filter has a passband of 80% of Nyquist. It has an alias protected passband though
there may be aliasing in the transition bands. These filters have the frequency responses:This filter

has the frequency response shown:

User Guide Designing your FPGA Logic

Magnitude Response

60% bw
80% bw

-30 - \

40 - \

dB

-50 —

70 - \ \

\ i /\\ e / N M, M //

\
> UH \ H ‘H‘l‘ “\| N ‘
\

‘ I
\I)‘ | I | I\
100 | | | | L \‘ { H \” \‘\“ | Im | \‘ ‘u\ |\ | “ le\ |
0 0.05 0.1 0.15 02 0.25 03 0.35 0.4 0.45 05
fifs

The 80% filter uses a halfband design and hence has an extremely flat passband. The 60% filter uses
a plain FIR filter with more passband ripple:

Find us at www.keysight.com Page 183

Passband Magnitude Response

* T - 7\ — o T 60% bw
\ / \

80% bw

\
005— |)

| \ ‘ |
045 \ /

dB

-0.2

-025

-0.3

\/
-0.35

04 ‘

0.1

0.2 025
fifs

Note that the x-axis frequency is normalized to fg, where fg is the higher sample rate of the filter.
That is the input sample rate for the decimator and the output sample rate for the interpolator. For
the 60% filter, the passband is +/- 0.15 g which is 60% of the Nyquist rate, while the stopband starts
at0.25 f5 . Forthe 80% filter, the passband is +/- 0.2 f; ,while the stopband starts at 0.3 f5 . As
an example, if the input sample rate to the Power2Decimator is 100 Ms/s, the bandwidth of the first
stage of decimation would be +/- 15 MHz sampled at 50 Ms/s for the 60% filter and +/- 20 MHz
sampled at 50 Ms/s for the 80% filter. For the 60% filters, the bandwidth of the second stage of
decimation would be +/- 7.5 MHz sampled at 25 Ms/s. The bandwidth of the third stage of decim-
ation would be +/- 3.756 MHz sampled at 12.5 Ms/s. For the 80% filters, the bandwidth of the second

stage of decimation would be +/- 10 MHz sampled at 25 Ms/s. The bandwidth of the third stage of
decimation would be +/- 5 MHz sampled at 12.5 Ms/s.

The bit width of each data sample as well as the width of the TUSER signal can be modified, if desired
via parameters. Note that the Tdata size parameter denotes the bit width of each component (real
and imaginary) of each sample. Thus the width of the TDATA bus will be twice the value of this para-

meter for the complex version of these blocks. The Tuser size parameter denotes how many TUSER
bits are associated with each (real or complex) sample.

The TUSER and TLAST bits are passed through the decimation stages along with the data. Due to the
filter response, there is no one output sample that corresponds to each input sample. A input con-
sisting of an impulse will result in a broad output consisting of the impulse response of the filter. Thus
tagging a particular input sample will result in an output sample being tagged that corresponds to
the group delay of the filter which is close to the midpoint of the impulse response.

Since the output sample rate is less than the input sample rate (by a factor of 2N), any of 2N different
input triggers would result in the same output trigger. The output port DelayOut can be used to
determine which of these 2N input samples caused the particular output trigger. As the trigger
(TUSER[O]) signal propagates down the decimation stages, each decimate-by-two stage records the
state of the decimation when the trigger passes. To interpret DelayOut, after a trigger has passed
through the decimator, take the nDecim number of LSBs of DelayOut (i.e. AND DelayOut with 2,pecim=
1), and this represents the number of input sample periods that needs to be added to the time of the
marked input sample to get the time of the marked output sample.

Both the Power2Decimator and Power2Interpolator use 32 DSP blocks for the complex filter, and 16
DSP blocks for the real filter. This is the same regardless of which filter shape is chosen.

Combinel1toN

Sometimes there is a need to combine multiple input samples into a wider output stream. One
example of this would be to convert non-supersampled data (i.e. data at a rate of at most one sample
per clock) into a supersampled output. The CombineTtoN block will every N input samples into one
output where N can be an integer or a half-integer (e.g. 2-1/2). This can be used to connect the non-
supersampled output of the Power2Decimator to the supersampled Dag1 port. The IP block's "N"
parameter is the integer part of this multiplier. To combine N+1/2 inputs into each output, select the
"Add 1/2 to N" parameter.

Combine1toN_1

Clk

nRst Dout =
= Din tdata(79:0)

tdata(31:0) tlast

tlast tready
tready tuser(3:0)
tuser(0:0) tvalid
tvalid

To convert a real, non-supersampled 16 bit data sample to a 56X supersampled 80 bit data stream is
straight forward. For every five 16 bit input samples, one 80 bit output is generated. Things are more
complicated when dealing with complex data. In that case, the input is 32 bits wide (16 bits of real
data, and 16 bits of imaginary data). To convert this to 80 bits wide, 2-1/2 input samples are col-
lected for each output. So for an input of:

Din_tdata[31:16] 10 11 12 13 14
Din_tdata[15:0] RO R1 R2 R3 R4

Then the output stream would look like:

Dout_tdata[79:64] R2 14 R7
Dout_tdata[63:48] 1 R4 16
Dout_tdata[47:32] R1 13 R6
Dout_tdata[31:16] 10 R3 15
Dout_tdata[15:0] RO 12 R5

To set up the Combine1toN block for this case, the parameter "N" should be "2", and the parameter
"Add 1/2 to N" should be selected.

When the combination factor, N, is an integer, then the Dout_tdata is N times the size of Din_tdata,
Dout_tuseris N times the size of Din_tuser. However, if the combination factor is N+1/2 the port siz-
ing is more complicated (since ports can't be a half bit wide). Furthermore an extra bit is added to the
Dout_tuser to indicate whether the half sample is at the LSBs or MSBs of the output For combining
N+1/2 samples, Dout_tdata is N+1/2 times the size of Din_tdata, Dout_tuser is N+1 times the size of
Din_tuser + 1.

Logically in this case, RO and 10 are parts of the same (complex) sample. Hence they share the same
Din_tuser bit(s). However, some samples, such as R2/12 are output in different bus cycles. The tuser
bits for the R2/12 input are output for both output bus cycles where R2 or |2 are output. Soin this
case the output would be (where Tn represents Din_tuser for sample n):

Dout_tuser(3] O 1 0
Dout_tuser2] T2 T4 717
Dout_tuser[1] T1 T3 T6

Dout_tuserf0)] T0 T2 715
Dout_tdata[79:64] R2 14 R7
Dout_tdata[63:48] 1 R4 16
Dout_tdata[47:32] R 13 R6
Dout_tdata[31:16] 10 R3 15
Dout_tdata[15:0] RO 12 R5

Complex2Real / Real2Complex

These blocks convert between one complex stream of data and two independent streams (one for the
real part, and one for the imaginary part) of data.

Real2Complex_1

Clk
Complex2Real_1 nRst
Real_out = = Real_in
tdata(15:0) tdata(15:0)
Clk tlast tlast Cmplx_out —
nRst tready tready tdata(31:0)
— Cmplx_in tuser(0:0) tuser(0:0) tlast
tdata(31:0) tvalid tvalid tready
tlast Imag_out - - Imag_in tuser(0:0)
tready tdata(15:0) tdata(15:0) tvalid
tuser(0:0) tlast tlast
tvalid tready tready
tuser(0:0) tuser(0:0)
tvalid tvalid

In order to know how to correctly interleave the complex data, these blocks need to know the size of
the real data sample and any supersample value. The above pictures show a "Tdata size" of 16 and a
"Supersample" of 1 (no supersampling). This means that the Real and Imaginary tdata busses are 16
bits wide, and the Cmplx tdata bus is twice this or 32 bits wide.

Supersampled Decimate/Interpolate By 2

These blocks operate on supersampled data and can decimate or interpolate by two using real or
complex data and offer choices of several filters (with different bandwidths and stopband rejection).

ssDecim2_1 ssinterp2_1

clk Filter_out = clk

nRst tdata(95:0) nRst Filter_out =
— Filter_in tlast — Filter_in tdata(191:0)
tdata(191:0) tuser(2:0) tdata(95:0) tlast
HEE tvalid HER tuser(5:0)
tuser(5:0) DelayOut tuser(2:0) tvalid
tvalid tvalid

ssinterp2fc_1

Filter_out ==
tdata(191:0)
tdata(95:0) tlast
tlast tready
tready tusen(5:0)
tuser(2:0) tvalid
tvalid

The decimator block takes in N samples/clock (where N has to be even), low pass filters the data, and
outputs N/2 samples/clock. The interpolators take in N samples/clock, interpolate by two by adding
a zero sample between each input sample, low pass filters the results, and outputs 2N samples/clock.

These blocks support several different filter options that can trade off performance for resource
utilization. The stopband rejection can be selected as either 70dB or 80dB. The passband (and stop-
band) width can be selected as being either 10%, 20%, 40%, or 80% of Nyquist. When a number of
these blocks are cascaded (e.g. to decimate by 4 or 8), then the higher sample rate filters can safely
use smaller passbands which result in hardware and latency savings.

The following plots show the filter performance of the various filters plotted against normalized
frequency. Inthese plots fg represents the input sample rate of the decimator or the output sample
rate of the interpolator.

User Guide Designing your FPGA Logic

80 dB filters

—80% bw

-10

dB

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 045 0.5

Find us at www.keysight.com Page 189

70 dB filters

80% bw
40% bw
20% bw
10% bw

-20 |-

230 "‘\ N N

dB

-50 |-

.60 I

-70 |-

-90 “

100 I I I I I I
0 0.05 0.1 0.15 0.2 0.25 0.3 035 0.4

fifs

The following table shows the filter sizes and resources used for the various filters. Note that these
numbers are for each filter. To get the total number of DSP blocks used, this number needs to be mul-
tiplied by the output supersample value. The passband ripple of these filters (as is typical for half-
band filters) is very good. For the 70dB rejection filters the passband ripple is < 0.003dB while for the
80dB rejection filters the passband ripple is <0.001dB.

Passband Stopband Filter Number of DSP
Width Rejection Order Non-trivial Coeficients Per Filter
10% 70dB 6 2 2
20% 70dB 6 2 2
40% 70dB 10 3 4
80% 70dB 42 M 15
10% 80dB 6 2 2
20% 80dB 10 3 4
40% 80dB 14 4 5
80% 80dB 46 12 16

The number of DSP block used per filter may be higher than the number of coefficients since for the
larger filters some DSP blocks are used in the adder tree in addition to the coefficient multiplication.
In the above table, the number of DSP blocks used is given per filter. In the decimator case, this is the
number of supersampled outputs as each output has its own filter. In the interpolator case, this is the

number of supersampled inputs (rather than outputs). While there are twice as many output samples
as input samples, the nature of the halfband filters used is such that half the output sample filters
only have trivial coefficients (0 or 1), thus only half the output samples use filters that require DSP
blocks.

The DC gain through the interpolator and decimator can be set to either 1 or 1/2. The choice of
which gain to use is application dependent. For an arbitrary input signal, the chance of the output
exceeding the valid output range (and hence clipping) can be minimized by selecting a gain of 1/2. If
the input signal is constrained, for example if it is the output of an earlier decimator/interpolator
stage, then a gain of T may be more appropriate to maximize signal to noise.

The propagation of the TUSER signals is delayed to account for the group delay of the filter. For the
decimator, the ideal location for the TUSER output may fall on one of the output samples or between
two output samples depending on the timing of the input TUSER due to the decimation by two. The
DelayOut signal differentiates these two cases. If the ideal output TUSER falls on an output sample,
DelayOut will be zero. If the ideal output TUSER falls between two output samples, then the output
sample just before the ideal location will have TUSER set, and DelayOut will be set to one. See the
earlier section on Decimation Trigger Corrections for a more detailed discussion.

Both the ssDecim?2 and the ssinterp2 blocks only support forward flow control. There are no TREADY
signals. The ssinterp2fc block includes additional logic in order to support reverse flow control
(TREADY) for situations where this is needed (e.g. prior to the reshapeM1 block).

The ssDecim?2 block requires the input supersample value to be even (since the output supersample
value is half this and needs to be an integer). In order to support situations where the actual source
has an odd supersample value, the reshapeP1 block may be used to convert the odd supersample sig-
nal to an even supersample signal.

The ssInterp2 blocks always output an even supersampled signal. To connect either of these to a des-
tination requiring an odd supersample value, the reshapeM1 block may be used to convert from an
even supersampled signal to an odd supersampled signal. Note: in this case the blocks driving the
reshapeM1 must support reverse flow control.

In designs with a high supersample value, the reset signal can have a large fanout. To assist in meet-
ing timing in such designs, the internal reset signal can be registered and duplicated to limit fanout.
This incurs a one clock latency in the reset signal but may help in meeting timing in large designs.

Reshape

These blocks are used to convert between even and odd supersample signals or more generally
between different supersample values. The reshapeP1 will convert from N to N+1 samples/clock
while the reshapeM1 will convert from N to N-1 samples per clock. The reshapeUp will convert from
N to M (M>N) samples/clock while the reshapeDown will convert from N to M (M<N) samples per
clock.

reshapeP1_1 reshapeM1_1

clk clk

nRst dataOut = nRst dataOut =
— dataln tdata(191:0) = dataln tdata(159:0)

tdata(191:0 tlast

tdata(159:0) tlast ata(191:0) as

| i tlast tready
N (e 0) tready tuser(4:0)
tuser(4:0) tvalid

tuser(5:0) tvalid
tvalid tvalid

ReshapeUp_1 ReshapeDown_1

clk clk
nRst dataOut — nRst dataOut —

— dataln tdata(79:0)
tdata(127:0) tlast
tlast tready

— dataln tdata(127:0)
tdata(79:0) tlast

tlast tuser(7:0) tready tuser(4:0)

tuser(4:0) tvalid tuser(7:0) tvalid
tvalid tvalid

The reshapeP1 block is intended to be used in "push" data streams where data flow is controlled by
the source and pushed from input to output. In particular it is intended to be used between instances
of the ssDecim2 block when needed. It can accept data up to full rate, that is, a transaction every
clock cycle. If the input supersample value is N, then the output supersample value is N+1, so the out-
put data width is (N+1)/N times the input width. Consequently the output transaction rate is N/(N+1)
times the input transaction rate. Therefore the reshapeP1 block will never generate output trans-
actions every clock. The reshapeUp block is a generalization of the reshapeP1 block. In reshapeUp,
the output supersample value can be any value greater than the input supersample value. In
reshapeUp, the output supersample value is not limited to only one more than the input supersample
value as itis in reshapeP1.

The reshapeM1 block is intended to be used in "pull" data streams where data flow is controlled by
the destination and pulled. In particular it is intended to be used between instances of the ssinterp2fc
block when needed. It can output data up to full rate, that is, a transaction every clock cycle. If the

input supersample value is N, then the output supersample value is N-1, so the output data width is
(N-T1)/N times the input width. Consequently the input transaction rate is (N-1)/N times the output
transaction rate. Therefore the reshapeM1 block will never accept input transactions every clock.
This requires whatever is driving data to the reshapeM1 block to support reverse flow control with the
TREADY signal. The reshapeDown block is a generalization of the reshapeM1 block. In
reshapeDown, the output supersample value can be any value less than the input supersample value.
In reshapeDown, the output supersample value is not limited to only one less than the input super-
sample value as it is in reshapeP1.

The TUSER signals are passed along with the data. The TLAST signal is handled differently. On the
input interface, the TLAST signal is associated with the last sample of a transaction. This is the most
significant sample of the supersampled input. When that sample is output (not necessarily as the
most significant sample of the supersampled output) the output TLAST signal will be asserted.

Reorder / Reorder_stream

Reorder_stream_1
Clk
nRst Dout =
= Din tdata(79:0)
tdata(79:0) tlast

tlast tready

tready tuser(4:0)

Reorder_1 tuser(4:0) tvalid
Din(79:0) Dout(79:0) tvalid

These blocks will reorder the samples in supersampled data. These blocks can reserve the sample
ordering within the supersampled word as well as optionally swap real/imaginary parts of each
sample.

Reversing the samples would change {x5,x4, x3, x2, x1} to {x1,x2,x3,x4,x5}.

Reversing complex data would change {i3,r3,i2,r2,i1,r1} to {i1,r1,i2,r2,i3,r3}. Note that the complex
samples are reordered, but the ordering of real/imag is preserved.

Reversing and swapping complex data would change {i3,r3,i2,r2,i1,r1} to {r1,i1,r2,i2,r3,i3}. Note that
the complex samples are reordered, and the ordering of real/imag is swapped.

Just swapping complex data would change {i3,r3,i2,r2,i1,r1} to {r3,i3,r2,i2,r1,i1}. Note that the order
of complex samples is preserved, and the ordering of real/imag is swapped.

Both of these blocks are purely re-routing. There is no logic or delay/latency added. The Reorder_
stream block does not use the Clk or nRst ports. However, these ports are included for compliance
with the AXI-streaming specification.

The Supersample parameter sets the number of samples per clock in the input and output streams.

The Data Width parameter sets the number of data bits in each sample. The Din/Dout sizes are
Supersample*Data Width bits for real data, and 2*Supersample*Data Width bits for complex data.

The Reverse parameter, when set, will reverse the order of samples in the supersampled word.
The Complex Data parameter determines if the data is complex or real only.

The Swap parameter, when set, will swap the real and imaginary parts of complex data. This is
ignored for real data.

The Register parametr, when set, adds a register stage to the output, else the IP block is purely com-
binatorial (only on ConvertBitWidth_stream).

The Tuser size parameter sets the number of tuser bits per sample in the axi-streaming interface (only
on ConvertBitWidth_stream).

Reordering Real Data
For real data (Complex Data = 0), the Reorder block can reserve the order of the data in the super-
sampled word. For Supersample=b:

Din Dout for Reverse=0 Dout for Reverse=1
X5, X4, X3, X2, X1 X5, X4, X3,X2, X1 X1, X2, X3, X4, Xb

Reordering Complex Data

For complex data (Complex Data = 1), the Reorder block can reserve the order of the data in the
supersampled word. It can also swap the real/imaginary parts of each sample. For Supersample=3:

. Dout for Reverse=0, Dout for Reverse=0, Dout for Reverse=1, Dout for Reverse=1,
Din
Swap=0 Swap=1 Swap=0 Swap=1
R3,13, R2,12, R1,I1 ITR1,12,R2, 13,R3 R1,11,R2,12,R3,I3
13,R3,12,R2, I I3,R3, 12R2, 11, R1 (Keeps sample order (Reverses sample order, (Reverses sample order
» T (This doesn't change P P ’ but P

R1 but and

swaps real/imag) g‘:gs;;;;ll/mag swaps real/imag)

anything)

ConvertBitWidth / ConvertBitWidth_stream

ConvertBitWidth_stream_1
Clk
nRst Dout =
= Din tdata(31:0)
tdata(15:0) tlast

tlast tready

tready tuser(0:0)
ConvertBitWidth_1 tuser(0:0) tvalid

Din(15:0) Dout(31:0) tvalid

Convert sample data between different bit widths with or without rounding/clamping.

The justification of the data needs to be specified. If the data is left justified, then the MSBs of the
input and output samples will be the same (subject to rounding). This is typically the case when the
data is a fixed point value representing values between +/-1. If the data is right justified, then the
LSBs of the input and output will be the same (subject to clamping). This is typically the case when
the data represents integers.

When the sample size increases (the output data width > input data width), then for left justified data
the data is zero padded on the LSB side to extend the length, and for right justified data, the MSBs are
either zero padded or sign extended, depending on whether the data is signed or not), on the MSB
side to extend the length.

When the sample size decreases (the output data width < input data width), then there is the pos-
sibility of data loss. These IP blocks can do this safely by rounding and/or clamping as necessary.
This adds some amount of logic latency but prevents data rollover and any truncation bias. If the user
knows that the input data will fit in the output data size without problem, the IP can be set to not
round or clamp. In this case the IP adds zero delay to the signal as it then becomes just wires.
However in this case left justified data will be truncated possibly introducing a bias and right justified
data may roll over.

The rounding algorithm used is convergent rounding. Numbers with a fractional part less than 1/2
will round down. Numbers with a fractional part greater than 1/2 will round up. Numbers with a frac-
tional part of exactly 1/2 will round towards the even integer. This rounding minimizes rounding noise
while being unbiased for large enough signals.

The ConvertBitWidth IP block is purely combinatorial. If registering is needed for timing, then it
should be added externally to this block. The ConvertBitWidth_stream IP block supports full flow

controlled AXI-streaming interfaces. This block optionally always adds a register stage which can
assist with timing closure. If thisis not included, then the data path between the input and output is
combinatorial. If the register stage is included, then this block will add latency.

The Supersample parameter sets the number of samples per clock in the input and output streams.

The Input Data Width parameter sets the number of data bits in each input sample. The Din size is
Supersample*Input Data Width bits for real data, and 2*Supersample*Input Data Width bits for com-
plex data.

The Output Data Width parameter sets the number of data bits in each output sample. The Dout size
is Supersample*Output Data Width bits for real data, and 2*Supersample*Output Data Width bits for
complex data.

The Justify parameter determines if the data is left justified (the MSBs are the more important) or
right justified (the LSBs are the more important). The two choices are "Left (Keep MSBs)" and "Right
(Keep LSBs)". This determines which bits are kept and which are discarded/padded.

The Round/Clamp parameter determines if the bit width conversion should use rounding/clamping or
not. The two choices are "Round/Clamp" and "No Round/Clamp".

The Signed Data parameter determines if the data is signed or unsigned.
The Complex Data parameter determines if the data is complex or real only.

The Register parameter adds a register stage to the output when set, else the IP block is purely com-
binatorial (only on ConvertBitWidth_stream).

The Tuser size parameter sets the number of tuser bits per sample in the axi-streaming interface (only
on ConvertBitWidth_stream).

Increasing the bit width

When the number of bits per sample is increased, then the data is either left-padded with zeros or
signed extended or right-padded with zeroes depending on the data justification selected. The fol-
lowing table shows example conversions when going from 8 to 12 bits per sample:

Left Justified Right Justified Right Justified

Input Value Output Signed Output Unsigned Output Notes
0x24 0x240 0x024 0x024 Positive values are just zero padded
OxA4 O0xA40 OXFA4 A OXOA4 AThe signed output is sign extended
Decreasing the bit width

When the number of bits per sample is decreased, then there is the possibility of data corruption if
the data isn't rounded and clamped appropriately. This rounding/clamping can introduce latency. If
the user knows the limits of the size of the data samples and knows that overflowing is not possible
and can live with possible truncation bias, then rounding/clamping can be omitted resulting is no
additional delays (since the IP block will just be wires in this case). The following table shows

example conversions when going from 12 bits to 8 bits. This table also includes examples of bad out-
put data if the input range doesn't fit in the output range:

Input Value

0x050
0x05C
0x530

0x0Ch

Left Justified Right Justified

Output
0x05
0x05 #
0x53

oxoc ©

Output
0x50
0x5C

0x30 B

0xC5 P

Notes

This value converts exactly

AThis value got truncated

B The input was too large for the output resulting in incorrect output data
C This value got truncated
D This is okay for unsigned data, but incorrect for signed data

To protect right justified data, clamping can be used. While the output will still be distorted, it is

often preferable to having the data wrap around so that a positive input value results in a negative out-
put value. Leftjustified data incursa 1/2 LSB bias when truncation is used. To protect against this,
convergent rounding can be used. This also adds a bit of clamping. Normally a full scale input signal
would round up, but the rounded value isn't representable in the output so the output needs to be
clamped to the maximum output value.

Input
Value

0x050

0x053
0x05C

0x068
0x078

0x092

Ox7FF

OxFF8

0x812

Left
Justified
Signed

Output
0x05

0x05 A

0x06 B

0x06 ©
0x08 D

0x09

Ox7F G

0x00J

0x81

Left Justified
Unsigned

Output

0x0b
0x05 A
0x06 B

0x06 ©

0x08 P

0x09

0x80

OxFFK

0x81

Right
Justified
Signed
Output

0x50
0x53
0xbC

0x68
0x78

Ox7F E

Ox7F !

0xF8

oxgo M

Right

Justified
Unsigned

Output

0x50
0x53
0x5C

0x68

0x78

0x92 F

OXFF /!

OxFFL

OxFF N

Notes

No rounding or clamping needed

AThis value got rounded down

B This value got rounded up

C This value, with fractional part 1/2, rounded down to
an even number
DTMsvawe,whhfmcﬂonalpaﬂ1/2ﬁnundeduptoan
even number

E This value got clamped to positive full scale
F This value didn't need clamping

G This would normally round up but got clamped to
positive full scale

H This could round up and fit in the output size

' This got clamped to positive full scale

J This value, with fractional part 1/2, rounded up to an
even number

K This would normally round up but got clamped to
positive full scale

L This got clamped to positive full scale

M This got clamped to negative full scale

N This got clamped to positive full scale

TraceAccum

TraceAccum_1

Sum =

tdata(31:0)

tdata(15:0) tuser(0:0)
tuser(0:0) tvalid

tvalid AccumCount(15:0)
Start Done
Abort State(1:0)
NumAccum(15:0)

Length(16:0)

TraceAccum will accumulate data from multiple input traces. A trace is a fixed length sequence of
consecutive input samples that begin with the assertion of X_tuser[0]. This block, along with a divider
block (e.g. the Vivado IP Catalog's divider IP) can be used to average some number of input traces.
This block only accumulates (sums) the traces. The first sample of the output will be the sum of the
first sample of each of the input traces. The second output sample will be the sum of the second
sample of each input trace, etc.

The length of each input trace is set at run time by the Length input port. This port should not
change values during a measurement. The number of samples in each trace is Supersample*Length
samples. That is, it is assumed that the length of the input trace is a multiple of Supersample.

The maximum value of Length is determined by the size of the Length port which is set by the Mem
Size parameter.

The number of accumulations is set at run time by the NumAccum input port. The number of bits in
NumAccum, which set the maximum number of accumulations, is set via design time parameters.

Data is always signed and may be supersampled. The number of bits in the X (input) and Sum (out-
put) ports are specified by the parameters Data Size and Accum Size. Note that the Accum Size
must be larger than Data Size to account for data growth during the accumulation process. The
maximum number of accumulations is determined by the size of the NumAccum port. This size is the
difference Accum Size - Data Size.

This block uses FPGA block memory to hold the data during the measurement. The amount of
memory used is Supersample * Accum Size * 2Mem Size bits.

The TraceAccum block operates as follows. During the first trace of a measurement, the input data is
merely stored into internal ram. No output is generated. For the next NumAccum - 2 traces, the
new input data is summed with the data in the internal ram and re-saved into ram. Again, no output
is generated at this time. During the final trace, the sum of the input and the ram data is output from
the Sum interface.

The TraceAccum block has an internal state machine which can be in one of three states: Idle (0),
Wait (1), and Run (2). In the Idle state, the TraceAccum block is not doing anything. It is waiting for a
new measurement to start. Anew measurement is started by asserting the Start input. This moves
the state machine to the Wait state. Here, the block will wait for the start of the next input trace delin-
eated by tuser[0] being asserted. This condition moves the state machine into the Run state. Atthe
end of this input trace (determined by Length), one of two things happens. If this is the final trace in
the measurement, the state machine will return to the Idle state in preparation for the next
measurement. The Done output is briefly asserted to indicate that the measurement is completed.
If it is not the final trace, the state machine will return to the Wait state to await the start of the next
trace. The State output indicates what state the state machine isin. The Abortinput port can be
used to abort any measurement in progress and return the state machine to the Idle state.

During a measurement, the AccumCount output indicates which accumulation is in progress.
AccumCount starts at 1 at the start of the measurement and increments to NumAccum at the end
of the measurement.

The following diagram shows the basic operation of the TraceAccum block. In this example Length=4
and NumAccum=3. The first trace consists of the four samples {x30, xg1, X92, Xo3}. The second and
third traces are {x10, X11, X412, X3} and {50, X5 1, x92, X,3}. The start of each trace is indicated by x_
tuser. Asthe last trace is being accumulated, the sum is output as {s0, s1, s2, s3}, where sO = xg0 +
X10 +%90; 8T =XgT + X711 +%51; 82 = X2 + X712 + Xp2; and s3 = X3 + X13 + Xp3.

K DEEE——EOEE——EEEE
m m m
Stat | |
Sum e KoK
Done]
State (e X wat X R X wat X R X wat X R X e)
S G TR G R G

Trigger / TriggerM3x

Trigger_1 TriggerM3x_1

clk

nRst
— Data

tdata(79:0) TriggerOut(4:0)
tvalid Trig_valid
Threshold(15:0)

Mode(1:0)

Hysteresis(15:0)

clk

nRst
= Ctrd

tdata(23:0) TriggerOut(4:0)
tvalid
= Data

tdata(79:0)

tvalid

The Trigger block is a analog trigger detector that will assert a one clock wide trigger pulse for each
detected trigger event. For supersampled data, there is one TriggerOut bit for each of the super-
sampled input values. This trigger supports hysteresis and depending on the Mode, can be off
(Mode=0), rising edge (Mode=1), falling edge (Mode=2), or both edges (Mode=3). Internally, there
are three threshold levels, a upper threshold equal to Threshold + Hysteresis, a middle threshold
equal to Threshold, and a lower threshold equal to Threshold - Hysteresis. Note that the input data
and Threshold can be configured as signed (the default) or unsigned values. For correct operation,
Threshold +/- Hysteresis should not exceed full scale limits.

The hysteresis in this trigger block is used to prevent multiple triggers when the input signal is slowly
varying and noisy.

Arising edge trigger is detected only on the first sample above the middle threshold after the signal
has gone below the lower threshold. Thus a rising edge trigger requires the input signal to drop
below the lower threshold and then rise above the middle threshold. Likewise, a falling edge trigger
is detected only on the first sample below the middle threshold after the signal has gone above the
upper threshold. Thus a falling edge trigger requires the input signal to rise above the upper
threshold and then drop below the middle threshold. Note that multiple triggers will not be gen-
erated if the input crosses threshold multiple times but doesn't cross the upper/lower thresholds.

The latency through the Trigger block from Data/tdata to TriggerOut is 2 clock cycles. Trig_valid is
Data/tdata delayed by two clocks. Trig_valid indicates when TriggerOut may be driven. When Trig_
valid is negated, TriggerOut will always be driven to zero.

The TriggerM3x block is the same as the Trigger block except the ports have been modified to match
the ports of the Analog Trigger block in the M3xxxx series of digitizers. This is to facilitate replacing
the Analog Trigger block (that does not include hysteresis) with a trigger block that does include
hystersis. The Ctrlinterface replaces the AnalogTrigger interface. With the TriggerM3x, the level of

hysteresis is fixed at design time via a parameter rather than being a run time setting input port. To
support both supersampled and non-supersampled M3xxxx digitizers, the TriggerM3x includes a
Supersample parameter that should be setto 1 or 5 accordingly.

FreqCnt

FreqCnt_1
clk

nRst Cnt(31:0)
Trig(4:0) Period(31:0)

TrigValid Status(1:0)
Start
MeasLength(31:0)

FregCntis a frequency counter block. It measures an integral number of periods during the meas-
urement interval and reports the number of trigger events (the number of signal periods) and the time
between the first and last trigger event during the measurement interval. The input is the Trig port
which consists of one bit per supersampled data. These trigger signals might come from the Trigger
IP block. FreqCnt supports supersampled data.

MeaslLength sets the length of the measurement interval in clock cycles (which is the sample rate
divided by the supersample factor). Note that FreqCnt only counts clocks when TrigValid is asserted.
For a given value of MeasLength, if the Trig values only come in every other clock, the elapsed time
for the measurement will be twice as long as it would be if Trig values come in every clock.

Start begins a new measurement. Note that Start can be tied high in which case a new measurement
will start immediately after the previous measurement. The Cnt and Period outputs are latched at the
end of a measurement so they may be read while a new measurement is in progress. Depending on
the SyncStart parameter, the measurement interval will either begin when Start is asserted (Syn-
cStart = 0) or on the first trigger event after Start is asserted (SyncStart=1).

Cnt outputs the number of whole signal periods during the measurement interval. This is one less
than the total number of trigger events (each indicated by a Trig bit being 1).

Period outputs the time between the first and last trigger event measured in samples. The frequency
of the input signal can then be calculated f = fg * Cnt / Period where fg is the sample rate.

Status indicates the internal state of the measurement. Status[0] = 1 indicates that a measurement is
in progress. Note that if Start is tied high, a measurement will almost always be in progress since the
next measurement will start immediately after the previous one finishes. Status[1] =1 indicates that

the the first trigger event has been observed. If SyncStart = 1 and Status[1:0] = 01, it means that the
FregCnt is awaiting the first trigger event which will then start the actual measurement interval.

The following diagram shows the FreqCnt operation when SyncStart = 0. In this case, the meas-
urement interval begins when Start is asserted. In this example, four trigger events occur within the
measurement interval. This means there are three periods during the measurement interval, so
Cnt=3. The Period is the number of samples between the first and last triggers during the meas-
urement interval.

SyncStart=0

w10 L s] s

Start T < Period

Measurement Interval

l Cnt=3

> time

v

This diagram shows the same example as above except that SyncStart = 1. In this case, the meas-
urement interval starts synchronously with the first trigger event. After Start has been asserted, the
actual measurement interval does not start until the first trigger event. The time for the measurement
interval is the same, it is just shifted later in time. In this example, the shift in measurement interval
results in five trigger being observed rather than four. Thus there are four periods in the meas-
urement interval, and Cnt = 4. Because more trigger events occurred during the measurement inter-
val, the value of Period will be larger so that the calculated frequency, fs * Cnt / Period, remains the
same.

SyncStart=1 Measurement Interval

\ l
Trigger l 1 l 2 l 3 l 4 l Cnt=4

> time

A

v

Start T Period

PRBS - Pseudo Random Bit Sequence generator

clk
nRst prbs(0:0)

enable state(23:0)
init
initvVal(23:0)

This block generates a Pseudo Random Bit Sequence using a Linear Feedback Shift Register (LFSR).
A LFSR with an N-bit state vector can sequence through a pseudo random sequence consisting of at
most 2N-1 states. There is always one state value that isn't used. For the XOR structure, the all zero
state is not used. For the XNOR structure, the all one state is not used. Sequences that go through
all 2N-1 states are known as Maximum Length Sequences. PRBS generators can be used to make
pseudo random noise and whitening sequences.

In a Fibonacci LFSR, the shift-in bit is determined by the XOR or XNOR of a subset of the state bits.
The subset of state bits used to determine the shift-in values is known as the taps. The imple-
mentation consists of one wide XOR/XNOR gate where the width of the gate is determined by how
many taps are used.

An alternate structure is the Galois LFSR. In this structure the shift register is interrupted in various
places by the inclusion of a two-input XOR/XNOR gate that combines the next higher bit in the shift
register with the LSB of the shift register. This structure consists of a number of 2-input XOR/XNOR
gates rather than a single wide gate. Because of the distributed nature of this structure, it has the
potential to run somewhat faster in FPGAs.

For the same polynomial, both the Fibonacci and Galois structures generate the same bit sequence,
though the sequences will be offset in time if both structures start off in the same state.

The taps of the LFSR are often expressed as a polynomial where the coefficients of the polynomial are
either 1 (for atap) or O (no tap), and each term of the polynomial is associated with one of the shift
register stages. The polynomial is expressed as an N-bit wide vector where bit | of the vector is the
coefficient of the x*1 term of the polynomial. There is always an implicit X9 = 1 term in the poly-
nomial, but this is not included in the vector.

As an example, the vector Ox14 denotes a 5-bit wide state vector. The binary value 0x14 = 10100 rep-
resents the polynomial x? + x3 + 1 which taps at positions 3 and 5. The following figure shows the
LFSR structure for this polynomial.

Fibonacci using XOR

The following table shows the progression of the 5 bit state vector for the various LFSRs using the
polynomial Ox14 starting at the value 1:

Fibonacci XOR Fibonacci XNOR Galois XOR Galois XNOR
0x01 = 00001 0x01 = 00001 0x01 = 00001 0x01 = 00001
0x10=10000 0x00 = 00000 0x14=10100 0x10 =10000
0x08 = 01000 0x10 =10000 0x0a=01010 0x0c=01100
0x04 = 00100 0x18=11000 0x05 = 00101 0x02 = 00010
0x12=10010 Ox1c=11100 0x16=10110 0x05 = 00101
0x09 =01001 0x0e=01110 0xOb =0101" 0x12=10010
0x14=10100 0x07 =00111 0x11=10001 0x0d = 01101
OxTa=11010 0x13=10011 OxTc=11100 0x16=10110
0x0d = 01101 0x09 = 01001 0x0e=01110 0x0f=01111
0x06 =00110 0x04 = 00100 0x07 =00111 0x17=10111
0x13=10011 0x02 = 00010 0x17=10111 Ox1b=11011
0x19=11001 0x11=10001 Ox1f=11111 0x1d=11107
Ox1c=11100 0x08 = 01000 Ox1b=11011 Ox1e=11110
OxT1e=11110 0x14=10100 0x19=11001 0xOb =0101"
Ox1f=11111 0x0a=01010 0x18=11000 0x15=10101
0x0f=01111 0x15=10101 0x0c=01100 Ox1a=11010
0x07 =00111 Ox1a=11010 0x06 = 00110 0x09 = 01001
0x03 =00011 0x1d=11101 0x03 = 00011 0x14=10100
0x11=10001 Ox1e=11110 0x15=10101 0x0e=01110
0x18=11000 0x0f=01111 OxTe=11110 0x03 = 00011
0x0c=01100 0x17=10111 0x0f=01111 0x11=10001
0x16=10110 O0x1b=11011 0x13=10011 0x18=11000
Ox1b=11011 0x0d = 01101 Ox1d =11101 0x08 = 01000
0x1d=11101 0x16=10110 Ox1a=11010 0x00 = 00000
0x0e=01110 0xOb =01011 0x0d = 01101 0x04 = 00100
0x17=10111 0x05=00101 0x12=10010 0x06 =00110
0xOb=01011 0x12=10010 0x09 = 01001 0x07 =00111
0x15=10101 0x19=11001 0x10 =10000 0x13=10011
0x0a=01010 0x0c=01100 0x08 = 01000 0x19=11001
0x05=00101 0x06 =00110 0x04 = 00100 Ox1c=11100
0x02 =00010 0x03 =00011 0x02 = 00010 0x0a=01010
0x01 = 00001 0x01 = 00001 0x01 = 00001 0x01 = 00001

This LFSR generates the 31 bit sequence: 10000170010110011111000110111010
(for the XOR case, or the inverse of this for the XNOR case) which then repeats. This pattern is shifted
depending on whether the Fibonacci or Galois structure is used as well as depending on the initial
state. The PRBS generator can output one or more bits of this sequence every clock.

Typically the PRBS generator uses a maximal length polynomial. There are numerous online
resources that list maximal length polynomials. The following table gives example polynomials of vari-
ous length:

Size

O N OO O &~ W N

1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

Taps
12
23
34
35
56
67
4568
59
710
911
14612
13413
13514
1415
4131516
1417
1118
12619
1720
1921
2122
1823
17222324
22725
12626
12527
2528
2729
14630
2831
122232
2033
122734
3335
2536
1234537
14538
2539
19213840
3841

Polynomia
0x3
0x6
Oxc
0x14
0x30
0x60
0xb8
0x110
0x240
0x500
0x829
0x100d
0x2015
0x6000
0xd008
0x12000
0x20400
0x40023
0x90000
0x140000
0x300000
0x420000
Oxe10000
0x1200000
0x2000023
0x4000013
0x9000000
0x14000000
0x20000029
0x48000000
0x80200003
0x100080000
0x204000003
0x500000000
0x801000000
0x100000001f
0x2000000031
0x4001000000
0xa000140000
(0x12000000000

42 19204142 (0x300000c0000
43 37384243 (0x63000000000
44 17184344 (0xc0000030000
45 471424445 0x1b0000000000
46 25264546 (0x300003000000
47 4247 0x420000000000
48 20214748 0xc00000180000

AWGN - Additive White Gaussian Noise

Awgn_1

noise =
tdata(23:0)
tready
tvalid

This block generates Additive White Gaussian Noise. The number of noise samples per clock (the
supersample value) can be set as well as the size of the noise sample. A seed value can be altered to
generate multiple independent noise sources.

Internally, the block creates a series of 20 bit Gaussian noise samples. These samples have one
sigma (one standard deviation) of 26 or 16 bits. The noise can be +/- 8 standard deviations max,
though the maximal values are very rare. The size of the output noise samples are controlled by two
parameters: bitsSigma and bitsTotal. The bitsSigma parameter sets the one-sigma size of the noise.
That is, the noise will have a standard deviation (sigma) of 2bitsSigma The maximum value of bit-
sSigma is 16. Smaller values of bitsSigma merely discard some LSBs from the internally generated
noise sample. The bitsTotal parameter sets the total number of bits in the noise sample. Itis limited
to bitsSigma+8. If bitsTotal-bitsSigma is less than 4, then some noise values may exceed the output
data resolution. In this case, the noise isn't clamped. Rather the MSBs are just discarded. This
merely maps the noise value into a smaller value. Asthe larger noise values are increasingly rare, this
slightly changes the noise statistics.

The internal noise sources used to generate each noise sample are based on two LFSRs of length 63
bits and 14 bits. Thus the noise sequence won't repeat for 263+14 = 277 clocks (essentially never).

Design Examples

To see how these IP blocks can be used to build up and down converters, consider the following
designs. The first is for a digital down converter, and the second for a digital up converter. These
examples are built in a M3302, 500 Msps Combination AWG and Digitizer. Following these are
examples showing how to make supersampled down and up converters.

Digital Down Converter (DDC)

For a digitizer to analyzer signals with narrower bandwidth than the full digitizer bandwith, it is com-
mon to employ a digital down converter. This allows the instrument to only look at a smaller portion
of the total spectrum. It can also filter out extraneous signals that may be located in other frequency
bands. Itfilters out noise and thus decreases the noise floor and increases the signal to noise ratio.

The basic steps for down conversion are to first mix the input with a complex LO to frequency trans-
late the desired signal to baseband (DC). This is then low pass filtered to remove extraneous signals
and prevent aliasing in the decimation step. Then itis decimated by discarding samples to lower the
sample rate. Often the filter/decimate process is carried out in multiple steps for implementation effi-
ciency.

In this real time data flow, the ADCs (Analog_Channel_1) are always running. There is no way to hold
off or delay the ADC data. In this case, the data is "pushed" from the left to the right in this diagram
using forward flow control only. The reverse flow control, though present, isn't really utilized.

Real Data Complex Data Complex Data Complex Data Complex Data

Fs=500 Msps Fs=500 Msps Fs=100 Msps Fs=100/2N Msps Fs=100/2N Msps
BW=0-200 MHz BW=+/- 200 MHz BW=+/-31.25 MHz BW=+/-31.25/2N MHz BW-=+/- 31.25/2N MHz
5*16 bits data 2*5*16 bits data 2*16 bits data 2*16 bits data 80 bits data

clk

nRst Dout + + Daql _ Daql)
Din

‘ CombineTtoN_1 |
|
|
\

Register_Bank
A_DIn31:0)

In this example, the input ADCs of the M3302 are running at 500 Msps. The FPGA only runs at 100
MHz, so the input (Analog_Channel_1) presents 5 ADC samples every FPGA clock. This is called

supersampling by 5. The five 16-bit input samples are combined into one 80 bit wide AXI-streaming
bus.

The Lo (Local Oscillator Down Converter) block does the frequency translation by multiplying the real
input by a complex quadrature LO signal. The output is a complex (real and imaginary) stream with
the same sample rate as the input. The Lo block is configured to operate on data that is 5X
supersampled. Since the output of the LO is complex, there is now 160 total data bits.

The DecimateBybComplex block is really just a pair of real decimate by five blocks, one operating on
the real data, the other operating on the imaginary data. This block reduces the data rate down to
one sample per clock by first low pass filtering the input and then reducing the sample rate by a
factor of b. The output is a complex stream with a sample rate of 100 Msps and a bandwidth of +/-
31.25 MHz. Note that since the data is complex, negative frequencies aren't necessarily the complex
conjugate of the positive frequencies. Thus the signal has a total bandwidth of 62.5 MHz.

This data is fed to a complex decimate by 2N block. This can reduce the sample rate and bandwidth
further (or be bypassed if N=0). The output of this is a complex stream of data at a sample rate poten-
tially less than the FPGA clock rate.

In this example, the output of the entire DDC is sent to the Daqg1 port of the M3302. This sends the
data into DDR memory where the user can read it out and use it. Note that the output of the Power-
2Decimator is at most one sample per clock (2 16-bit parts due to the data being complex). The

Daqg1 port is expecting five 16 bit samples of data at a time. To convert between these rates, the Com-
bineTtoN block is used to combine 2-1/2 input samples (each one 2*16 or 32 bits wide) into one 80

bit output that is sent to the Dag1 port.

This results in a data record in memory consisting of complex pairs, each consisting of the real part of
a sample and the imaginary part of the sample.

Digital Up Converter (DUC)

When a source or AWG is generating a narrow band signal, it is often easier to generate it at a lower
sample rate and then upsample it and move it to the correct frequency later. This is called digital up
conversion. Consider generating an AM radio signal. Rather then trying to generate the RF signal dir-
ectly, itis easier to generate the signal at baseband and then move it up to whatever center fre-
quency it needs.

The basic steps for up conversion are the reverse of the steps for down conversion. First the input sig-
nal is interpolated to a higher sample rate by adding zeroes between each input sample to increase
the sample rate. This process introduces alias signals in the frequency domain. So following the inter-
polation step, a low pass filter is used to remove these aliasing artifacts. Finally this signal is mixed
with a complex LO to translate it from baseband to the desired center frequency. At this point, only
the real part of the data is used, and this is sent to the ADCs. Just as in the case of a down converter,
often this interpolate/filter process is carried out in multiple steps for implementation efficiency.

In this real time data flow, the DACs (Dout1) are always running. There is no way to hold off or delay
the DAC data. New data needs to be provided every clock cycle. In this case, the data is "pulled" from
the right to the left in this diagram using reverse flow control only. The forward flow control, though
present, isn't really utilized. Since the AWG ports in the M3302 do not support reverse flow control,
they can't be use as data sources for the DUC. Instead, the Streamer32x2 block is used to pull data
out of DDR memory as a data source.

Register_Bank
A_Din(31:0) A_Dout(31:0)
A_Din_v A_Doutv
B_Din(31:0) B_Dout(31:0)

clock
nRst DDRtoSti0 +

©_Host_aximm_1__Host +3 -l ORGSR B.Dinv B.Douty

+ + £+)
+ ;:ITUDDRO B ¢+ DDR_DDR @ Ninterp_Din(31:0) Ninterp_Dout(31:0)
[S Host_axilite_1 Host #+3

Ninterp_Din_v Ninterp_Doutv

+ StrToDDR1 ‘

[Streamer32x2_1
|
|
|
|
|

@ mRst_nRst 3

_— (InterpolateBySComplex_1
@ Clock Clock » [Power2Interpolator_1] | ‘ clk

| |

|

| l

Clk

nRst Y+
+ X

ninterp(4:0)

nRst filter_out +
+ filter_in 2 ————=(+ Doutl Douwt1 &

Complex Data Complex Data Complex Data Real Data
Fs=100/2N Msps Fs=100 Msps Fs=500 Msps Fs=500 Msps
BW= +/- 31.25/2N MHz BW= +/- 31.25 MHz BW= +/- 200 MHz BW= 0-200 MHz
2*16 bits data 2*16 bits data 2*5*16 bits data 5%16 bits data

Following the signal flow from the output back towards the input, the output DACs of the M3302 are
running at 500 Msps. The FPGA only runs at 100 MHz, so the output (Dout1) presents 5 DAC samples
every FPGA clock. This is called supersampling by 5. The five 16-bit output samples are combined
into one 80 bit wide AXI-streaming bus.

The Lo (Local Oscillator) block does the frequency translation by multiplying the complex input by a
complex quadrature LO signal and taking the real part. The output is a real stream with the same
sample rate as the input. The Lo block is configured to operate on data that is 5X supersampled.
Since the input of the LO is complex, it is 160 total data bits.

The InterpolateBybComplex block is really just a pair of real interpolate by five blocks, one operating
on the real data, the other operating on the imaginary data. This block increasees the data rate up to
five samples per clock by first inserting four zero samples between input points and then low pass fil-
tering to remove images. The input is a complex stream with a sample rate of 100 Msps and a band-
width of +/- 31.25 MHz. Note that since the data is complex, negative frequencies aren't necessarily
the complex conjugate of the positive frequencies. Thus the signal has a total bandwidth of 62.5
MHz.

The input to the InterpolateBy5Complex block is generated by the complex interpolate by 2N (Power-
2Interpolator) block. This can increase the sample rate and bandwidth from a lower sample rate (or
be bypassed if N=0). The input to this block is a complex stream of data at a sample rate potentially
less than the FPGA clock rate.

Since the input to the Power2Interpolator can be less than the FPGA clock rate, its data must be
sourced from something that supports reverse flow control (so that the Power2Interpolator indicates
when and how fast it needs new data). The AWG blocks of the M3302 do not support reverse flow
control and can not be used in this application. Instead, the data for the Power2Interpolator is
sourced from the Streamer32x2 block which reads data from DDR memory.

The data record in DDR memory consisting of complex pairs, each consisting of the real part of a
sample and the imaginary part of the sample.

Supersampled Digital Down Converter

In today's instruments, it is not uncommon for data rates to be higher than the usable clock rates of
FPGAs. Inthese cases, for real time processing the FPGA has to process multiple samples per FPGA
clock. For example, you might have a digitizer where the ADC runs at a rate of 3.6 Gsps while the
FPGA can only run at 200 MHz. That means the FPGA must process 18 samples/clk in order to keep
up with the ADC. Sometimes the signal of interest is relatively narrow band. In this case, a digital
down converter can be used to move the signal of interest down to baseband. Then decimation fil-
tering is used to reduce the sample rate without generating alias signals.

The block set in Pathwave FPGA's DSP library make it easy to make digital down converters for super-
sampled ADCs. Suppose we wish to reduce the sample rate for this example down enough so that it
is no longer supersampled. Thatis, reduce the sample rate to at most one sample per clock. This can
be done by the following design which shows the blocks used, how they are configured, and signal
size and bandwidth. For clarity, the control and reset signals are not shown connected here.

Real Data Complex Data Complex Data Complex Data Complex Data Complex Data
18 samples/clk 18 samples/clk 9 samples/clk 10 samples/clk 5 samples/clk 1 sample/clk
Fs=3.6 Gsps Fs=3.6 Gsps Fs=1.8 Gsps Fs=1.8 Gsps Fs=900 Msps Fs=180 Msps
BW=1.8 GHz BW= +/-1.8 GHz BW= +/-90 MHz BW=+/-90 MHz BW=+/-90 MHz BW= +/-54 MHz

Clk__Clk

o1 T DecimateBvSCormlex 1
200 MHz Clk - ssDecim2_2 reshapeP1_1 DecimateBySComplex_1 |

Rst 1 Filter out + 1 1 Filterout + 1 clk filerout + ¥ Dataout__DataOut
@ ADC__ADC + + X | nRst Delayout | nRst dataOut + | nRst Delayout | nRst delayout(2:0)
AQ4:0) Y+ + Filtecin + datain L L fiecn + fiterin
3.6 Gsps ADC B23:0) | | ‘ ‘

Setfreq
phRst

ssDecim2_1

real

supersampled o non- Supersampled decimate by 2 filter Reshape supersampled streaming data from N Supersampled decimate by 2 filter
o complex les/clk

samples/clk to N+1 sampl

The 3.6 Gsps ADC signal comes in as 18 parallel real samples at a rate of 200 MHz. The first step is
the LO to mix the signal of interest to baseband. This is configured for real input, complex output,
and a supersample value of 18. After the LO, the signal is complex so the remaining blocks are

configured for complex data. The ssDecim?2_2 block does the first level of decimation filtering, cut-
ting the sample rate (and the supersample value) in half, down to 9 samples/clk. Since we know the
final bandwidth of the DDC is going to be +/- 54 MHz, we can use the smaller ssDecim?2 filter that
only has a 10% passband. Signals in the transition band of this filter may alias, but these will be
filtered out in later stages.

Before we can do another decimate by two operation, we need to "reshape" the data stream. The out-
put supersample value for the ssDecim?2_2 block is 9 samples/clk. But the next ssDecim?2 block
requires that the input supersample value must be even. To change this, we use the reshapeP1 to
convert from 9 samples/clk to 10 samples/clk. Note that after the reshapeP1 block, data will not
necessarily flow every clock. Only 9 out of 10 clocks will have new data. This is handled by the for-
ward flow control mediated by the TVALID signal in the AXI-streams. The reshapeP1 block does not
change the signals sample rate - that is 1.8 Gsps both before and after the reshapeP1. The super-
sample value and the data's transaction rate do change.

The ssDecim?2_1 cuts the sample rate in half again. This time we needed to 20% filter to support the
final output bandwidth of the DDC. We could use 3 more stages of decimate-by-two filters (along
with more reshapeP1 blocks) to bring the final sample rate down to 112.5 Msps, but we can also use
the DecimateBybComplex block to bring the final sample rate down to 180 Msps as shown here.

If further levels of decimation are desired, the Power2Decimator block can be used to reduce the
sample rate further.

The following table shows the resources (multipliers or DSP blocks) used in this example. Even
though the earlier IP blocks are more highly supersampled, they use fewer DSP blocks due to the
reduced fractional bandwidth requirements.

Block Lo_1 ssDecim2_2 ssDecim2_1 DecimateBy5Complex Total
DSP/sample 2 2 4 102
Number of outputs 2*18 2*9 2*5 1
Total DSP 72 36 40 102 250

Supersampled Digital Up Converter

In today's instruments, it is not uncommon for data rates to be higher than the usable clock rates of
FPGAs. Inthese cases, for real time processing the FPGA has to process multiple samples per FPGA
clock. For example, you might have a source where the DAC runs at a rate of 3.6 Gsps while the
FPGA can only run at 200 MHz. That means the FPGA must process 18 samples/clk in order to keep
up with the DAC. Sometimes the signal of interest is relatively narrow band. In this case, a digital up
converter can be used to interpolate the input signal up to the DAC's sample rate followed by an LO
to move the signal to the desired location in the output spectrum.

The block set in Pathwave FPGA's DSP library make it easy to make digital up converters for super-
sampled DACs. Suppose we wish to increase the sample rate for this example starting from a rate

that it is no longer supersampled. That is, start with a sample rate of at most one sample per clock.
This can be done by the following design which shows the blocks used, how they are configured, and
signal size and bandwidth. For clarity, the control and reset signals are not shown connected here.

Complex Data Complex Data Complex Data Complex Data Complex Data Real Data

1 sample/clk 5 samples/clk 10 samples/clk 9 samples/clk 18 samples/clk 18 samples/clk
Fs=180 Msps Fs=900 Msps Fs=1.8 Gsps Fs=1.8 Gsps Fs=3.6 Gsps Fs=3.6 Gsps
BW= +/-54 MHz BW= +/- 54 MHz BW= +/- 54 MHz BW= +/-54 MHz BW= +/- 54 MHz BW=+/-1.8 GHz

@ ok_cik
200 MHz Clk

+ DAC_DAC &

3.6 Gsps DAC

In this case, it is more convenient to follow the data from the output DAC back through the input
Dataln. Thatis because unlike the case of the DDC, where the data flow rate was driven by the con-
stant rate ADC, for the DUC shown here, the data flow rate is driven by the constant rate DAC output.

The 3.6 Gsps DAC requires 18 parallel real samples at a rate of 200 MHz. To get this, the LO is used

to mix a lower bandwidth baseband signal up to the desired center frequency. This LO is configured
for complex input, real output, and a supersample value of 18. Prior to the LO, the signal is complex
so the remaining blocks are configured for complex data. The ssinterp2_1 block does the final level of
interpolation, doubling the sample rate (and the supersample value) from 9 samples/clk up to 18
samples/clk. Since we know the input bandwidth of the DUC is only +/- 54 MHz, we can use the smal-
ler ssInterp? filter that only has a 10% passband. Due to the earlier interpolation filters, there are no
signals in the transition band of this filter and hence no aliased outputs.

Since the output of the ssinterp2 block is always an even number of samples per clock and ssinterp2_
1 needs an odd number of samples per clock, we need to "reshape" the data stream. To change from
an even number of samples per clock to an odd number of samples per clock we use the reshapeM1
to convert from 10 samples/clk input to 9 samples/clk output. Note that prior to the reshapeM1
block, data will not necessarily flow every clock. Only 9 out of 10 clocks will have new data. This s
handled by the reverse flow control mediated by the TREADY signal in the AXI-streams. All blocks
prior to the reshapeM1 block will need to support reverse flow control and the TREADY signal. The
reshapeM1 block does not change the signals sample rate - that is 1.8 Gsps both before and after the
reshapeM1. The supersample value and the data's transaction rate do change.

The ssInterp2fc_1 supports reverse flow control and doubles the sample rate. This time we needed to
20% filter to support the input bandwidth of the DUC. We could use 3 more stages of interpolate-by-
two filters (along with more reshapeM1 blocks) to start from an initial sample rate of 112.5 Msps, but
we can also use the InterpolateBy5Complex block to end up with an initial sample rate of 180 Msps as
shown here.

If further levels of interpolation are desired, the Power2Interpolator block can be used to start from
even lower sample rates.

The following table shows the resources (multipliers or DSP blocks) used in this example. Even
though the later IP blocks are more highly supersampled, they use fewer DSP blocks due to the
reduced fractional bandwidth requirements.

Block InterpolateBy5Complex ssinter2fc_1 ssinterp2_1 Lo_1 Total
DSP/sample 98 4 2 2
Number of elements 1 2*5 2%9 18

Total DSP 98 40 36 36 210

IP Repositories

IP repositories are libraries of blocks that are loaded into PathWave FPGA. There are four types of IP
repositories supported inside PathWave FPGA:

» Default PathWave FPGA IP repository

— Avrepository that is shipped inside the PathWave FPGA Installation directory structure and is per-
manent.

= IPs defined in this repository will be loaded for all projects, as long as they meet the hardware
support criteria.

« BSP IP repository
= AP repository that is shipped inside a BSP installation.

» User defined IP repository
— A machine scoped user-defined list of directories that include IP definitions.
- These directories can be defined in the Settings dialog (Tools > Settings).
= Toload an IP repository, use the Settings Dialog.

» Project defined IP repository
— Aproject scoped user-defined list of directories that include IP definitions.
- These directories can be defined in the Project Settings dialog (Project > Project Settings).
— Toload an IP repository, use the Project Settings Dialog.

To learn how to create an IP repository, refer to the IP Developers Guide.

IP will be found recursively in each repository location. All valid IP will be added into the library
blocks. If any problems are encountered with loading, a dialog will popup to display the errors. Xilinx
Vivado IP is excluded from this search.

Imported User IP

In addition to IP developed using the Library tools, the PathWave FPGA software allows importing
and integration of custom IP into a project. User IP is developed using external FPGA tools; the
PathWave FPGA software is not intended for developing IP from scratch. However, once the user has
created an IP, the IP may be imported by the PathWave FPGA software.

The user can import IP from different source files, including the following:

o VHDL source files (*.vhd, *.vhdl)
 Verilog source files (*.v).

« Xilinx Vivado projects (*.xpr).

« Vivado Synthesized Checkpoints (*.dcp).
o |P-XACT files (*.xml).

e Vivado IP files (*.xci)

PathWave FPGA Submodules

To import a user IP:

1. Click the £¥Add External Block button on the main toolbar, or select Project > Add External
Block... from the menu. In the image below, notice the file types that are available for importing.

. Load External Block X

Look in: l CATEMPAIP\sIC

Name Type

B Addervhd 3 vhd File
B Adder stream.vhd vhd File
B Adder_streamFC.vhd vhd File
B

- My Computer

e

Testlp.vhd vhd File

File name:

. Cancel
Files of type: | Supported files (*.vhd *.vhdl *.v *.sv *.dcp *.xpr * xml *.xci *.ksub)

VHDL file (*.vhd)

VHDL file (*.vhdl)

Verilog file (*.v)

SystemVerilog file (*.sv)

Vivado Synthesized Checkpoint (*.dcp)
Xilinx Vivado Project (*.xpr)

IP-XACT file (*.xml)

Vivado IP file (*.xci)

Submodule Project file (*.ksub)

2. Navigate to select the file to be imported into the project. Click Open to import the file.

3. Some imported IP may have parameters that can be configured, such as bus widths. Change the
initial parameter value as appropriate for your design.

B Block: Testlp x

Description |dentity

IP imported from a VHDL file

Parameters

data_width

¥ Infer interfaces from ports

Cancel

4. Some imported IP may not have the ports already grouped into easy to use interfaces. The import
dialog will have a check box to infer interfaces from these ports. If the interface inference gives
undesired results, remove the IP and import it again with the box unchecked. If interface inference
is usually not desired, clear the Infer Interfaces checkbox in the Settings Dialog.

The IP is inserted in the project, where it can be connected to other blocks.

IP Catalog

MName ~ ‘ersion
b Basic

 BSP

} Connectors

¢ DSP

k Math

k Memory

b Submodule

* VHDL Files
. Testlp

The block name appears in the IP Catalog for reuse as shown above. To remove a block, right-click
the block name and choose Remove.

e Ifthe User IP file is moved, the $§ icon appears at the top of the block indicating
the file cannot be found. Once the file is moved back, or the path is changed,
right-click the block to reload the IP and remove the $§ icon on the block.

« Ifthe underlying code for the IP is changed, the A icon can appear to signify an
alert condition. Once the code is corrected, the block can be reloaded to remove
the A\ icon on the block.

e Ifthereis anerrorinthe IP, the @ icon appears. Hover the mouse cursor over the

icon to see what the error is.

Importing an HDL file with Dependencies

If you want to import an HDL file with dependencies, you will need to create an IP-XACT file for the
desired HDL entity following the instructions in the IP Developers Guide . Then, inside the <ipx-
act:fileset> where the source files for “synthesis” are defined, add as many <ipxact:file> entries as
required to define the source VHDL file along with all the files that it depends on.

For example, assume that the desired component is called “Filter” and is defined in “c:\MyIPs\Fil-
terIP\FilterTop.vhd”. Then, assume that the implementation of “Filter” depends on another com-
ponent, named “Tap”, which is defined in “c:\MyIPs\FilterIP\Tap.vhd”. TO successfully load the
component “Filter” in PathWave FPGA, you need to create an IP-XACT (e.g. in "c:\MyIPs\Fil-
terIP\Filter.xm1") file with the following statements in the fileset entry:

IP-XACT fileset snippet

<ipxact:fileSets>
<ipxact:fileSet>
<ipxact:name>synthesis</ipxact:name>
<ipxact:file>
<ipxact:name>FilterTop.vhd</ipxact:name>
<ipxact:fileType>vhdlSource</ipxact:fileType>
</ipxact:file>
<ipxact:file>
<ipxact:name>Tap.vhd</ipxact:name>
<ipxact:fileType>vhdlSource</ipxact:fileType>
</ipxact:file>
</ipxact:fileSet>
</ipxact:fileSets>

When the IP-XACT file is created, you can use the process above to load the IP-XACT xml file.

Importing an HDL file without Dependencies

When an HDL file is imported without dependencies, only the module or entity declaration will be
examined in order to determine the ports that will be available for connections within a PathWave

FPGA graphical design. Any syntax issues or errors that may exist elsewhere in an imported HDL file
may not be detected or flagged.

For Verilog HDL files, module declarations should be limited to the features and format shown in the
following examples:

module foo (clk, d_out);

input wire clk;

output reg [31:0] d_out;
endmodule

or

module foo
#(

parameter myParaml = 14,
parameter myParam2 = 32
)
(
input wire clk,
output reg [31:0] d_out
)
endmodule
or
module mymodule(input clk,
input [7:0] inBus, // Comments are okay
output outWire,
output [15:0] outBus);
endmodule

For VHDL source files, entity declarations should be limited to features shown in the following
example:

library ieee;
use ieee.std_logic_1164.all;
entity foo is
generic (
width : integer := 4
)
port (
clk : in std_logic;
d_out: out std_logic_vector(width-1 downto @)
)

end foo;

A list of known limitations for IP import can be found in VHDL Support and Verilog Support sections.

User Guide

Vivado XCI (Xilinx Core Instance)

Invoking Vivado IP tool

PathWave FPGA allows you to import Vivado IPs from the Xilinx Vivado IP Catalog and integrate them

into your project.

1. Click on the 44, Launch Vivado IP Tool button on the main toolbar.
2. Selecta Vivado IP block from the IP Catalog and double-click it.

Designing your FPGA Logic

¢ Manage P - [C\Users\stetitus\ AppDataLocal\Temp\Keysight\PathWave_FPGA_2019\Vivado2019-03-08T11_59_11] - Vivado 2018.2 — [} X
File Edit Tools Reports Window Layout View Help Q- Quick Access
=, E X o) 4 2= Default Layout v
PROJECT MANAGER - xc7k3251ffg676-2 ? X
Sources ? 00 X IP Catalog 006 X
Q =T = <+ 3 Cores | Interfaces
AR A @ @ | O mutipy @
Name SRV Status
~ Vivado Repository
~ BaselP
“F Multiply Adder Production
< >
Details
~
Mame: Multiply Adder
Wersion: 3.0 (Rev 12)
Description: The Xilinx LogiCORE Multiply Adder generates a multiply-add function implemented in Xtreme
DSP(TM) slices. User options allow you to specify the wordlengths of the inputs and output.
Optimal pipelining for maximum speed and no pipelining are available.
IP Sources Status: Production v
Tcl Console] Messages] Log] Design Runs

Find us at www.keysight.com

Page 220

3. Configure the IP properties and then press OK.

¢ Customize [P

© Documentation

Multiply Adder (3.0)

IP Location (' Switch to Defaults

Show disabled ports

CLK
CE

SCLR
Al15:0]
Bl18:0]
C[47:0]
SUBTRACT

P[47:0]
PCOUTI47:0]

Component Name |xbip_multadd_0

P= A B + C
Input Type Signed R Signed b’ Signed -
Input Width 20 20 48
[2,53] [2,53] [2,108]
Use PCIN
Output MSB |47 [0-106]
DutputLSB 0 [0-106]

Control and Latencies
Latency can be setto -1 or 0. The -1 selection will provide the optimum latency for

max frequency for the given parameters. If either one of the latencies is setto -1,
they both will be treated as having -1 set.

AB-PLatency -1 ~ | Actual AB Latency. 7

C-PlLatency | -1 ~ | Actual C Latency. 3

Synchronous Controls and Clock Enable(CE) Priority | SCLR Overrides CE =

OK | | Cancel

4. Click the Skip button. PathWave FPGA always regenerates Vivado IP during bitfile generation, so
the output products created by clicking Generate are not needed.

¢ Generate Output Products

The following output products will be generated. '
Preview

Q = =

~ THE] xbip_multadd_0.xci (O0C per IP) -~
il Instantiation Template
Il Bynthesized Checkpoint (dcp)
1 Structural Simulation
Il Change Log ~

Synthesis Options

Elobal
Qut of context per IP

Run Settings

Mumber of jobs: 4 ~

If';\\l = i

5. Ifyou need any other Vivado IP, repeat steps 2-4 to generate them. When you are done, close
Vivado.

6. PathWave FPGA will show the configured IP in the IP Catalog section under vendor xilinx.com and
library ip. Add an instance to your design in the same way as any other IP.

xbip_multadd
a_intf(19:0) I Catalog

clki n tf Mame =~ Version VLNY
sclintf : b example.com

ceintf pcoutin{47:0) b keysight.com

I:__|m+.|:1 -al:l.'I:I xilinx.com

cintf{47.0) * Vivadolp

subtract_intf(0:0) M xbip_multadd_0 3.0 ilink.comzip:

Importing a Vivado XCI File

Vivado IP may also be imported from another location by browsing for the .xci file with ~ Add External
Block. See Imported User IP for more details.

Note that for some IP blocks, Vivado will generate an IP-XACT file that does not conform to the IP-
XACT specification. Pathwave FPGA will report errors when trying to import such an IP block. Please
see Importing IP with Invalid IP-XACT in the appendix for more information.

PathWave FPGA Submodule

PathWave FPGA submodules allow you to define your design hierarchically. In addition, you can
share submodules in [P repositories.

The submodules that can be added to your design are displayed in the IP Catalog pane with an icon of
a chip in green color.

IP Catalog

Mame & Version
¢ Basic

 BSP

} Connectors

k DSP
k Math

¢ Memory
 Submodule
& mySubmodule 1.0.0

When a submodule is created from a sandbox project (see Creating a New Submodule Project), it is
added to the Submodule pane for that project.

Submodules may also be added to a project by selecting Project > Add External Block... and nav-
igating to the desired submodule project file with the .ksub filename extension.

Submodules can be visually distinguished from other blocks in the canvas with a small green triangle
in the bottom left corner of the block.

mySubmodule_1
clock_1

nRst_1
+ axilite_1

Naming Conventions

Within PathWave FPGA, things like Instance names and Register names must be unigue and valid
HDL identifiers. Specifically they must follow these rules:

A name must start with an alphabetic character (A-Z or a-z).

A name can only consist of of alphanumeric characters and underscores (A-Z, a-z, 0-9, _).

A name must end with an alphanumeric character (A-Z, a-z, 0-9).

A name can not be a reserved word (listed below).

ok~ N -

Names are not case sensitive. Thus myreg, MYREG, MyReg are all considered to be the same
name.

6. Register names must be unique inside their Register Block.

The rules for display names on blocks are relaxed for user convenience. All displayable Unicode char-
acters are allowed within a display name, and the name does not need to be valid HDL. The one
restriction on display names is that all display names must be unique in their sandbox or submodule
schematic. Forinstance, you cannot have two blocks named "my block" in the same schematic.

Reserved Words

The following are reserved words and can not be used as names:

abs, access, after, alias, all, always, always_comb, always_ff, always_latch, and, architecture,
array, assert, assign, assume, attribute, automatic, before, begin, bind, bins, binsof, bit,
block, body, break, buf, buffer, bufife, bufifl, bus, byte, case, casex, casez, cell, chandle,
class, clocking, cmos, component, config, configuration, const, constant, constraint, context,

continue, cover, covergroup, coverpoint, cross, deassign, default, defparam, design, disable,

disconnect, dist, do, downto, edge, else, elsif, end, endcase, endclass, endclocking, endconfig,
endfunction, endgenerate, endgroup, endinterface, endmodule, endpackage, endprimitive, end-
program, endproperty, endsequence, endspecify, endtable, endtask, entity, enum, event, exit,
expect, export, extends, extern, file, final, first_match, for, force, forever, fork, forkjoin,
function, generate, generic, genvar, group, guarded, highz@, highz1i, if, iff, ifnone, ignore_
bins, illegal_bins, import, impure, in, incdir, include, inertial, initial, inout, inout, input,
inside, instance, int, integer, interface, intersect, is, join, join_any, join_none, label,
large, liblist, library, linkage, literal, local, localparam, logic, longint, loop, macromodule,
map, matches, medium, mod, modport, module, nand, negedge, new, next, nmos, nor, nor, noshow-
cancelled, not, notif@, notifl, null, of, on, open, or, others, out, output, package, packed,
parameter, pmos, port, posedge, postponed, primitive, priority, procedure, process, program,
property, protected, pull®, pulll, pulldown, pullup, pulsestyle ondetect, pulsestyle_onevent,
pure, rand, randc, randcase, randsequence, range, rcmos, real, realtime, record, ref, reg,
register, reject, release, rem, repeat, report, return, rnmos, rol, ror, rpmos, rtran, rtranife,
rtranifl, scalared, select, sequence, severity, shared, shortint, shortreal, showcancelled, sig,
signal, signed, sla, sll, small, solve, specify, specparam, sra, srl, static, string, strongo,
strongl, struct, subtype, super, supply@, supplyl, table, tagged, task, then, this, throughout,
time, timeprecision, timeunit, to, tran, tranife@, tranifl, transport, tri, trie, tril, triand,
trior, trireg, type, typedef, unaffected, union, unique, units, unsigned, until, use, uwire,
var, Variable, vectored, virtual, void, wait, wait_order, wand, weak®, weakl, when, while, wild-

card, wire, with, within, wor, xnor, xor

Name Collisions

IP Catalog Level

PathwWave FPGA USeS VLNV for uniquely identifying IP inside the IP Catalog. vLNv stands for vendor-
Library-Name-Version and is a concept introduced by 1p-xacT. For files that do not define a vLny, such
as HDL files, pathwave FPGA uses the IP module name to create one. When loading an IP in the [P Cata-
log, these possible name collisions have been identified:

» Two IPs have the same VLNV. In this case, pathwave FPGA will give the user the option to update to
the desired definition. This option is not available if the IPs are coming from an IP repository. In the
latter case, user will have to resolve it using one of the workarounds.

« Two IPs have the same module name, but they do not define a VLNV. The user will have to resolve
this case using one of the workarounds.

« An P is using a module name of a reserved word, even if it has a VLNV. A possible workaround in
this case is to create a wrapper for that IP which will have a non-colliding name

 Every other case is allowed.

Design Canvas Level

Pathwave FPGA allows any number of instances of an IP, that is loaded in the IP Catalog, to be used
inside the design canvas. This is true even for different IP that have the same module name.

To achieve this, pathwave FPGA identifies the conflicting instances and wraps them in Vivado out-of-
context builds, bringing the output product back to the design with a different name. This ensures
that no conflicts will appear during the build of the complete design, with an exception discussed
below. The total build time of the project is increased during the synthesis portion of the build. The
increase is proportional to the number of conflicting IP instances that exist in the design, and the num-
ber of the different configurations (parameters initialization) of instances per IP. To avoid this over-
head, user can try to apply one of the workarounds described below whenever applicable.

Exception

pathwave FPGA cannot identify module name collisions in case of sub-components inside the hierarchy
ofan IP.

As an example, imagine the case of an IP named ArithmeticUnit that uses a sub-component named
Adder. The IP Arithmeticunit is loaded inthe IP Catalog and an instance of it is placed in the design
canvas. At the same time, imagine that an IP named Adder exists in the IP Catalog which is different
from the one the Arithmeticunit is using in its definition. If an instance of the latter Adder is used also
in the design, pathwave FPGA will not be able to identify the collision which will probably lead to a build
failure. The same issue can arise if there are collisions between the sub-components of one IP and the
sub-components of another.

To work around these cases, the user has to identify the colliding IP, and use one of the workarounds
applicable below.

Workarounds

When a name collision is detected, the user will have to take action and resolve it.

» Rename the IP to a non-conflicting name or VLNV. This is simplest and fastest solution. If the user
is not the owner of the IP, it might not be feasible and the user has to follow the second work-
around.

» Load only the IPs that are necessary for the project. This is possible only if the conflicting IPs are
not needed at the same time. Note that in the case of unwanted IPs that are loaded through an IP
Repository location, user has to either remove the IP Repository location, which will also remove
any other IP loaded from the same place, or move the conflicting IP definition file (IP-XACT file) out-
side of the IP Repository location or any sub-directory.

» Create a Submodule design to wrap the IP. This has the downside of build time overhead

» Create a wrapper entity/module for the failing IP. This option will only work if the reason of the
name collision is a reserved word or the name of the IP matches the name of a sandbox interface.
The wrapper entity has to use a non-conflicting name.

User Guide Building your FPGA Logic

Building your FPGA Logic

Generating the Bit File

Contents

e Synthesizing and Implementing your Design inside of PathWave FPGA
- Different FPGA Build options
= Monitoring the Build
= Exploring the Build Output

 Building your Design using Vivado

- Generating a Vivado Project

e Troubleshooting

= Drive mapping remaining after build completion

= Generated project synthesis fails because paths are too long

Synthesizing and Implementing your Design inside of PathWave FPGA

After creating your new hardware project and adding your FPGA logic, you are ready to generate the
bit file that implements your design.

To build the bitfile based on your design, complete the following steps:

1. Select Module> Generate Bit File... or click the toolbar icon with tooltip "Generate Bit File...". The
FPGA Hardware Build dialog will appear.

Find us at www.keysight.com Page 227

Hooks | Output

Configuration

Build Directory: C:/work/mySandbox/mySandbox.build
Build Type: Implementation

Options: Project Generation Only ~ Launch Vivado Gui ~ Fail on Timing Failure

Strategies
Synthesis Vivado Synthesis Defaults

Implementation ' Vivado Implementation Defaults

Directives

synth Strategy Default (Default)

opt Strategy Default (Default)

(

(

place Strategy Default (Default)

phys_opt Strategy Default (Default)
(

route Strategy Default (Default)

post_route_phys_opt

2. Choose the sandbox that you want to target for this build. (If only one sandbox is available, this

option will be hidden)

Sandbox: pr_ain100

3. Choose the Implementation build type. This will build the complete project, including the bit file.
Build Type: Implementation -

4. Click Run to start the build.

Different FPGA Build options

The FPGA Hardware Build has two different build options that affect what options are displayed by
the build dialog. The version of the BSP and whether or not the BSP uses a custom build script affects
what options are available. The same basic build types are available between each, but the newer
BSPs add additional usability features.

Basic Build Types (common between all BSPs)

e Synthesis: Builds what is present in the sandbox only.

« Implementation: Builds what is present in the sandbox and places it into the static region of the
selected BSP and runs to bit generation.

« Implementation from DCP: Takes a provided DCP and places it into the static region of the selected
BSP and runs to bit generation.

Usability features (newer BSPs)

e Three new options are available, only run project generation on a design, launch the Vivado GUI to
monitor the build, and cause a build failure when timing failure occurs.

Build Directory: C:/work/mySandbox/mySandbox.build

Build Type: Synthesis

Options: Project Generation Only Launch Vivado Gui Fail on Timing Failure

» When project generation is selected, the Vivado GUI will always be launched.

Build Type: Implementation

Options: v Project Generation Only Fail on Timing Failure

» The GUI can be selected to launch regardless of project generation

Build Type: Implement from DCP

Options: ¥ Project Generation Only Fail on Timing Failure

DCP Location:

Build Strategies and Directives

When a BSP uses the integrated PathWave FPGA build script, build strategies and step directives
may be selected to modify how the bit file generation will be performed. These steps are grabbed
from the Vivado install that your system is currently using. More information on what each strategy/-
directive does can be found by looking at the Vivado documentation. Depending on the build type
selected, some steps and strategies may be disabled. For instance, the Synthesis build type only
allows for synthesis strategies and directives to be set:

| Il FPGA Hardware Build b

Configuration Hooks Output
Configuration

Build Directory: C:/work/mySandbox/mySandbox.build
Build Type: Synthesis

Options: Project Generation Only Launch Vivado Gui Fail on Timing Failure

Strategies
Synthesis Vivado Synthesis Defaults

Implementation

Directives

synth Strategy Default (Default)

opt
place
phys_opt
route

post_route_phys_opt

When selecting a strategy, the step directives for the strategy are set to the default directive specified
by the strategy, signified by the label Strategy Default{(...).

B rPGA Hardware Build X

Configuration Hooks Output
Configuration

Build Directory: C:/work/mySandbox/mySandbox.build
Build Type: Implementation

Options: Project Generation Only Launch Vivado Gui Fail on Timing Failure

Strategies
Synthesis Flow_PerfThresholdCarry

Implementation ' Flow_RunPostRoutePhysOpt
Directives

synth Strategy Default (FewerCarryChains)
opt Strategy Default (Default)
place Strategy Default (Default)
phys_opt Strategy Default (Explore)

route Strategy Default (Default)

post_route_phys_opt ' Strategy Default (Default)

Selecting a step directive that is not the Strategy Default item sets the directive for that step regard-
less of what strategy is chosen until the Strategy Default item is selected again. Steps that are dis-
abled for the selected strategy will appear disabled in the bit generator.

1 Bl PGA Hardware Build X

Configuration Hooks Output
Configuration
Build Directory: C:/work/mySandbox/mySandbox.build
Build Type: Implementation

Options: Project Generation Only Launch Vivado Gui Fail on Timing Failure

Strategies
Synthesis Flow_PerfThresholdCarry

Implementation = Area_Explore
Directives

synth Strategy Default (FewerCarryChains)

opt ExploreArea

place ExtraNetDelay_high

phys_opt
route MoreGloballterations

post_route_phys_opt

Hooks

Hooks are Tcl scripts that are run before and after specific steps in the FPGA build. This is an
advanced feature that is only required when the build strategy and constraints do not offer enough
control. The hooks tab allows you to add hooks before or after any build step. Hooks may be enabled
or disabled. Note that a hook will not run if the step is not included in the build strategy used to build
the FPGA.

To add a hook, first select the pre/post step from the dropdown menu, then click the Add button to
select the hook file for that step. Only one hook may be associated with any pre/post build step, so
the step will be removed from the menu if a hook has already been added for that step. You may
double-click a hook file in the table to replace it with another file.

When a hook is added, it will use a relative path if it is inside the project directory. Otherwise it will
use an absolute path. Right-click a hook to switch it between absolute and relative path manually.
You can also right-click a hook to show the file in Explorer.

If a hook file is not found, it will be displayed in red. The FPGA build may still be run, but that hook file
will not be used.

Configuration =~ Hooks Output

Hooks

Step Path

post_synth C:/work/global_post_synth_hook.tcl
pre_power_opt test.tcl

post_power_opt x

Enabled

pre_place Remove

Monitoring the Build
The FPGA Hardware Build dialog contains several panes to monitor the progress of the build:

» The Compile Output pane displays all build output.

Compile Output

» The Issues pane shows filtered build output. You can set the filters by checking the boxes (Errors,
Critical Warnings. etc.) at the top of the Issues pane. The filters can be set at any time while the
build is running or after it is complete.

v ™ Errors ﬁ Critical Warnings + ﬁ Warnings @® Infos Show All Clear

e The progress bar shows the approximate progress of the build.

» The status bar at the bottom left shows what step of the build is being performed. When the build
is finished, the build status will be displayed.

' Running: Building Sandbox: myProject

« At the beginning of the build, a mapping will be created in the windows file system from the build
directory to an open drive letter.

— This mapping is used to ensure no windows path length limits are exceeded.
— The mapping will be removed at the completion of the build.

Exploring the Build Output

The Build directory field in the Configuration pane specifies the parent directory of the build artifacts,
including the generated bit file. The Program Archive of the generated bit file may be recognized by

its k7z file extension.

Build directory: C:/FPGAS/myProject/myProject.build

If the build was successful, the build artifacts are copied to an artifact directory for future reference.
Each set of build artifacts has its own time and date stamped directory. In this example, one artifact
directory could be named myProject.data\bin\myProject_2018-04-04T14_21_5b.

To learn more about the build output structure, refer to the Project Directory Structure section.

Building your Design using Vivado

PathWave FPGA provides a path to a Vivado flow for users who want to use advanced features in
Vivado, such as adding placement constraints.

Generating a Vivado Project

To start the advanced build flow and leave PathWave FPGA build environment, follow the steps listed
below.

1. Open anew or existing PathWave FPGA project, and navigate to the FPGA Hardware Build dialog.

2. Select the sandbox you wish to implement with the sandbox drop down, and select the Imple-
mentation build type.

3. Check the Project Generation Only checkbox.

4. Click Run.
a. Ifany build errors are encountered, solve the errors before continuing.

5. After synthesis of the sandbox completes, Vivado will launch and link the sandbox into the static
region.
a. The project folder for the design can be located in the .build folder of your project with a
timestamped folder.

6. AVivado project is now created and ready for development.
a. When finished with any additional Vivado steps, proceed to the next point.

7. Inthe Tcl command line, type FinishBuild and press enter.
a. FinishBuild is a custom command that PathWave FGPA generates and puts into the Vivado
environment when the project is created.

b. Ifany problems are encountered, solve them and repeat this step

8. Ifnoerrors are found, the build will finish and the build outputs will have been generated in the
project folder that this project resides in.

9. Close Vivado and return to PathWave FPGA.

#CreatingaNewSandboxProject-projectdirectorystructure

At this point, PathWave FPGA will detect that Vivado has closed and will end the build process. The
build outputs will be captured and stored in a timestamped .data folder.

Troubleshooting

In this section, we will discuss potential issues that can arise during the build process and possible
solutions to those problems.

Drive mapping remaining after build completion

If the drive mapping that is established at the end of a build is not cleaned up successfully at the end
of the build, either of the following can be done to remove the mapping.

e Open CMD
e Run "subst /D {drive letter}:"

or
» Restart your machine
Either of the above methods will remove the drive mapping from your machine.

Generated project synthesis fails because paths are too long

PathWave FPGA maps the build directory at the start of every build, but generated projects do not
have this same feature. If your generated project fails synthesis because of windows paths exceeding
260 characters in length, do the following steps.

e Close Vivado project

e Open CMD

» Run "subst {Unmapped Drive Letter}: {Working Directory}"
» Navigate to new mapped drive and open Vivado project.

Your Vivado project will now have a shorter path and should get around the windows path length
limit.

Simulating your FPGA Logic

Contents

e Simulation Testbench Design

e Test Bench Address Mapping

Simulation Testbench Design

Simulation Testbench

When testing a design, it is usually more efficient and easier to test various IP blocks by themselves.
For system level testing, however, testing the entire sandbox design may be needed. This can be
used to test the interactions between IP blocks as well as the interface between the sandbox design
and the static region design.

To simulate the sandbox, a testbench that provides stimulus to the sandbox and receives the
response from the sandbox must be written. The use of PathWave Standard Interfaces simplifies this
process as it limits the number of different interfaces that need to be modeled.

After a PathWave FPGA Synthesis, the generated files are in a <build directory>. For a design called
<design name>, the <build directory> is <design name>\<design name>.build\<design name>_impl_
<date>. Due to file path length limitations in the Windows filesystem, a temporary drive letter is
assigned to <build directory> during the PathWave FPGA build. The defaultis Z: unless it is already
being used in which case another drive letter is chosen. In some build files you may see reference to
this drive letter. It means the same as <build directory>.

The ports of the sandbox can be determined by inspecting the top level HDL block after PathWave
FPGA does a synthesis. For a design called <design name>, this file can be found in <build dir-
ectory>\sources\<design name>.vhd. For example, a design called "FreqCntTest" might have the top
level HDL file called FreqcntTest\FreqCntTest.build\FreqCntTest_impl 2019-12-13 16 32_
17\sources\FreqCntTest.vhd. The ports can also be determined by looking at the IP-XACT that
describes the sandbox. This can be found in the BSP install directory, e.g. \Program Files\Key-
sight\M3202A BSP\R037300\bsp\templates\interfaces\M3202A\M3202A_ch4.2.0.xml.

Not all the interfaces for the sandbox need be simulated for all designs. For example, if the sandbox
to be tested does not use the DDR interface, there is no need to provide an interface model for the
DDR interface. However, the ports must still be declared and inputs tied off to avoid simulator errors.

Simulating PathWave FPGA Standard Interfaces

One thing a sandbox testbench needs to do is simulate the various interfaces between the sandbox
and the static region. Some interfaces, such as the clock, reset, wire, or vector, are simple and easily

handled. Other interfaces, especially ones with handshaking, can be more complicated to simulate
correctly.

Simulating AXI/AXI-lite Interfaces

The AXl4 interface is an industry standard, high performance addressable bus architecture specified
in the AMBA AXl and ACI Protocol Specification. The AXl4-Lite interface is a lighter weight, more lim-
ited subset of the full AXI4 protocol. The full AXI4 supports things such as burst transfers while the
AXl4-Lite is limited to single word transactions. These can be used for random access to things like
memories or control registers. Typical uses for an AXl interface in a BSP include Host interfaces and
DDR interfaces. The Host interface would be an AXI interface where the AXI Primary is in the static
region and controlled by the host processor. The AXI Secondary is in the sandbox and may include
things like register banks or memory maps for accessing and controlling sandbox IP. Some BSP may
also include large, external memory (DDR memory) accessible from the sandbox. In this case, the AXI
Primary is in the sandbox with the AXI Secondary in the static region.

Simulating a complete AXI interface can be complex. Fortunately, Xilinx provides IP that greatly sim-
plifies simulating AXl interfaces. The Vivado Design Suite includes AX| Verification IP. This IP is sim-
ulation only (non synthesizable) System Verilog code that interfaces with the sandbox's AX| interface
and allows reading and writing. This IP is described in the LogiCORE IP Product Guide PG267. This IP
can be configured for various roles including AXI Primary, AX| Secondary, AXI-Lite Primary, and AXI-
Lite Secondary. Furthermore, if the IP is configured as a Secondary, it can optionally include a
memory model. This makes simulating something like a DDR interface simpler as the testbench
writer does not need to write their own memory model. The AXI Verification IP's memory model
includes mechanisms for "back door" accessing the memory array. This allows for preloading data
into the memory as well as reading it out.

A description of how to use the AXI Verification IP is beyond the scope of this document. Please see
the AXI Verification IP Product Guide as well as Vivado's Example Design (which shows how to use the
IP).

Simulating AXI Streaming Interfaces

The AXI4-Streaming interface is an industry standard non-addressable bus architecture designed for
both streaming arbitrarily long sequences of data and for streaming finite sized data records. The
AXl4-Streaming interface is specified in the AMBA 4 AXI4-Stream Protocol Specification. Imple-
mentations of the AXI4-Streaming interface can be as simple as data and a dataValid, or it can be
more complex with reverse flow control and optional data fields. An AXl4-Streaming interface can be
used for sending occasional control words for controlling sandbox IP blocks or for continuous high
speed streams of data such as from an ADC.

Xilinx provides IP for simulating AXI-Streams. This IP is called AXI4-Stream Verification IP and is sim-
ilar to the AXI Verification IP mentioned above. Itis described in the LogiCORE IP Product Guide
PG277.

While this IP is full featured, it can be complicated to use. For simple AXI4-Streaming interfaces, it
may be easier to manually drive the interface signals directly. As an example, consider the M3100A
PXle Digitizer. The Analog Channel Control includes the Analog_Trigger interface which is a simple
AXl4-Streaming interface. This interface sets the trigger threshold value and trigger mode for the
sandbox's trigger detection logic. Itincludes 16 bits of threshold value and 2 bits of mode along with
avalid signal. Simple testbench HDL code to drive this interface might look like:

task writeAnalogTriggerl;
input [15:0] threshold;
input [1:0] mode;
begin
ainl_analog_trig tdata <= {6'b0,mode,threshold};
ainl_analog_trig tvalid <= 1'b1;
@(posedge clk) ainl_analog trig tvalid <= 1'b@;
end
endtask

Then to change the threshold, the testbench might simply:

writeAnalogTriggerl(thresholdValue,modeValue);

Continuously streaming data, such as from an ADC, is also easy to simulate. For example, if the test-
bench wanted to simulate an ADC that is digitizing a sine wave, the testbench might look like:

integer timeCount = ©;
real Freq = 0.01;
real Scale = 32767;

ainl_out_tvalid <= 1'b1l;

always @(posedge clk) begin
ainl_out_tdata <= Scale * $sin(2.0 * 3.14159 * Freq * timeCount);
timeCount <= timeCount + 1;

end

Simulating Mem Interfaces

Mem Version 1

The mem Interface is a simple, time deterministic, addressable interface using 32 bit wide data
words. Note that while the AXI4 interface uses byte addressing, the mem interface uses word
addressing.

The mem interface has five signals:

Addr[n-1:0] The address for a read or write transaction. Note: this is a word address, not a byte address.
Wdata[31:0] = Write data which is always 32 bits wide and should be valid when We is asserted.

We Write enable. Indicates a write transaction.

Rdata[31:0] Read data which is always 32 bits wide and should be valid the clock cycle after Re is asserted.
Re Read enable. Indicates a read transaction.

A write transaction occurs when We is asserted. Atthat time the data on Wdata is written to the
address specified by Addr.

A read transaction occurs when Re is asserted. The secondary should return the data specified by
Addr on the next clock cycle.

C1 C2 C3 C4 C5 C6

CLK

ADDR —@ < A1 >< A2 >
WE -

WDATA @ \/T/
RE

RDATA « D1)

This diagram shows a mem write followed by a mem read. When WE is asserted at clock C1, the
value DO gets written to address AO. At clock C4 there isa mem read at address A1. Note that the
secondary device has to drive D1 on the very next clock from when RE is asserted at C5 (as shown
above).

Transactions may be initiated on any clock cycle. There is no need to wait for a read transaction to
complete before initiating the next transaction. Thus there may be two reads on adjacent clock
cycles, two writes, or a read followed by a write or a write followed by a read on adjacent clock cycles.
Itis okay to have a read at C4 immediately followed by a write at C5 as shown above.

Mem Version 2

Version 2 of the mem interface is very similar to version 1 with the difference being that version 1
requires mem secondaries to have a read latency of one clock cycle (i.e. they have to return read data
the very next clock after RE), version 2 allows secondaries to have longer read latencies. These laten-
cies must still be fixed for each mem secondary, but each different secondary can have a different,
fixed latency. For example, a mem secondary that is a register might have a read latency of 1 (the

same as the version 1 case) while a mem secondary that is a block memory might have a read latency
of 2. If a mem secondary has a read latency other than 1, it must report its latency to PathWave
FPGA.

Simulating Mem+ Interfaces

The mem+ interface is an extension of the mem Version 2 interface. Itis only used between the static
region and the sandbox. It is not exposed to users of the sandbox (they only see the mem interface).
A simulation of the sandbox, though, needs to use the mem+ interface for BSPs that require it.

The mem+ interface is the mem Version 2 interface with two added signals, RDATAVALID and
ERROR. When a sandbox user uses more than one mem secondary, PathWave FPGA will auto-
matically generate the logic necessary to split the single mem+ interface from the static region to the
necessary number of separate mem interfaces in the sandbox. Note that although each mem inter-
face has a fixed latency, since the mem-+ interface may connect to multiple different mem sec-
ondaries, the mem+ read latency can vary depending on which mem secondary is being read from.

Note that because of the varying latency, there is the possibility of read data collisions. For example,
reading from a mem secondary with read latency of 3 immediately followed by a read from a mem sec-
ondary with read latency 2 would result in both read data values being returned on the same clock
cycle. Thisis known as a collision and is an error. Itis up to the test bench designer to ensure that
reads are scheduled to avoid collisions.

The mem+ interface has seven signals:

Addr[n-1:0] The address for a read or write transaction. Note: this is a word address, not a byte address.
Wdata[31:0] = Write data which is always 32 bits wide and should be valid when We is asserted.

We Write enable. Indicates a write transaction.

Rdata[31:0] Read data which is always 32 bits wide and should be valid the appropriate latency after Re is asserted.
Re Read enable. Indicates a read transaction.

Indicates that Rdata is valid. Since the read latency is known ahead of time, this signal is for informational use

RdataValid
only.

Error Indicates a collision in the mem routing logic.

For a sandbox that uses the mem-+ interface, the AddressMapping.json generated during the FPGA
build process will include an element called readLatency that will specify the read latency for that par-
ticular mem secondary. This latency will be the sum of the secondary's read latency plus any addi-
tional latency added by the routing logic generated by PathWave FPGA. This value indicates how
many clock cycles after Re the returned Rdata should arrive at the sandbox (testbench) boundary.

C1 C2 C3 C4 C5 C6 C7 C8 C9

CLK L

ADDR A0 A1 A2

WE

WDATA DO

RE

RDATA D1 D2

RDATAVALID

ERROR

In this example, the mem secondary at address A1 has a readLatency of 1 while the secondary at

address A2 has a readLatency of 2. The read at time C4 expects the read data to be returned one
clock cycle later at time C5. The read at time C7 doesn't expect the read data to be returned until
time C9 due to the increased read latency.

Note that if the test bench tried reading A2 at time C,, and reading A1 at time C,,, 4, then there would
be a collision at time C,,,» since the data from both secondaries would be trying to arrive at the sand-
box boundary at the same time. This would result in Error being asserted.

Simulating FDS Interfaces

The FDS, or Fast Data Sharing, interface comes in two types: FDS_RX for the receive side and FDS_
TX for the transmit side. The FDS interface uses an 8 bit address and a 4 bit (nibble) data bus. Mul-
tiple accesses at a single address may be used for wider data transfers. The FDS interface has determ-
inistic timing and does not include back-pressure. Below is a diagram that shows the different FDS
endpoints and how they are connected together. Each sandbox has an FDS secondary endpoint. This
allows a separate module with FDS primary interfaces to read/write data into the sandboxes. In the
diagram below data flows from left to right (data starts at the FDS TX secondary endpoint and is sent
to the FDS primary side. FDS routing sends the data to the correct FDS RX primary side and then the
data is passed to another sandbox FDS RX endpoint). The diagram below is simplified to just show

one source and one destination sandbox, however there can be multiple sandboxes with TX end-
points or RX endpoints and the FDS data routing will be handled by a control module. It is not pos-
sible to connect an FDS TX secondary endpoint directly to a FDS RX secondary endpoint. A control
module with the FDS primary interfaces must be used to route the data between the secondary end-
points.

Sandbox A Sandbox B
FDS

routing
FDS TX FDS RX

FDS TX
secondary

FDS RX
secondary
endpoint

endpoint primary primary

Data larger than 4 bits should be sent sequentially, with the least significant nibble first. The start and
end of multi-nibble transactions is indicated by the start and end signals. Both endpoints of a trans-
action must agree on the size of the data being transferred.

FDS TX

FDS TX a read-only interface. The primary (outside the sandbox) controls the timing and address of
the transaction. The secondary (user IP inside the sandbox) provides the data requested by the
primary.

Signal Direction

Details
name (secondary)

The address signal tells the IP which register to access. The address value should be latched by
address input the IP when ready and start are both asserted. This address value is used until the end of the

transaction, indicated by end.

The ready signal tells the IP when to transmit data. On the clock after ready is asserted, the IP
ready input should drive data and assert valid to indicate that the data is valid. The primary may assert
ready for subsequent clock periods, or may assert ready intermittently during the transaction.
The start signal tells the IP when to latch address. Each start pulse will have an
accompanying end pulse on the same clock or later.

The end signal tells the IP that the current transaction is complete. For single-nibble

transactions, the end pulse will be on the same clock as the start pulse.

The data signal is used to transmit data from the IP to the primary. The data signal must be

data output driven on each clock after ready is asserted. For multi-nibble transactions, the data should be
sent least-significant-nibble first.

The valid signal allows the IP to report that the data is valid. It should be asserted each clock
valid output after ready is asserted. However, if the IP cannot deliver the requested data for any reason,

valid should be deasserted to communicate the problem to the primary.

start input

end input

Address[7:0]

Address[7:0]

A

Data[3:0] » Data[3:0]
FDS TX Ready < Ready FDS TX
secondary Valid > Valid primary
endpoint
Start < Start
End < End

The following timing diagram demonstrates the normal behavior of the FDS TX interface. It demon-
strates four transactions.

1. Asingle-nibble read from address AQ.
2. Atwo-nibble read from address A1.
3. Athree-nibble read from address A2.
4. Atwo-nibble read from address A3 with a gap between the first and second nibbles.
FDS TX
aEpEgEaEaisEsEaReEa e e e En e el
address (A0 > (A1 > (A2 > (A3 >
S A s Y e W e VS W A
£| st [\ [\ [\ [\
end [\ [\ [\ [\
8 vaig T\
FDS RX

FDS RX is a write-only interface. The primary (outside the sandbox) controls the timing, address, and
data of the transaction. The secondary (user IP inside the sandbox) accepts the data and does some-
thing with it.

Signal
name

address

data

valid
start

end

ready

Direction
(secondary)

input

input

input
input

input

output

FDS RX
primary

Details

The address signal tells the IP which register to write. The address value should be latched by
the IP when valid and start are both asserted. This address value is used until the end of the
transaction, indicated by end.

The data signal tells the IP what data to write to the register. Data should be read by the IP on
each clock where valid is asserted. For multi-nibble transactions, the data will be sent least-
significant-nibble first.

The valid signal tells the IP when the data is valid. The primary may assert valid for
subsequent clock periods, or may assert valid intermittently during the transaction.

The start signal tells the IP when to latch address. Each start pulse will have an
accompanying end pulse on the same clock or later.

The end signal tells the IP when the transaction is complete. The IP may use this to apply the
data. For single-nibble transactions, the end pulse will be on the same clock as the start pulse
The ready signal allows the IP to report when it is able to accept data. ready must be asserted
before the primary asserts valid. If ready is not asserted on a clock where valid is asserted,
the primary will report an error.

\ 4

Address[7:0] Address[7:0]

Data[3:0] » Data[3:0]
Ready < Ready FDS RX
Valid > Valid secondary
endpoint
Start » Start
End » End

The following timing diagram shows the normal behavior of the FDS RX interface. It demonstrates
four transactions.

1. Asingle-nibble write to address AQ.

2. Atwo-nibble write to address AT.

3. Athree-nibble write to address A2.

4. Atwo-nibble write to address A3 with a gap between the first and second nibbles.

Prirnary
-
o
o

[ready _;'

Secondary

Simulating the HVI Custom Instruction interface
The HVI Custom Instruction interface provides support for sandbox-specific HVI instructions. This HVI
Custom Instruction interface has four signals:

[ngol? Command ID is used to define custom instructions codes.

dataA . .

30:0] Defines the HVI Custom Instruction data.

datéB Optional data signal for custom instruction data.

(39:0]

valid Valid is issued when the instruction is triggered and all the fields have valid data.

appl Apply can be used by the custom IP for multiple simultaneous-data triggering with custom
y

memory depth.

The valid signal is pulsed high to indicate the values on dataA and cmdld have been updated.

The apply signal is pulsed high if the 'apply' bit in the instruction was set high. This will be aligned
with the valid pulse. The Apply signal will also be pulsed high when Applylnstruction (hvi_action) is
pulsed high.

The first transaction in the timing diagram below shows the valid signal being pulsed when the values
on dataA and cmdld have been updated. The second transaction shows the apply signal being
pulsed.

CO C1 C2 C3 C4 C5 C6

CLK L

cmdld cmd1

dotan (w0) :

valid ‘

apply

Simulation Fileset

Simulating the sandbox requires compiling all the source files for the test bench and any IP used by
the test bench (e.g. the AXI-VIP files), and also all the HDL files used in the sandbox itself. The IP
used in the sandbox includes the IP shown on the design canvas as well as IP connecting the user's
design to the sandbox ports. The list of all the source files needed can be found in the sources.json
file. Thisfile is in the same build directory as the AddressMapping.json file.

sources.json

The sources.json file lists the sources used to build the sandbox design.

Due to file path length restrictions in the Windows operating system, the build directory is mapped to
a temporary drive letter, usually Z: unless that drive is already in use. This drive denotes the build dir-

ectory <design name>\<design name>.build\<design name>_impl_<date>.

The "ip" section lists the Vivado IP used in the design. These are xci files that describe the particular
IP. During the synthesis process, Vivado is used to regenerate the IP for this particular design.
Vivado also regenerates simulation netlists that can be used for simulation for these IP. Foran IP
block named <ipBlock> these simulation files can be found in:

<build directory>\<design name>_Synthesis\<design name>.srcs\sources_1\ip\<ipBlock>\<ipBlock>__
sim_netlist.v Or

<build directory>\<design name>_Synthesis\<design name>.srcs\sources_1\ip\<ipBlock>\<ipBlock>_
sim_netlist.vhdl

One of these should be compiled for simulation.

The "sources" section lists the HDL files needed as well as which library they could be compiled into.

It may also lista ".bd" file. Thisisa Vivado Board Design file used in IP Integrator. For a block called

<bdName> the information needed to simulate the block can be found in:

<build directory>\<bdName>\<bdName>.ip_user_files\sim_scripts\<bdName>\<simulator>

where <simulator> is the name of the simulator to be used, e.g. "questa". In that directory are scripts
to compile the design as well as a README.txt describing how to use the files.

Using Vivado's Simulation Flow

Managing the files used in the sandbox design can be simplified by using Vivado's simulation flow. In
this case the source files used within the sandbox are automatically sent to Vivado. The user still
needs to manually add any source files needed for the testbench separately. The user still needs to
write the top level testbench file that instantiates the sandbox design.

To use this flow, follow these steps:

In PathWave FPGA click on Generate Bit File... to bring up the FPGA Hardware Build dialog. Check
the Project Generation Only (which will also automatically check the Lauch Vivado Gui box) and hit
run:

Configuration

Build directory: C:/tmp/pathwave/vivSim1/vivSim1.build]
Sandbox: pr_ain500r ~

Build Type: Synthesis ~ + Project Generation Only

Compile Output

Issues

v ™ Emrors + £k Critical Warnings v £k Warnings @ Infos Show All

This will generate the sandbox project, create a Vivado Project for this design, and start the Vivado
Gui.

Once Vivado is started, right-click on Simulation Sources and select Add Sources... to bring up the
Add Sources dialog:

User Guide Simulating your FPGA Logic

¢ vivSim1 - [Z:/vivSim1_Synthesis/vivSim1.xpr] - Vivado 2018.3

File Edit Flow Tools Reports Window Layout View Help Q- Quick Access

&, E > B B T %
Flow Navigator e S PROJECT MANAGER - vivSim1
v PROJECT MANAGER
Sources ?2 _ 00O % Project Summary
¥ Settings
Q X =2 4+ 0 & Overview | Dast

Add Sources
v Design Sources (7)

> @ & vivSim1(BEHAVIORAL) (vivSim1.vhd) (3) Settings Edit
& p Catalog @ PWF_roundBiased (roundUtiLy)
® PWF _roundOr (roundUtily)

Language Templates

Project name:

Project location:

v IP INTEGRATOR ® PWF_roundRand (roundutil.v) Product family:
Create Block Design ® PWF_roundUnbiased (roundUtil.v) Project part:
@® PWF_signExt (roundUtil.v) Top module nam
Open Block Design ® PWF_uclamp (roundUtily) Target language:
Generate Block Design > Canstraints Simulator langua

p Simulation Sources (7)

> Utility Sources
~ SIMULATION ty \thesis
Run Simulation Hierarchy Update »
C' Refresh Hierarchy L=
assages:
¥ RTL ANALYSIS IP Hierarchy 4 ?
rt:
> Open Elaborated Design Edit Constraints Sets.. ategy:
Edit Simulation Sets... port Strategy:
A
SYNTHESIS 4+ Add Sources.. Alt+A
P Run Synthesis
__________________ Report IP Status
» QOpen Svnthesized Desian Hierarchv | IP Sniirres Tthraries tomn<d F = 1 rC Violations

Select Add or create simulation sources and click Next.

Find us at www.keysight.com Page 250

¢ Add Sources e

Add Sources

VIVADO!

HL Editions This guides you through the process of adding and
creating sources for your project

o
]

) Add or create constraints

oy
J

./ Add or create design sources

F - -
\®) Add or create simulation sources

& XILINX

o

Add the necessary sources files for the testbench and click Finish. Note that every time PathWave
FPGA does another build, it creates a new Vivado project. This new Vivado project will not have the
simulation files you may have added to the previous Vivado project, so the simulation source files
have to be added every time a new PathWave FPGA build is run.

-~

Open the Simulation Settings dialog and verify that the correct Simulation top module name: is selec-
ted:

User Guide Simulating your FPGA Logic

¢ Settings
Q-
Simulation
Project Settings Specify various settings associated to Simulation '
LT3 1= - |
Simulation Target simulator: Vivado Simulator v
Elaboration B B
Simulator language: Mixed v
Synthesis
Implementation Simulation set: sim_1 v
Bitstream Simulation top module name: vivSim1_tb D
> P
Tool Settings Compilation Elaboration Simulation Metlist | Advanced
Project
IP Defaults Verilog options: D
Source File
i Generics/Parameters options: D
Display
WebTalk xsim.compile.tcl.pre
Help xsim.compilexvhdl.nosort v
7 Text Editor xsim.compilexvlog.nosort v
3rd Party Simulators xsim.compilexvlog.relax vl
> —
Colors xsim.compilexvhdl.relax)

Selection Rules : : .
xsim.compilexsc.maore_options

Shortcuts i i i
xsim.compilexvlog.more_options
> Strategies i i i
xsim.compilexvhdl.maore_options
> Window Behavior

Select an option above to see a description of it

/

Click the Simulation—=Run Simulation—= Run Behavioral Simulation to start the simulator:

Find us at www.keysight.com Page 252

v SIMULATION Utility Sources

Fun Simulation

Run Behavioral Simulation

v~ RTL ANALYSIS

2> Open Elabaoi

v SYNTHESIS

P Run Synthesis | I

Test Bench Address Mapping

During the FPGA build process, PathWave FPGA will automatically assign addresses for things like
Memory Maps and Register Banks. When a design is modified, the assigned address for a particular
entity may change. When writing test benches it is recommended to reference entities symbolically
rather than with hard coded address values. Then if the address to an entity changes due to a later
design modification, the test bench will remain accurate whereas a hard coded address may have to
be manually modified if the design changes.

To facilitate symbolic references to entities, PathWave FPGA generates a number of address mapping
files during the FPGA build process. These files may be used by test benches to map symbolic names
to actual addresses. These files are placed in the build directory in the sources sub-directory.
PathWave FPGA creates a Verilog include file and a VHDL package file. The files are named as fol-
lows

<ProjectName>.build\<ProjectName>_<BuildDate>\sources\<ProjectName>_addressMapping.vh (for
Verilog)
<ProjectName>.build\<ProjectName>_<BuildDate>\sources\<ProjectName>_addressMapping.vhd (for
VHDL)

For a project called "simTest" these files might be:
simTest.build\simTest_synth_2019-12-19 11 53 45\sources\simTest_addressMapping.vh
simTest.build\simTest_synth_2019-12-19_11 53 45\sources\simTest_addressMapping.vhd

These files contain the same information as the AddressMapping.json file, but in a format suitable for
HDL.

Contents of Address Mapping Files

The Verilog address mapping file is meant to be included into the Verilog test bench via a‘include
statement. It defines localparams for each entity. The VHDL file is meant to be compiled separately
and defines a package consisting of integer constants for each entity.

The name for each entry is formed from a hierarchical concatenation of names separated by the
underscore ("_") character. For a MemoryMap, this is just the <MemoryMap name>. For a Register-
Bank, this is the <RegisterBank name>_<Register name>. For entities in submodules, the name is
<Submodule name>_<entity name within the submodule>.

Address Mapping Example

Consider the following design that includes RegisterBanks on both the Host and HVI interfaces, three
MemoryMaps, and a submodule:

File Edit Project Tools Help
RES R QG OnN G x

Design Interfaces

» Communications
N » Real-time HVI
MyRegBank[Host] » System

regNum1_Din(31:0) regNumi_Dout(31:0)
l regNum1_Din_v regNumi_Dout.v
l regNum2_Din(31:0) regNum?_Dout(31:0)
l regNum2_Din_v regNum2_Dout_v
l regNum3_Din(31:0) regNum3_Dout(31:0)
i regNum3_Din_v regNum3_Dout v

._ .

@ MemMapLowlaxilite] Host +3

(® MemMapHilaximm] Host +3 IP Catalog

SubMod1_1 :wl;r:seic - Version

@ subModMaplaxilite] Host +3»————————————— =+ Hostin » BSP
g | Ik » Connectors

o » DSP

nRst » Math

HviRegBank[Hvi0] 1 | B ?:b",:,ﬁme
HVIO_Din(31:0) HVIO_Dout(31:0) i SubMod1 1.0.0
HVIO_Din_v HVIO_Dout_v }

HVI1_Din(31:0) HVI1_Dout(31:0)

HVI1_Din_v HVI1_Dout_v ‘

The submodule only contains another RegisterBank:

File Edit Project Tools Help
RERSE =20 068

Design Interfaces
~ Communications
clk
nRst
e Hostin
MemoryMap
RegisterBank

SubRegBank[HostIn]
Red_Din(31:0) Red_Dout(31:0)
Red Din_v Red_Dout_v
Green_Din(31:0) Green_Dout(31:0)
Green_Din_v Green_Do
Blue_Din(31:0) Blue_Dout(31:0)
Blue_Din_v
Orange_Din(31:0) Orange_Dout(31:0)
Orange_Din_v Orange_Dout_v Name ~ Version

» Basic

» BSP

» Connectors
» DSP

» Math

» Memory

Change Submodule Interfaces

IP Catalog

The resulting Verilog file is:

// This file was automatically generated by PathWave FPGA. PLEASE DO NOT EDIT IT.
//

// simTest_addressMapping.vh

“ifndef _simTest_addressMapping vh_

“define _simTest_addressMapping vh_

// Interface: Host

localparam MemMapLow = 'h@;

localparam SubModMap = 'h4000;

localparam MemMapHi = 'h6000;

localparam MyRegBank_regNuml = 'h7000;
localparam MyRegBank_regNum2 'h7004;
localparam MyRegBank_regNum3 = 'h7008;

// Interface: Hvio

localparam HviRegBank_HVI@ = 'ho;

localparam HviRegBank_HVI1 = 'hil;

// Interface: SubModl_ 1.HostIn

localparam SubModl_1 SubRegBank_Red = 'h4000;
localparam SubModl_1 SubRegBank_Green = 'h4004;
localparam SubModl_1 SubRegBank Blue = 'h4008;
localparam SubModl_1 SubRegBank_Orange = 'h400c;
“endif // _simTest_addressMapping_vh_

and the resulting VHDL file is:

-- This file was automatically generated by PathWave FPGA. PLEASE DO NOT EDIT IT.
-- simTest_addressMapping.vhd
package simTest_addressMapping is
-- Interface: Host
constant MemMapLow : integer := 16#0#;
constant SubModMap : integer := 16#4000#;
constant MemMapHi : integer := 16#6000#;
constant MyRegBank_regNuml : integer := 16#7000#;
constant MyRegBank_regNum2 : integer := 16#7004#;
constant MyRegBank_regNum3 : integer := 16#7008#;
-- Interface: Hvie
constant HviRegBank HVIO : integer := 16#0#;
constant HviRegBank HVI1 : integer := 16#1#;
-- Interface: SubModl_1.HostIn
constant SubModl_1_ SubRegBank Red : integer := 16#4000#;
constant SubModl_1 SubRegBank_Green : integer := 16#4004#;
constant SubModl_1 SubRegBank_Blue : integer := 16#4008#;
constant SubModl_1_ SubRegBank_Orange : integer := 16#400c#;
end package simTest_addressMapping;

In both cases there are entries for each MemoryMap and each register within a RegisterBank.

Using the Address Mapping File

Verilog

To use the address mapping file, the file is included into the Verilog test bench with the ‘include
statement. Then the various address mapping values can be used with in the test bench. As an
example:

module simTest_tb;
“include "simTest_addressMapping.vh"
writeBus(MyRegBank_regNum2,32'h12345678); // write ©x12345678 to register regNum2

task writeBus; // task to write a value to an Axi bus
input [31:0] address;
input [31:0] data;

endtask
endmodule
This example assumes there is a Verilog task called "writeBus" that will handle the necessary hand-

shaking to write a value to the AXI bus. When calling writeBus, the symbolic name of the
MyRegBank's regNum2 is used instead of the numeric address 0x7004.

VHDL

To use the address mapping file, the file is compiled into a library (the default being the library
"work"). Then the constants can used in other VHDL code. As an example:

use work.simTest_addressMapping.all;

architecture behavior of simTest_tb is
signal addr_reg2 : std_logic_vector(31 downto 0);

addr_reg2 <= conv_std_logic_vector(work.simTest_addressMapping.MyRegBank_regNum2, addr_
reg2'length);

end architecture

In this partial example, a std_logic_vector for the address of MyRegBank's regNum? is created and
assigned and can be used wherever regNum?2's address is needed.

Name Collisions

Since the entry names are created in a hierarchical manner, it is possible to get name collisions in cer-
tain cases. As an example, both a MemoryMap named "foo_bar" and a RegisterBank named "foo"
with a register named "bar" would result in the same name "foo_bar". If a name collision is detected
at build time, a Critical Warning is issued, and the duplicated name entry in the address mapping files
is commented out along with a comment indicating the name collision.

If a name collision Critical Warning occurs, at least one of the names should be changed to prevent
the name collision from occurring.

Advanced Features

Contents

e Command Line Arguments

e Migrating a design to a new BSP

e Changing a Submodule Project Target Hardware
e Debugging in Hardware

e User Constraint Files

Command Line Arguments

When PathWave FPGA is launched from a command line or script, there are a number of arguments
to create or load projects, and control how the application operates.

Usage: PathWave FPGA [--project/-p/<no switch> <ProjectFile (*.kfdk)>]
[--bsp/-b <BspName>] [--version/-v <BspVersion>] [--template/-t
<TemplateName>] [-c <OptionName> <OptionValue>] [--retarget/-r
<ExistingProjectFile>] [--generate/-g <generationType>] [--synth strat
<strategy>] [--impl strat <strategy>]

<no_switch>

or Path to project file to open or create (*.kfdk)

-p [--project]

~b [--bsp] Name of the BSP

-v [--version] Version of the BSP

-t [--template] Name of the BSP template to use

-r [--retarget] Path to existing project (* kfdk) to retarget to different BSP configuration

-c Name/Value configuration option pairs for the specified BSP, separated by space
-g [--generate] Type of generation: synthesis, implementation

--synth_strat Synthesis strategy for generation

--impl strat Implementation strategy for generation

--directives Step/Directive pairs for build steps that can have directives set, separated by space

-h [--help] Print usage message

» For creating a new project, the <ProjectFile> and <BspName> arguments are
required. The rest of the BSP options are needed only to distinguish different
configurations of the same BSP.

« Ifthere is no BSP matching the provided <BspName>, a list of available BSP
names is displayed.

« |[fthere are more than one configurations that match the provided arguments, or
no configuration that matches them, a list of available configurations is
displayed.

 [fthe '--generate' option is used, the application will close automatically after the
completion of the generation build.

e The synthesis and implementation strategy arguments will temporarily override
the strategies stored in the project file.

e The project path can be specified without any switch. However, in that case, it
should not be specified after the '-c' switch arguments, as it will be translated,
erroneously, as a configuration option

e The'--retarget' and '--template' switches cannot be used together

Examples

® Start GUL:

PathWave_ FPGA

® Open project:

PathWave FPGA path/to/myExistingProject.kfdk

® QOpen project and implement it (application will close automatically after the completion of the
build):

PathWave_FPGA path/to/myExistingProject.kfdk -g implementation

» Open project and implement it using one directive (application will close automatically after the
completion of the build):

PathWave_FPGA path/to/myExistingProject.kfdk -g implementation --directives synth Explore

» Open project and implement it using two directive (application will close automatically after the
completion of the build):

PathWave FPGA path/to/myExistingProject.kfdk -g implementation --directives synth Explore route
Explore

® Create a new project from template and open it:

PathWave FPGA path/to/newProject.kfdk --bsp M3202A -v ©3.67.00 -c channels 2 -c fpga 7k325 -c
clock Variable --template Default

® Create a new project from template and synthesize it (application will close automatically after the
completion of the build):

PathWave_FPGA path/to/newProject.kfdk --bsp M3202A -c channels 2 -c fpga 7k325 -c clock Variable
--template Default -g synthesis

e Retarget an existing project to different BSP configuration:

PathWave_FPGA path/to/newProject.kfdk --bsp M3202A -c channels 4 -c fpga 7k410 -c clock Variable
--retarget path/to/existingPrj.kfdk

Migrating a design to a new BSP
This topic lists the steps to retarget an existing hardware project to a different BSP.

1. Select File > Retarget Project.

2. Select an existing PathWave FPGA Project File. Click Next.
a. Ifyou begin retargeting while a project is open, the existing project will be selected.

3. Choose the Board Support Package for the target hardware module and click Next.
a. If multiple board options are available, select the configuration of the BSP you want to use.

4. A summary of the project details is displayed. Click Finish.

5. Adialog will appear informing you of a project version change.
a. Abackup of your original file is created at this time.

6. The retargeted project will open, and any IP blocks that are now invalid with the retargeted project
will have ared 'X'.

Command Line

You can also retarget your project using the command line, for more details see
Command Line Arguments.

Changing a Submodule Project Target Hardware

When a submodule is created, the target hardware for that submodule is inherited from the parent
sandbox or submodule.

You may want to retarget a submodule to work with different hardware, or remove the targeted hard-
ware altogether to make a generic submodule. A generic submodule can be shared with projects tar-
geting different BSPs, but will not have access to the BSP IP.

Perform the following steps to change the submodule target hardware:

1. With the submodule project open in PathWave FPGA, select Project > Properties...

2. Tochange the Target Hardware to a new BSP, click Change and use the Select BSP Configuration
wizard to choose a new BSP.

3. Toremove the BSP and create a generic submodule, click Clear.
4. Click Apply to accept the changes.

Debugging in Hardware

PathWave FPGA supports the embedding of Vivado debug cores for use with the Vivado Logic Ana-
lyzer for debugging Sandbox designs in hardware, provided the following prerequisites are met:

e The targeted BSP must support hardware debugging.

» Must have a supported debug interface cable (JTAG download cable), or the BSP must support
one of the "Virtual Cable" methods (PCle, Ethernet).

Check the targeted BSP's documentation to confirm whether hardware debugging is supported and
which connection methods may be used.

To debug a PathWave FPGA Sandbox design in hardware, simply use the PathWave FPGA Launch
Vivado IP Tool feature to customize a Vivado IP debug core, instantiate the debug core in the Sand-
box, make the necessary probe/trigger connections, and build the bit file. PathWave FPGA and the

Vivado implementation tools take care of the rest. After the bit file is generated and loaded, the
Vivado Logic Analyzer can be used for debugging Sandbox designs in hardware.

To provide an example of how to use the Vivado Logic Analyzer for a PathWave FPGA Sandbox
design, consider a simple Sandbox design with an 8-bit counter.

c_counter_binary
Clock Clock »——— clk_intf q_intf(15:0)

The counter was customized from the Vivado IP Catalog, imported into PathWave FPGA, instantiated
in the design, and then connected to the Design Interface clock.

Next, click on the Launch Vivado IP Tool to customize an ILA debug core.

File Edit Project Tools Help
RDs B2 *. IP Packager

%, Launch Vivado IP Tool..

Settings...

Vivado opens in “Manage IP” mode allowing management of the customized Vivado IP cores for the
PathWave FPGA project. The counter which was customized earlier should already be visible. In the
IP Catalog, enter “ILA (Integrated Logic Analyzer)” in the IP Catalog Search field to quickly find the ILA
IP core.

User Guide Advanced Features

|P-Catalog 2 =0 A X

Cores | Intedaces

all =& & = & @ o, o
Search: | |LA {Integrated Logic Analyzer) < {1 match)
Name A1 AXl4 Status License VLMV
w Vivado Repository iy
w Crabug & Verification
v Debug
ILA (Integrated_ogic Analyzer) | AXKlL. Prod. Included xlin... "
LAy
Details
Fa9
MName; ILA {Integrated Logic Analyzer)
Wersion: 6.2 (Rev. 8}
Interfaces; AXl4, AX]4-Stream
Description; The Integrated Logic Analyzer {ILA) core is a customizable |logic analyzer core that can e used to monitor any
internal signal of your deslgn. The ILA core includes many advanced features of modern logic analyzers;
including Beolean trigger equations, customizable data capture buffer depth, and optional trigger input/output
parts. Because the ILA core is synchronous to the design being monitored, all desiagn clock constraints that are
applied to your design are alsc applied to the components inside the ILA core. Run-time interaction with this
cofe requires the use of the Vivado logic analyzer feature. I

Double click to open the ILA IP customization dialog.

Find us at www.keysight.com Page 263

User Guide

Advanced Features

ILA (Integrated Logic Analyzer) (6.2)

@ Cocumentation IP Location (* Switch to Defaults
|| Show disabled ports Component Name ila
To configure mare than 54 prebe ports use Vivade Tcl Console
General Options | Probe_Ports{0..0)
Probe Port | Frobe Width {‘l .. 4096] | Mumber o_f Comparators | Probe Trigger ar Data
Elk PROBED 8 & 1 ~ | DATAAND TRIGG..
probed[7:0] ' ' '
< >

e e

There is already 1 probe by default. Click on the Probe/Ports tab and set the probe width to 8 cor-

responding to the 8-bit counter in the design. Then, click OK. Next Vivado IP Manager will ask
whether to generate the output products for the customized IP.

Find us at www.keysight.com

Page 264

User Guide Advanced Features

¢ Generate Output Products X

The following output products will be generated.

Preview
8l ==
w TF (8] ilaxch iDOC periP ¥
Instantiation Template
=. Synthesized Checkpoint {.dcp)
= Structural Simulation
- Change Log £
Synthesis Options
. Global
(®) Out of context per 1P

Run Settings

Mumber of jobs: | 8 W

2

e

ppl Generate Skip

Click the Skip button to skip generation of the customized ILA IP core output products for now. The
XCl file is all that is needed to import the component into PathWave FPGA and the output products
for any customized IP cores are automatically generated later when building the PathWave FPGA
Sandbox design. Then close/exit the Vivado IP Manager to return to the PathWave FPGA window.

Find us at www.keysight.com Page 265

File Edit Project Tools Help
REGE » =6 061

Design Interfaces
» Communications
F Real-time HVI
b System

IP Catalog

Name ~ Version

counter_1 » example.com

clock clock & ——m tf q_intf(7:0) b keysight.com

- w yilinx.com
* Vivadolp
P counter 12.0

M ila 6.2

M3202A-03.64.00-cl

In the Vivado XCI panel, double click on the customized ILA IP core to instantiate the ILA in the Sand-
box design. Then make the necessary signal connections of the ILA core to the clock and counter out-
put, as shown below

File Edit _Project Tools Help
RD & B Add External Block...

© Generate Bit File...)
Design Interfaces
» Communications

» Real-time HVI
b System

IP Catalog
- Name ~ Version
ila_ » example.com
counter_1
clk_intf a_intf(7:0)

clock clock e
| | signal_clock » keysight.com

probe0(7:0) xilinx.com
| - Vivadolp
) M counter 12.0
M ila 6.2

M3302A - 03.64.00 - clock: Fixed, fpga: 7k325

Next click on Generate Bit File and then click the Run button to run synthesis for the Pathwave FPGA

project and to generate the bit file.

¢ FPGA Hardware Build

Compile Dutput
IMFC: [IP_Flow 19-1686] Generating 'Synthesis' target for IP ‘counter’..
[Fri Jun 14 17:24:35 2019] Launched ila_synth_1, counter_synth_1_..
Run output will be captured here:
ila_synth_1: Z/ILA&_Example_Synthesis/ILA_Exampleruns/ila_synth_1/runme.log
counter_synth_1: Z/ILA_Example_Synthesis/ILA_Example.runs/counter_synth_1/runme.log
[Fri Jun 14 17:24:35 2019] Launched synth_1...

Run output will be captured here: Z/ILA_Example_Synthesis/ILA_Example.-runs/synth_1/runme.log
[Fri Jun 14 17:24:35 2019] Waiting for synth_1 to finish..

lssues

v ™ Errors ﬁ Critical Warnings & Warnings @ Infos Show All

[

;. Running: Building Sandbox: ILA_Example

After the build has completed successfully, the generated bit file can be found in the PathWave FPGA
project build results directory. Follow the BSP instructions on how to load the FPGA. The BSP doc-
umentation will specify the type of connection required for hardware debugging. With the debug

cable connected, open the Vivado Hardware Manager and click on 'Open Target' to connect to the
FPGA. After having connected successfully, any detected ILA cores will be displayed in the hardware
panel. Click on the ILA to select it and to use the Vivado Logic Analyzer.

The waveform below shows the 8-bit counter over a few repetitions.
hw_ila_1

Waveform - hw_ila_1

Q + = »r » B B @ I » 1 1= = + wl ?

ILA Status: Idle Run trigger for this ILA core

Name Value

Dashboard Options

. - Tpdated at: zZ019-Jun-17 10:158:33 A
£ > £ >
Settings - hw_ila_1 Status - hw_ila_1 Trigger Setup - hw_il Capture Setup - hw _il
* > » N + D,
et
Core status Idle

Capture status - Window 1 of 1

Window sample 0 of 1024

Without any trigger setup, the trigger position is random. However, the Xilinx ILA debug core sup-
ports advanced trigger setups. As an example, adding a trigger can stabilize the trigger position
within the repetitious waveform.

Trigger Setup - hw_ila_1

Q + =

Mame

application_p... | == %

Operataor

Capture Setup - hw_ila_1

Radix Yalue Port
* probeQ[7:0]

H ~ 0

0

Comparator Lisage
10of1

With the trigger setup above, the trigger position is stable on counter value equals zero condition.

hw_ila_1

Dashboard Options

Waveform - hw_ila_1

Q + = 2 » »
ILA Status: Idle

Name Value

= ap..

.- Updated at:
L4 > £

mE a §

Z019-Jun-17 10:EZ6: 32

Settings - hw_ila_1 Status - hw_ila_1

*r » N

Core status

Capture status - Window 1 of 1

Window sample 0 of 1024

Idle

PRI I L

Trigger Setup - hw_il

Q +

MName

application_p...

-

Fi

Operataor

== W

Radix

H]

W

Yalue
an

Capture Setup - hw_il

W

il

Part
probe0[7:1

Multiple acquisitions now produce exactly the same acquisition data, with the trigger position stable
on counter value equals zero condition.

The other Xilinx debug cores such as Virtual Input/Output (VIO), Integrated Bit Error Ratio Test
(IBERT), JTAG-to-AXI, Memory IP, and System ILA may be used similarly to the ILA debug core. Note
that the System ILA is an IP Integrator block and thus is only applicable to IP Integrator designs. Thus
the System ILA probe connections would not be visible from the PathWave FPGA design as they
would be hidden within the IP Integrator block.

Additional information on debugging using Vivado and using and customizing the ILA may be found
in the following Xilinx documents:

e UG08 Vivado Design Suite Programming and Debugging User Guide
e PG172 ILA (Integrated Logic Analyzer) LogiCORE IP Product Guide

User Constraint Files

In some high performance designs, it may be necessary to add constraints to aid in the build process
for the sandbox. PathWave FPGA supports the addition of user specified constraint files and tcl files
provided that the targeted BSP supports user constraint files. Check the targeted BSP's doc-
umentation to confirm whether user constraint files are supported.

PathWave FPGA supports both the inclusion of Xilinx constraint files (*.xdc) and tcl files (*.tcl). These
may be things like the addition of timing constraints or location constraints to assist in routability and
timing closer. These files may need to be included at certain stages of the build process. The step at
which these files are processed is determined by the name of the file used. Multiple files may be used
to define different constraints to be used at different stages of the build process.

User constraint and tcl files should be placed in the same directory as the PathWave FPGA project
file. Thisis the *.kfdk file for the project. The constraint or tcl file should have the same name as the
project file, followed by a suffix to denote at what step to use the file, followed by either .xdc or .tcl.

Briefly, the build process goes through the following stages:

e Synthesis

» Optimize design (opt_design)

* Place design (place_design)

 Physical optimization (phys_opt_design)
 Route design (route_design)

Files can be specified to run before or after each of these stages by using one of the following suffixes:

e _pre_synth, _post_synth
e _pre_opt, _post_opt

» _pre_place, _post_place
e _pre_phopt, _post_phopt
e _pre_route, _post_route

Any file(s) to be processed should be in the same directory as the project file with the filename
<designName>_<suffix>.<fileType>.

For example, if the PathWave FPGA project file was named mydesign.kfdk, then some possible file
names are mydesign_pre_opt.tcl or mydesign_post_phopt.xdc.

Glossary

Term

Bitfile

Block
Board support package (BSP)

Design Canvas
Design Interfaces
FPGA support package (FSP)

Instrument driver

Interface

IP Repasitory

Module

Port

Program archive
Sandbox

Static region

Submodule

Top level module

Definition
File built from the user design containing the bits to download
to the FPGA sandbox.
An HDL IP block that is placed on the PathWave FPGA design
schematic.
A package containing all of the necessary content to target a
Keysight Open FPGA. These are installed separately from
PathWave FPGA.
The main part of the PathWave FPGA window where the user
develops a schematic.
Blocks which communicate between the user design and the
outside.
The portion of the BSP that allows you to build a bit file for the
target FPGA.
Provides a C/C++/Python API that you can use to download and
control an FPGA bit image.
A set of ports for a block that can be connected to another
compatible interface. Alternatively, an interface can be
expanded and the individual ports can be connected to other
compatible ports.
IP repasitories are libraries of blocks that are loaded into
PathWave FPGA. PathWave FPGA has a builtin IP repository,
each BSP may come with its own IP repository, and the user
may define custom IP repositories. Blocks in these IP
Repositories are available in the panes on the right side of the
PathWave FPGA window.
Either a top level module or submodule that is currently the top
level module for simulation purposes
An input or output signal of a block.
An archive file (.k7z) containing one or more bit files and
associated metadata.
The user-configurable region in the FPGA.
The region of the FPGA that is not user-configurable. This
region is implemented by the BSP.
Hierarchical schematic design that can be instantiated in either
a top level module or another submodule
Top of the user design, defines the |0 of the sandbox.

User Guide Glossary

Primary/Secondary nomenclature

PathWave FPGA has discontinued the use of the terms "master" and "slave" in favor of "primary" and
"secondary" respectively.

Find us at www.keysight.com Page 274

IP Developers Guide

IP Developers Guide

Contents

e Qverview: IP Developers Guide
e |P Packager
» |P Repository Manifest

Find us at www.keysight.com Page 275

Overview: IP Developers Guide

PathWave FPGA allows a range of file formats (e.g. VHDL, Verilog, IP-XACT, etc.) for importing IP for
usage within a project. Among those formats, the recommended one, that optimizes the support of IP
within the software, is IP-XACT. By the usage of this format, PathWave FPGA allows a set of features
and conveniences to be applied which include, among others, packing ports to interfaces, simplifying
components connectivity, documenting IP usage, allowing specification of dependencies (e.g. lib-
raries, constraints, documentation, simulation files), increasing validation on aspects like hardware
compatibility. In this guide, instructions on how an IP-XACT file should be created for an IP, in order
to be successfully imported in PathWave FPGA, are provided.

Generation of IP-XACT file

IP-XACT, also referred to as IEEE 1685-2074, is a standard which defines a set of xml schemas to
describe IP. For more information on IP-XACT, please consult the IEEE 1685-2014 standard.
PathWave FPGA uses IP-XACT to define IP blocks to use in a user's design. PathWave FPGA supports
a subset of the elements defined in the IP-XACT standard along with custom defined elements.

Since the process of creating an IP-XACT file can be tedious and error-prone, PathWave FPGA
includes a tool, IP Packager, that allows IP developers to quickly and effectively create IP-XACT files
for their IP. See IP Packager for a detailed description of this tool.

IP Repositories

IP repositories are directories that contain all the artifacts required to describe an IP. For an IP to be
discovered by PathWave FPGA, an IP-XACT file (of the IEEE 1685-2014 standard) is required. To load
an IP repository, use the Settings Dialog.

To have your IP repository documentation added to the PathWave FPGA, specify your document loc-
ation in the IP Repository Manifest.

https://standards.ieee.org/findstds/standard/1685-2014.html
https://standards.ieee.org/findstds/standard/1685-2014.html
https://standards.ieee.org/findstds/standard/1685-2014.html

IP Packager

Contents

e QOverview

e Start IP Packager
e Welcome Page
e Main Page

e Tabs Section

= General Tab

= Interfaces Tab

= Port Mapping Tab
= Physical Ports Tab
= Parameters Tab
= Enumerations Tab
- FilesTab

Overview

The recommended format for IP import in PathWave FPGA is IP-XACT. PathWave FPGA offers a set of
features and conveniences enabled by using IP-XACT which include packing ports to interfaces, sim-
plifying component connectivity, documenting IP usage, and allowing specification of dependencies
(e.g. libraries, constraints, documentation, simulation files). Since the process of manually creating

an IP-XACT file can be tedious and error-prone, PathWave FPGA includes IP Packager, a tool that
allows IP developers to quickly and effectively create IP-XACT files for their IP.

Start IP Packager

To open up IP Packager GUI, start PathWave FPGA, go to the Tools menu and click /P Packager. This
will bring up the IP Packager GUI.

Import to project

IP-XACT files created by IP Packager can be imported into PathWave FPGA using one of the meth-
ods for importing IP-XACT files described in Adding Blocks.

If a project is loaded in PathWave FPGA, and IP Packager is used to create new IP, the user will be
asked after closing IP Packager if any valid IP-XACT files that were created should be imported into
the open project.

Welcome Page

B 1P Packager O X

IP Packager

New button
Open button

/TEMP/IP/AddSub.1.0xml

Recent Files list

Exit button

New Button

The New button will create a new IP-XACT file. Browse to the directory where the new file should
be saved, and enter a file name.

Open Button

=
The Open button lets you load an existing IP-XACT file for editing.

Recent Files List

This will display a list of up to 10 files that were previously processed by the tool, with the most recent
firstin the list. Select a file and click Open Recent, or double-click a file to open it immediately.

Exit Button

X
The Exit button, exits the IP Packager.

Main Page

B 1P Packager - C/TEMP/IP/AddSub.1.0.xml - u] X

Menu button

> General Interfaces Port Mapping Physical Ports Parameters Enumerations

VLNV
Venc com Library math

File buttons Nam Version 1.0.0
Information

ule Name AddSub
Configurable adder/subtractor

Tabs section

Close button

Menu button

This button is a toggle switch used to shrink all the menu buttons down to their icon. Click it again to
expand them to their normal size.

File Buttons

The — New button will create a new IP-XACT file. Browse to the directory where the new file should
be saved, and enter a file name. The shortcut is Ctrl-N.

=
The Open button lets you load an existing IP-XACT file for editing. The shortcut is Ctrl-O.

The *Autofill from file button is used to load information from a design file (such as VHDL, Verilog,
XCl, or IP-XACT). For example, loading a VHDL or Verilog file will fill the name, physical ports, inter-
faces, parameters, and will add the file to the Files tab. Interfaces may be inferred from the physical
ports by their port names, see Infer Interface Reference. The default for the checkbox controlling
interface inference is set in the PathWave FPGA Configuration dialog. The shortcut is Ctrl-Shift-0.

v
The Validate button checks whether the current information is valid and sufficient to describe the
IP. The shortcut is Ctrl-W.

(=]
The — Save button saves the current state of the IP to the path selected during the creation of a New
file or the path of the file opened. Before saving, it validates the IP and reports any issues. The short-
cutis Ctrl-S.

The ~ Save As button allows you to save a new copy of the IP in a different directory or file name.
The shortcut is Ctrl-Shift-S.

The xClose button will close the currently loaded file. If there are unsaved changes, you will be
prompted to save them.

To exit IP Packager, use the Close button on the window title bar, or press the Escape key. If a project
was loaded in PathWave FPGA while starting the /P Packager, you will have the option to import the
IP-XACT files you created into the open project.

Tabs Section

General Tab

This tab contains identification and other relevant information about the IP.

B 1P Packager - C:/TEMP/IP/AddSub.1.0xml - o x

VLNV

Module Name
Category

Description

VLNV

VLNV stands for Vendor-Library-Name-Version and is a concept introduced by IP-XACT. The VLNV of
an IP is defined in the first four fields of an IP-XACT component.

PathWave FPGA uses the VLNV value to uniquely identify IP, hence each IP must have a unique com-
bination of Vender, Library, Name, and Version. The library field is used to categorize IP in the IP Cata-
log.

Module Name

This field must match the module name (for Verilog and SystemVerilog) or entity name (for VHDL) of
the top-level module represented by this IP. By default, this will be the same as the Name field.

Category

This is an optional field. It is used by PathWave FPGA to further categorize the IP inside the IP Cata-
log. The library field will label the first level of the tree path, any entries in the Category field will label
intermediate levels in the tree path, and the component Name will label the leaf.

For example, if an IP has the VLNV keysight.com::Algorithms::StreamAdder::1.0 and the category
Math, it will be available in PathWave FPGA library under the tree path:

® Al GORITHMS
- MATH
B StreamAdder

Categories can be nested with the slash character (forward or backward). For the example above, but
with the category Math/Adders, tree path would be:

= ALGORITHMS
- MATH
= ADDERS
B StreamAdder

Description

It provides a text section for entering a description about the IP being created. PathWave FPGA dis-
plays the IP description when a component is added into the design canvas, and also in the com-
ponent's Properties dialog. This is an optional field.

Interfaces Tab

Use this tab to configure the standard interfaces in the IP definition. The usage of this tab is similar to
the one defined in Configuring Submodule Interfaces. Please consult that page for usage instructions.

- IP Packager - C:/TEMP/IP/AddSub.1.0ml

General

Name
clk

Interface List

Interface Control
Buttons

Component
Preview

Port Mapping Tab

Interfaces Port Mapping Physi

Inter

clk

A
B
mem_1

Parameters Enumerations Files Hardware

Name
Display Name

Description

Interface Role

Max Pending Read Trans:

Write

Name and Description

Interface Role

Synchronous
Properties

Each interface added in the Interfaces tab has one or more logical ports. These need to be mapped to
the physical ports of the IP design.

: IP Packager - C:/TEMP/IP/AddSub.1.0xml

General

Name
clk
rstn
A

B
Dout

Interface List

Component
Preview

Interface List

Parameters Enumerations Files

Mappings

Hide Mapped
Hide Optional

¥ HideIn

mpatible

Mapping Filters

Physical Port Filters

Mapping Buttons

Physical Port List

Mapping List

This list shows the interfaces that are defined in the Interfaces tab. Select an interface to show the
logical ports for that interface.

Component Preview

This preview shows how the IP component will be displayed in a PathWave FPGA canvas. When an
interface is selected in the Interface List, that interface will be highlighted in the preview.

Mapping Filters
All Interfaces radio button: When selected, the Mapping List will show the logical ports for all inter-
faces. A new column will appear to show which interface the logical port is from.

Selected Interface radio button: When selected, the Mapping List will show only the logical ports for
the interface selected in the Interface List.

Hide Mapped: The Mapping List will only show logical ports that have not been mapped. Use this to
focus on mapping the unmapped ports.

Hide Optional: The Mapping List will only show logical ports that are required by the interface. Any
unmapped optional ports will be disabled when the IP is saved.

Mapping List

A table that displays the mappings between logical ports of interfaces to physical ports of the IP. It
contains three columns:

® |nterface: (Only visible when the All Interfaces radio button of the Mapping Filters is selected) This
shows the name of the interface to which the logical port belongs.

® | ogical Port: This shows the name of the logical port. For a specific row, it shows the name of the
logical port that takes part in the mapping. An icon with the direction of the logical port is dis-
played on the left side.

® Physical Port: This shows the name of the physical port that the logical port is mapped to. If the
logical port is not mapped to a physical port, this will show the red open mapping icon g if the
logical port is required, or the yellow open mapping icon gi¥ if it is optional. The green connected

mapping icon & indicates that the port is mapped.

Mapping buttons

-

= Map button: This will map the logical port selected in the Mapping List to the physical port selec-
ted in the Physical Ports List. You can also double-click the physical port to map it to the selected
logical port.

5
Unmap button: This will remove the mapping of the selected logical port.

2
o Map to new button: This will create a new physical port and map it to the selected logical port. The

name of the physical port is <interface name>_<logical port name>.

“ Map all to new button: This will create new physical ports for all unmapped logical ports in
the Mapping List. It behaves the same as the Map to new button.

d Infer interfaces button: This will infer interfaces from physical ports by their port names. For full
inference rules, see the Infer Interface Reference. Any newly inferred interfaces will appear in the Inter-
faces List and the logical ports of those interfaces will be mapped to their physical ports. The inter-
face names and graphical order may be changed, and interface descriptions may be entered, in the
Interfaces Tab.

Physical Port Filters
Hide Mapped check box: When checked, the Physical Ports List will not show any physical ports that
are mapped to a logical port other than the one selected in the Mapping List.

Hide Incompatible check box: When checked, the Physical Ports List will not show any physical ports
that are incompatible with the logical port selected in the Mapping List.

Sort check box: When checked, the Physical Ports List will show the ports in alphabetical order. Other-
wise the ports will be in the order that they appear on the Physical Ports Tab.

Filter: The Physical Ports List will only show physical ports that contain the text in their name. The fil-

tering is case-insensitive.

Physical Port List

A list of the physical ports for the IP. Use the Physical Port Filters to show only a subset of the physical
ports. If a logical port is selected in the Mapping List, you can double-click a physical port to create a
mapping between the two.

]
icon and red text color is used for incompatible physical ports

5
icon is used for unmapped compatible physical ports

-

icon is used for mapped compatible physical ports

icon is used for the physical port that is actually mapped to the selected logical port

Physical Ports Tab

The physical ports are the ports presented by the IP top-level implementation file. Usually they are
loaded from a file, but you may create or modify them manually if needed.

! IP Packager - C:/TEMP/IP/AddSub.1.0.xml| o X

Name and
Description

Direction
Default Value

Physical

Port Table Vector Bounds

Component Preview

Physical Port
Control Buttons

Physical Port Table

Contains a list of the physical ports for the IP. Each port is displayed in columns showing its name, its
direction and size, default value if appropriate, and its assigned interface.

Physical Port Control Buttons

* Add button: Creates a new physical port with a unique name.

" Remove button: Removes the selected physical port.
Up button: Moves the selected physical port up.

Down button: Moves the selected physical port down.

Name and Description

The Display Name is what will appear in PathWave FPGA. The Description can be viewed by double-
clicking the port on an instance in the canvas.

Default Value

This value is used when the port is not connected. When the field is empty, it will show the default
value for the logical port of the mapped interface in gray text. The default value can only be set for
input ports.

Vector Bounds
Configure the left and right bounds of a vector to set the width. Either the left or right bound must be
0.

When an interface is uses the 'Map to New' functionality from the 'Port Mapping' tab, the vector
bounds will default to (-1,0) if the size of the port on the interface is Variable. The user must replace
this incorrect vector width with a valid vector width.

Component Preview

This preview shows how the IP component will be displayed in a PathWave FPGA canvas. When an
unmapped physical port is selected in the Physical Port Table, that port will be highlighted in the pre-
view.

Parameters Tab

A model might use parameters for controlling the port widths or any other configurable feature of the
model. The Parameters Tab allows you to add, modify, and remove parameters.

: IP Packager - C:/TEMP/IP/AddSub.1.05ml — o X

Name and
Description

Datatype
Value

Parameters List
Range

Attributes

Parameters
Control
Buttons

Parameters List

Contains the list of parameters of the IP. Each entry is split in three columns:

» Name: displays the name of the parameter. In case this is a module parameter, it should match the
name in the actual design file.

» Datatype: displays the acceptable datatype of the value.
» Value: displays the default value of the parameter.

Parameters Control Buttons

* Add button: Creates a new parameter with a unique name.

" Remove button: Removes the selected parameter.
Up button: Moves the selected parameter up.

Down button: Moves the selected parameter down.

Name and Description

The fields of this group describe the parameter:

« Name: the name of the parameter. In case this is a module parameter, it should match the name in
the actual design file.

» Display Name: a user friendly name for this parameter. This name will be shown in PathWave
FPGA.

 Description: a description for this parameter. The description will be available in PathWave FPGA.

Datatype
PathWave FPGA supports the following data types for parameters:

e Bit: represents 1-bit value

e Byte: represents an integer value of 8-bits

« Short Integer: represents an integer value of 16-bits
e Integer: represents an integer value of 32-bits

» String: represents a string of characters

Value

The value or expression to be used by default for this parameter. The possible value is restricted by
the selected datatype and the specified Range.

Range

Allows three different range validations for the value of the parameter:

No Range: If this is selected, the value of the parameter is only limited by the available range of the
selected datatype.

Min/Max: If this is selected, two extra fields are displayed to define the continuous value range for
the parameter. This selection has no effect if the selected datatype is string or bit.

= Minimum: The minimum value the parameter can take. The value should have the same data-
type as the one selected for the parameter and should be no larger than Maximum. If left empty,
minimum is the .

= Maximum: The maximum value the parameter can take. The value should have the same data-
type as the one selected for the parameter and should be no smaller than Minimum. If left
empty, maximum is the +e.

Enumeration: If this is selected, a menu with the available valid enumerations is displayed. If noth-
ing is displayed, go to the Enumerations tab to add a new enumeration or fix an invalid one. The
value of the parameter is restricted by the allowed values of the selected enumeration.

Attributes

Is User Configurable checkbox: If this is checked, each instance can give this parameter a different
value than the default. User Configurable parameters will be displayed to the PathWave FPGA users
in the component dialog of this IP. This box should be unchecked for parameters that are not directly
controlled by the user. This would be the case if a parameter is an expression of other parameters
and hence can be calculated from these other values.

Enumerations Tab

Some parameters of the model may be restricted to specific discrete values. The Enumerations Tab
allows the user to specify enumerations that can be used as range validators inside parameter defin-
itions.

: IP Packager - C:/TEMP/IP/AddSub.1.05mml| - o X

General Interfaces PortMapping = Physical Ports =~ Parameters

E] : Enumeration Name

Enumeration Mode

Enumeration Values
Control Buttons

Enumerations

List
Enumeration Values
List

Enumerations
Control Buttons

Enumerations List
This is the list of enumerations that are defined in the context of the IP and can be referenced by para-
meters.

The names of the enumerations should be unique and should start with a letter, colon (;) or under-
score (_) character and can be followed by any number of letter, numeric, colon (:), underscore (),
dot (.) or hyphen (-) characters.

If an enumeration is invalid (in case of invalid name structure or because of insufficient number of
defined elements), it is displayed with red text color and a tooltip is available that describes the issue.

Enumerations Control Buttons

~ Add Enumeration button: Creates a new enumeration and adds it to the list, giving it a unique
name.

Remove Enumeration button: Removes the currently selected enumeration from the enu-
merations list. If the enumeration selected is being used by any parameter of the model, the user will
be given the option to abort the remove action.

Enumeration Name

Name of the currently selected enumeration. Can be edited to change the name. If an invalid name is
entered, the name will turn red and the enumeration list will not be updated until the name is
changed to a valid value.

Enumeration Values List

This is the list of values that a selected enumeration can take.

The definition of values can take two formats:

B [ist of name/value pairs: in this case, the names of the list should be unique

B [ist of values: in this case, the values should be unique

Enumeration Values mode

Value Mode combo box: Changes between the two element value types: Name Value Pair or Value
Only.

Enumeration Values Control Buttons

* Add Enumeration Value button: Creates a new enumeration name/value pair (or just value, if Enu-
meration Values mode is Value Only).

Remove Enumeration Value button: Removes the selected enumeration value from the list.

Files Tab

An IP-XACT file describes IP defined in one or more other files, such as VHDL or Verilog files. This tab
defines the files used for the IP during the build process, as well as documentation files in PDF format.

I IP Packager - C:/TEMP/IP/AddSub.1.0.ml — [m] ¥

General Interfaces ~ Port Mapping Physical Ports ~ Parameters Enumerations Files

% File Path 4 = File Type
o src/AddSub.vhd 3 VHDL (.vhd)

File Context Menu

File List

Remove Button

Load From
File Button

File Control

Load from file * Remove Selected Files
Buttons

File List

Displays the list of files that will be used during the synthesis and implementation of the IP, as well as
documentation files in PDF format.

e There must be at least one implementation file defined for each IP-XACT file.

» Files are represented either by their absolute path or by the relative path from the parent directory
of the IP-XACT file. By default, all the files are represented by their relative path. Right-click a file
to change the path to absolute or back to relative. Double-click a file to manually modify the path.

« Afile will be highlighted in red if any errors are detected with that file. Hovering over the bad file
will show a tooltip describing the error.

» Adocumentation file can be provided in the form of a PDF file. This file will then be displayed to the
user when he asks for help for this IP.

File Control Buttons

Add Files button: Browse to the implementation files for this IP and add them to the File List. You
may select multiple files at once.

=
Add Folder button: Add all the implementation files in a directory to the File List. This will not
include files in subdirectories.

B
Add Folder (Recursive) button: Add all the implementation files in a directory to the File List. This
will search all subdirectories recursively.

Load from File button: This button will load the physical ports and parameters from the selected file.
Any existing physical ports and parameters are replaced with the ports and parameters loaded from
the file. The port mappings will be restored to compatible physical ports with the same name. If an
existing parameter is also in the file, the value and data type will be updated while all other properties
remain unchanged. If an existing parameter is not in the file, it will be removed. Interface names and
descriptions are restored if possible. Interfaces may be inferred from the physical ports by their port
names. For full infer rules see, Infer Interface Reference. The default for the checkbox controlling
interface inference is set in the PathWave FPGA Configuration dialog.

" Remove Selected Files button: Remove the selected files from the File List.

File Context Menu

" Remove: Removes the selected files from the File List.

Use Absolute Path: Converts the selected file path from relative to absolute. This will only appear if
one or more selected files are in relative form.

Use Relative Path: Converts the selected file path from absolute to relative. This will only appear if
one or more selected files are in absolute form.

Additional Interface Properties

Some interfaces include additional properties that can be set by the user. These additional properties
are used by other Keysight products that consume the outputs of PathWave FPGA. If you do not know
if you should change these properties or not, it is recommended to leave them as their defaults.

Mem - Secondary

When a mem interface is added using the secondary interface role, four new properties are added.
These properties set the latency and the maximum pending transactions for the mem bus.

Read Latency: The number of clock cycles from the beginning of a read transaction until its com-
pletion. For example, for a mem interface, the number of clock cycles between when 'rdEn' is asser-
ted until when the 'rdData’ value is valid.

Max Pending Read Transactions: Maximum number of currently pending read transactions. A value of
'0' means the current read transaction must finish before the next one is started. The value must be
less than the Read Latency.

Write Latency: The number of clock cycles from the beginning of a write transaction until its com-
pletion. For example, for a mem interface, the number of clock cycles between when 'wrkn' is asser-
ted until when the 'wrData' value reaches its destination.

Max Pending Write Transactions: Maximum number of currently pending write transactions. A value
of '0' means the current write transaction must finish before the next one is started. The value must
be less than the Write Latency.

General Interfaces Port Mapping Physical Ports Parameters Enumerations Files Hardware

R New.

& Open._.. e 5 e . v Name merm_1

*. Autofill from file... : EEVEET]

fds_tx_1 fds_tx Secondary X R
<~ Validate . Description

B
B SaveAs..
Interface Role Secondary
ynous Properties
ciated Clock clock_1

ciated Reset nRst_1

Max Pending Write Transactions
clock_1
nRst_1 fds_tx_1
mem_1

Fds_Tx - Secondary

When an fds_tx interface is added using the secondary interface role, one new property is added. This
property defines the number of clock cycles that the fds interface will wait on read transactions
before capturing the data from the user IP after the address and valid is set.

Read Latency: The number of clock cycles that the FDS interface will wait on read transactions before
capturing the data from the user IP after the address and valid is set. For example, Read Latency of 1
means that the data will be captured the next clock cycle, while O means that the data will be cap-
tured immediately.

This property has two valid configurations: a non-negative integer, or the name of a parameter on the
IP. If set to an invalid integer or a string that is not tied to a parameter, the read latency will always
register in PathWave FPGA as 0.

When set to an integer, the read latency is fixed to this value and cannot be changed without repack-
aging the IP.

General Interfaces Port Mapping Physical Ports Parameters Enumerations Files Hardware

R New.

Name

& Open... == = . Name fds_tx_1

*. Autofill from file... P— mem EEVEET]

fds_tx_1 fds_tx
<~ Validate... T - Description

Interface Role Secondary

ynous Properties

ted Clock clock_1

Associated Reset nRst_1
FDS

Read Latency (clock cycles) 1

nRst_1 fds_tx_1
mem_1

* Close

When set to the name of an existing parameter, the read latency is Variable and tied to the value of
that parameter. This method allows for IP that has a Variable FDS read latency. An autocomplete list
will help with ensuring that the string set in this field exactly matches existing parameters.

B 1P Packager - Ci/work/Demo/testxml™ O bt

General Inte: Port Mapping Physical Poris E Enumerations Files: Hardware

R New.

Name

& Open._.. ; — n Name

*. Autofill from file... T e Display Name

fds_tx_1 fds_tx
Validate... T - Description

B Save

B Save As...
Interf; 0

Synchronous Properties

ead
fdsReadlLatency

nRst_
mem_1

Close

IP Repository Manifest

The IP repository manifest is a JSON file that describes various aspects of an IP repository. Currently,
the primary use for this manifest is to define a location for the repository documentation. If the doc-
umentation location is defined, PathWave FPGA will add a link to it in the Help = IP Repositories

menu.

The manifest file must be named "manifest.json" and must be located in the root of the IP repository
path.

Manifest Format
Below is an example of an IP repository manifest:

{
"manifest": {
"version": "1.0",
"type": "IP Repository Manifest"
s
"repository”: {
"name": "PathWave FPGA Example IP",
"version": "1.0.0",
"description”: "Example IP description”,
"doc": {
"path": "doc/ExampleDoc.pdf",
"url”: "www.example.com/ExampleDoc.pdf"
}
}
}

If path or url is not empty, PathWave FPGA will add a menu item named "<name> - <version>" to
the Help - IP Repositories menu. If both path and url are defined, path takes precedence.

The description element is not currently used by PathWave FPGA.

Tutorials

Tutorials

Contents

» |P Packager Tutorial

HVI Example
Import Vivado High-Level Synthesis (HLS) generated IP
Power of Two Decimation Tutorial

Xilinx System Generator for DSP™ Tutorial

Find us at www.keysight.com Page 297

|P Packager Tutorial

While PathWave FPGA can directly import simple HDL files directly, more complex designs need to
be "Packaged" to be fully supported in PathWave FPGA. Packaging means creating an IP-XACT 2014
(IEEE 1685-2014) file to describe the IP. An IP-XACT file contains information about IP that describes
things like the ports, the interfaces, the files needed to build it, descriptive text, and customization
parameters among other things. Packaging IP is needed if the IP needs more than one source file to
be built (e.g. if the design is hierarchical), if the design wants to use interfaces but the port names
don't match the PathWave naming convention, or if the design uses complex expressions in its para-
meterization.

A big reason to package IP is to utilize logical interfaces. An HDL IP block has physical ports which
are the input and output signals for the IP block. One or more of these ports can be combined into a
logical interface which describes how the signals interact and connect with other signals. An interface
may consist of a single port or even a signal wire. An example of this is a clock interface. Other inter-
faces, such as the AXI-MM interface, may have dozens of potential ports. By describing which ports
constitute a particular interface and which role each port has, the IP-XACT description eases con-
necting interfaces together. Two AXI interfaces can connect together with only one graphical con-
nection even though a considerable number of individual ports will be connected in the hardware.

While the IP-XACT file is text and can be manually created in any text editor, it is simpler and easier to
use the PathWave FPGA IP Packager.

These tutorials will show how to package (create IP-XACT) for simple and not so simple IP blocks
using the PathWave FPGA IP Packager.

The example files used in these tutorials can be found in the PathWave FPGA install directory under
examples\IpPackagerTutorial.

There are four tutorials. The first tutorial, Simple HDL done automatically, shows the easiest way to
package a design. In this tutorial, most of the information is autofilled from the source HDL file.

In the second tutorial, Simple HDL done manually, the same HDL file is packaged manually rather
than using the autofill from file function. This tutorial shows how to manually modify ports and inter-
faces.

The third tutorial, Parameterized HDL, shows how to generalize an IP block using simple parameters.
This includes different types of parameters such as integer, bit, or enumerated.

The fourth tutorial, Advanced IP Packaging, shows more advanced techniques such as using non-
user configurable parameters, parameter expressions, and design hierarchy.

https://standards.ieee.org/findstds/standard/1685-2014.html

Simple HDL done manually

Instead of automatically filling in the ports and interfaces from the IP's HDL source file, as described
in the previous tutorial, the information may be added manually. This might be useful if the HDL for
the IP doesn't yet exist or if the IP already has IP-XACT but the IP has changed, e.g. a new port was
added. Inthat case it might be easiest to manually make the changes.

This tutorial will package the same module used in the previous tutorial:

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;
entity incrl is

port (
clk : in std_logic;
nrst : in std_logic; -- Active low reset
incr : in std_logic_vector(7 downto ©0);

count_tdata : out std_logic_vector(7 downto 9);
count_tvalid : out std_logic
)
end incril;
architecture Behavioral of incrl is
signal count : std_logic_vector(7 downto 0);
begin -- Behavioral
count_tdata <= count;
count_tvalid <= '1"' when (incr /= @) else '0';
process(clk)
begin
if (nrst = '@') then
count <= (others => '0');
else
count <= count + incr;
end if;
end process;
end Behavioral;

This block will increment an internal counter based on its incr input and output the counter value on
an AXl-streaming count interface. It also has a clock input and an active low nrst input.

To package this IP, first start the IP Packager which is located in the Tools menu inside PathWave
FPGA. The manual process starts the same as in the previous tutorial. We'll call this one version 1.1
to differentiate it from the previous tutorial. Click the "New..." button and navigate to the desired loc-
ation for the IP-XACT file, enter "incr1.1.1" for the name for the file, and click "Save":

P P)

W e

& Open...

Look in: B c:\TEMP\ipTutorial - % & &4 # B B8

3 My Computer h_larﬂe Si e ate M |:I_nfied
Recent Files: F stetitus KEYS iner1. 1. ytes 3 211

L
File name: incr1.1.1 Save

Files of type: | IP-XACT files) Cancel

You now have a mostly empty description of the IP block:

B 1P Packager - C:/TEMP/ipTutorial/incr1,1.1acml O bt

= General Interfaces Port Mapping Physical Ports Parameters Enumerations Files:
R New.

& Open...

VLNY

*_Autofill from file. Vendor _vendor_undefined_ Library _library_undefined_

Name incrl Version 1.0.0
Validate...

B Information

B SaveAs.. Module Name incrl

This time, we won't click the Autofill from file.... Instead we'll enter the information manually.

Fill out the fields in the General tab as shown below. This time we'll use Version 1.1;

B 1P Packager - C/TEMP/ipTutorial/incr1.1.1sml* O bt

General Interfaces Port Mapping Physical Poris Parameters Enumerations Files

R New.

& Open...

VLNY

*_Autofill from file._ Vendor mycompany.com Library MylpBlocks

Name incrl Version 1.1.1
Validate...

Information
Module Name incrl

C:

Description Count i ments in multiples of

Now it is time to enter the physical ports in the IP block using the Physical Ports tab:

B 1P Packager - C/TEMP/ipTutorial/incr1.1.1sml* O bt

«
R New.

& Open...

General Interfaces Port Mapping Physical Ports Parameters Enumerations Files

MName Direction Size Default Value Assigned Interface

*. Autofill from file...
< Validate...

B Save

B SaveAs..

Initially the list of ports is empty. To add ports, we first create a new port with the +Add button,
change the name to the actual port's name, set the Direction to either Input or Output, and if the port
is a vector, specify the bounds.

First we'll add the clk port. Click the +Add button to add a port. Change the port name from the
default port_Oto clk. The default Direction is Input, so this does not need to be changed.

Next we'll add the nrst port in the same way:

B 1P Packager - C/TEMP/ipTutorial/incr1.1.1sml* O bt

«

R New.
o MName Direction Size Default Value Assigned Interface
i Open... clk jnput 1 O

*_ Autofill from file... et DREE Display Name

General Interfaces Port Mapping Physical Ports Parameters Enumerations Files

Name nrs|

« Validate... Description

B Save

B SaveAs..
Direction input

Default Value

Is Vector

We then add the incr port. This one is a vector, so the Is Vector box is checked, and the Left Bound is
changed to 7:

a IP Packager - C:/TEMP/ipTutorial/incrl.1.1xml™

«
R New.

& Open...

General Interfaces

Name
clk
nrst

» A i i -
Autofill from file... incr

< Validate...

B Save

B SaveAs..

Port Mapping

Physical Ports Parameters

Direction Size Default Value Assigned Interface
input 1 0
input 1 0
input 8 0

Enumerations Files

Name incr
Display Name

Description

Direction input
Default Value

¥ Is Vector
Left Bound

Right Bound

We then add the ports count_tdata and count_tvalid in a similar way. These will need the Direction

changed to Output:

B 1P Packager - C/TEMP/ipTutorial/incr1.1.1sml* O bt
«
R New.

General Interfaces Port Mapping Physical Ports Parameters Enumerations Files

MName Direction Size Default Value Assigned Interface
& Open... clk input Name count_tdata
nrst input 0 i
incr inElut 8 DEDIEYNERS
. count_tdata output S
+ Validate... count_tvalid output Description

*. Autofill from file...

B Save
B SaveAs..
Direction output
v Is Vector

Left Bound

Right Bound

incri
count_tdata
count_tvalid

Since we haven't assigned or even defined any interfaces yet, the Assigned Interface column is blank.

Next we'll define the interfaces for this block. First, select the Interfaces tab:

a IP Packager - C:/TEMP/ipTutorial/incrl.1.1xml™ O

«
R New.

& Open...

General Interfaces Port Mapping Physical Ports Parameters Enumerations Files

Name Interface Role

*. Autofill from file...
« Validate...
B Save

B SaveAs..

No interfaces have been created.

To get started, click on the Add button to the left and select the first
interface you want to add in your design.

incri
count_tdata
count_tvalid

This is initially blank. We create interfaces in a similar way as we created ports, except we have to spe-
cify what kind of interface we're creating. We'll start with the clock interface. Click the +Add button
and select Clock from the pull down menu to create the clock interface. Name the interface clk. The
text will show up as yellow, signifying a warning that the clk interface shares the same name as the
unmapped clk port (this will be mapped later). The Interface Role is somewhat analogous to Direction
was for ports. Per the IP-XACT specification, a Primary is the side of an interconnect that instigates
transactions, while the Secondary is the side of the interconnect that responds to transactions. For a
simple interface such as a clock, an Output port would be the Primary, and an Input port would be
the Secondary. For more complex interfaces, there may be multiple ports in the interface, and some
may be Output ports and some may be Input ports. In this case, the clock interface would be a Sec-
ondary interface, so we can leave the default Interface Role alone.

a IP Packager - C:/TEMP/ipTutorial/incrl.1.1xml™

- General Interfaces Port Mapping Physical Ports
R New.

B Open Name Interface Role
en...

*. Autofill from file...

« Validate...

clock
nRst
mem incr1
count_tdata
st count_tvalid

hvi_instr

Parameters Enumerations Files

No interfaces have been created.

To get started, click on the Add button to the left and select the first
interface you want to add in your design.

a IP Packager - C:/TEMP/ipTutorial/incrl.1.1xml™

General Inte: Port Mapping Physi

R New.

B Open Name Interface Role
en...

clock_1 clock Secondary
*. Autofill from file...
< Validate...

B Save

B Save As...

incr1

count_tdata

Close

| Ports

Name
Display Name

Description

Enumerations

' IP Packager - C/tutorial/incr1.1.1.xml*

General Interfaces Port Mapping Physical Ports Parameters Enumerations

BNew...
& Open... Name Interface Role
clk clock Secont
* Autofill from file... Display Name

Name

< Validate... Description
B save
B Save As...

Interface Role Secondary

In the same way, create a nRst interface and a vector interface:

Files

' IP Packager - C/tutorial/incr1.1.1.xml* O X

General Interfaces Port Mapping Physical Ports Parameters Enumerations

BNew...

& Open... Name Interface Role
clk clock S
* Autofill from file... nrst nRst
incr vector

Name incr|

Display Name

< Validate... Description
B save

B Save As...

Interface Role Secondary

count_tdata
count_tvalid

Now we'll create the Axi4-streaming interface for the count signals. Click the +Add button and
select axis for the interface type. Name the interface count. This interface has more options than the
clock or vector interfaces had:

' IP Packager - C/tutorial/incr1.1.1.xml* O X

General Interfaces Port Mapping Physical Ports Parameters Enumerations Files

BNew...

& Open... Name Interface Role
clk clock Secont
* Autofill from file... nrst nRst
incr vector Secont
« Validate... count axis Seconi

B save

Name count|
Display Name

Description

B Save As...

Interface Role Secondary

Optional Ports Selection

Select All Deselect All

v tdata v tdest v tid

clk v tkeep v tlast v tready
nrst
incr count_tdata

v tstrb v tuser

count count_tvalid

clk Synchronous Properties
nrst

incr Associated Clock clk

Associated Reset nrst

The Axi4-streaming specification has some required signals, such as the tvalid signal. It also has
optional signals which may or may not be in that interface. These are specified in the Optional Port
Selection pane. This interface only has the optional tdata signal. Click the Deselect All to clear all
the check boxes and then check the tdata box. In this case, the IP block instigates transactions on
the count interface, so change the Interface Role to Primary. The Axi4-streaming specification
requires a clock and reset to be associated with the interface. These are specified in the Synchronous
Properties pane. Since there is only one clock and one reset in this design, the default values are fine.
If there were more than one clock, you would pick which clock to use for this interface. Note: this
means you should specify a clock and a reset interface prior to creating an Axi interface:

' IP Packager - C/tutorial/incr1.1.1.xml*

General Interfaces Port Mapping

BNew...

& Open... Name Interface

clk clock
* Autofill from file... nrst nRst
incr vector

< Validate... count axis

B save

B Save As...

count

count_tvalid

Physical Ports Parameters Enumerations
count
Display Name

Description

Interface Role Primary

Optional Ports Selection

Select All Deselect All

v tdata tdest
tkeep tlast

tstrb tuser

Synchronous Properties

Associated Clock clk

Associated Reset nrst

Now that all the ports and interfaces have been created, we need to map the logical ports of each
interface to its physical port. Select the Port Mapping tab. We'll select each interface in turn and

map its ports. First select the clk interface:

' IP Packager - C/tutorial/incr1.1.1.xml* O

«
BNew...

& Open... Interface Role Mappings Physical Ports
clock Secondary
* Autofill from file... nRst All Interfaces Hide Mapped v Hide Mapped
vector
< Validate... axis Primary

General Interfaces Port Mapping Physical Ports Parameters Enumerations Files

+ Selected Interface Hide Optional v Hide Incompatible
B save Logical Port Physical Port = Filter:
clk N o ¥ clk

7 nrst
¥ incr
~ count_tdata
¥ count_tvalid

B Save As...

count

count_tvalid

The middle pane shows the logical ports for that interface along with any mapping (since we haven't
mapped it yet, the Physical Port column is blank). The right pane shows a list of possible physical
ports.

If you click on the clk logical port in the middle pane, you'll see the list of possible physical ports has
been limited to compatible and unmapped ports. By default it won't show ports that aren't com-
patible or have already been used. If desired you can change these settings:

' IP Packager - C/tutorial/incr1.1.1.xml* O X

«
BNew...

General Interfaces Port Mapping Physical Ports Parameters Enumerations Files

& Open... Name Interface Role Mappings Physical Ports
clk clock
* Autofill from file... nrst nRst All Interfaces Hide Mapped v Hide Mapped
< Validate... |[n: :l.rII‘IT_ ;:IC;L or Prim. :r(¢ Selected Interface Hide Optional v Hide Incompatible

i i of - -
B save Logical Port Physical Port < Filter:
clk N o~ * clk

7 nrst

B Save As...

count
count_tdata
count_tvalid

Select the clk physical port, then click the Map button. This is the green connection button that is the
top button between the Mappings and Physical Ports panes:

- IP Packager - C:/tutorial/incr1.1.1.xml* O X

«
B New...

& Open... Name Interface Role Mappings Physical Ports

clk clock Secont
*. Autofill from file... nrst Seconc All Interfaces Hide Mapped v Hide Mapped

incr e

General Interfaces Port Mapping Physical Ports Parameters Enumerations Files

» Selected Interface Hide Optional v Hide Incompatible

< Validate... count Primar

Logical Port Physical Port 3 Filter:

clk - Map selected logical to selected physical port

¥ nrst

B save

B Save As...

count
count_tdata
id

After mapping the port, you'll see it connected:

' IP Packager - C/tutorial/incr1.1.1.xml* O X

«
BNew...

General Interfaces Port Mapping Physical Ports Parameters Enumerations Files

& Open... Name Interface Role Mappings Physical Ports
clk clock
* Autofill from file... nrst nRst Seco All Interfaces Hide Mapped v Hide Mapped

incr vector Seconc
< Validate... count a:i‘:“ Primar i’ Selected Interface Hide Optional v Hide Incompatible

i i of - -
B save Logical Port Physical Port < Filter:

clk = clk @ clk

B Save As... ¥ nrst

count

Select the nrst interface and map it to the nrst physical port, and likewise map incr to the incr port.
Instead of using the Map button, you can alternately click on the Logical Port and then double click
on the desired Physical Port:

' IP Packager - C/tutorial/incr1.1.1.xml* O X

«
BNew...

& Open... Name Interface Role Mappings Physical Ports
clk clock {
* Autofill from file... nrst nRst Secomn All Interfaces Hide Mapped v Hide Mapped
< Validate... I[Tfl:m :ii[:tm gzﬁ?amr ¢ Selected Interface Hide Optional v Hide Incompatible

General Interfaces Port Mapping Physical Ports Parameters Enumerations Files

i i of - -
B save Logical Port Physical Port < Filter:

Signal = iner @ incr
B Save As... :

count

Now we want to map the count interface. This one is a little different because it has two ports asso-
ciated with the interface:

' IP Packager - C/tutorial/incr1.1.1.xml* O X

«
BNew...

& Open... Interface 0 Mappings Physical Ports
clock
* Autofill from file... nRst All Interfaces Hide Mapped v Hide Mapped
vector
< Validate... axis

General Interfaces Port Mapping Physical Ports Parameters Enumerations Files

+ Selected Interface Hide Optional v Hide Incompatible

B save Logical Port Physical Port = Filter:

tdata N o~ * count_tdata

B Save As... ¥ count_tvalid

WELD]

count

Mapping is done the same way, select the tdata logical port and map it to count_tdata, then select
the tvalid logical port and map it to count_tvalid:

' IP Packager - C/tutorial/incr1.1.1.xml* O X

«
BNew...

& Open... Interface Mappings Physical Ports

clock
* Autofill from file... nRst All Interfaces Hide Mapped v Hide Mapped

General Interfaces Port Mapping Physical Ports Parameters Enumerations Files

< Validate... T ¢ Selected Interface Hide Optional v Hide Incompatible

i i of - -
B save Logical Port Physical Port < Filter:

tdata # count_tdata % count_tvalid
B Save As... -

tvalid = count_tvalid

count

Note that the names of the interfaces no longer show up in yellow, as they have been mapped to their
respective physical port.

' IP Packager - C/tutorial/incr1.1.1.xml* O X

General Interfaces Port Mapping Physical Ports Parameters Enumerations

BNew...

& Open... Name Interface Role
clk clock
* Autofill from file... nrst nRst
incr ve S

Name clk

Display Name
(

< Validate... count Primar

Description
B save

B Save As...

Interface Role Secondary

count

If you now look at the Physical Ports tab, you'll see that each port is now assigned to an interface:

B 1P Packager - C/TEMP/ipTutorial/incr1.1.1sml* O bt

«
R New.

General Interfaces Port Mapping Physical Ports Parameters Enumerations Files

MName Direction Size Default Value Assigned Interface
input 1 0 clk

& Open... clk

nrst input 1 nrst
incr input 8 0 incr
cou at: output & count
< Validate... cou ali output 1 count

*. Autofill from file...

B Save

B SaveAs..

Finally, we have to define the fileset needed to build this IP block. Select the Files tab. Initially, no
files are associated with this design yet:

a IP Packager - C:/TEMP/ipTutorial/incrl.1.1xml™

«
R New.

& Open...

General Interfaces

File Path

*. Autofill from file...
« Validate...
B Save

B SaveAs..

R Add Files.. @ Add Folder..

Port Mapping

Physical Ports

& Add Folder

Parameters

Enumerations

Select Add Files... and navigate to, and select the incr1.vhd file:

Files

4 File Type

144
| LE.

lect one or more files to add

General Interfaces Port Mapping Physical Ports Parameters Enumerations Files

+ l This PC » Windows (C:) » TEMP ipTutonial
Organize « MNew folder

Mame Date me

B incrivhd 2022-02-02 11:47 AM VHD File

W7 3D Objects

M8 Desktop

E Documents
Downloads
Music

B Pictures

.Add Files.. @ AddFolder.. | Add Folder

After clicking Open we see:

a IP Packager - C:/TEMP/ipTutorial/incrl.1.1xml™

«

R New.
File Path

& Open... incr1.vhd

General Interfaces

*. Autofill from file...
« Validate...
B Save

B SaveAs..

Port Mapping Physical Ports Parameters Enumerations Files

4« File Type
VHDL (.vhd)

[l AddFiles.. | W@ Add Folder.. [Add Folder (Recursive)..

For this design, this is all the files we need to add. For more complex hierarchical designs, we might

need to add more files.

We are done for this module. Click Save and then Close to finish.

Simple HDL done automatically

It is very easy to package simple IP using the PathWave FPGA IP Packager. While all the information
needed to package an IP block may be entered manually, and this will be shown in the following
tutorial, it is far easier to let the IP Packager learn about the IP block by scanning its HDL source file.
This will automatically fill in things like the module name, the I/0 ports, the source file name, and if
the port names follow the PathWave FPGA naming convention (Infer Interface Reference) the ports
will automatically be mapped to the appropriate interfaces.

This tutorial will package the following simple block:

library ieee;
use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

entity incrl is
port (

clk : in std_logic;
nrst : in std_logic; -- Active low reset
incr : in std_logic_vector(7 downto ©);
count_tdata : out std_logic_vector(7 downto 0);
count_tvalid : out std_logic
)
end incri;
architecture Behavioral of incrl is
signal count : std_logic_vector(7 downto 0);
begin -- Behavioral
count_tdata <= count;
count_tvalid <= '1' when (incr /= 0) else '@';
process(clk)
begin
if (nrst = '0') then
count <= (others => '0');
else
count <= count + incr;
end if;
end process;
end Behavioral;

This block will increment an internal counter based on its incr input and output the counter value on
an AXl-streaming count interface. It also has a clock input and an active low nrst input.

To package this IP, first start the IP Packager which is located in the Tools menu inside PathWave
FPGA. Click the New... button and navigate to the desired location for the IP-XACT file, enter
incr1.7.0 for the name for the file, and click Save:

IP Pac| g :

W e

& Open...

Look in: B c:\TEMP\ipTutorial - & % & # @B

5 My Computer Name a Size Type Date Modified
RecentFiles: B stetitus.KEYSH!

C/TEMP/i|

4 »
Filename: |incr1.1.0| Save

Files of type: | IP-XACT files) Cancel

You now have a mostly empty description of the IP block:

B 1P Packager - C:/TEMP/ipTutorial/incr1,1.0aml O bt

= General Interfaces Port Mapping Physical Ports Parameters Enumerations Files:
R New.

& Open...

VLNV
*_Autofill from file. Vendor _vendor_undefined_ Library _library_undefined_

Name incrl Version 1.0.0
< Validate...

B Information

B SaveAs.. Module Name incrl
Category

Description

At this point you could start entering information manually (which is shown in the next tutorial), but
the simpler way is to use the HDL source file to pre-fill out much of information. To do this, click the
Autofill from file... button, navigate to IP's source HDL file, select it, and click Open:

<«

R New.
VLNY

& Open... a Import IP w0

*. Autofill from file...

General Interfaces Port Mapping Physical Poris Parameters Enumerations Files

} Lookin: B c:\TEMP\ipTutorial - & % & # @B
Validate...

B Inf

B Save As... !

__.___ My Computer Name . Size Type Date Modified
. incrl.vhd 72_.es vhdFile 2022-02-02 11:47 AM

F stetitus KEYSHH

(

[

4 L
File name: incrl.vhd Open

Files of type: Supported files (*.vhd *.vhdl *.v *.sv *.dcp *xpr *.xm Cancel

The IP Packager will ask you to confirm the operation. Make sure that "Infer interfaces from file" is
checked, and click "Yes":

= General Interfaces Port Mapping Physical Ports Parameters Enumerations Files:
R New.

& Open...

VLNY

Vendo vendor L efine T e Efine
P — ‘endor _vendor_undefined_ Library _library_undefined_

Name incrl Version 1.0.0
Validate...

B Information

B SaveAs.. Module Name incrl

peration wi
load them from C

Do you want to continue?

v Infer interfaces from file

The IP Packager will read incr1.vhd and determine the ports and interfaces. This first tab looks much
the same as it did before, but the other tabs now have been filled out:;

a IP Packager - C:/TEMP/ipTutorial/incrl.1.0xml*

«
R New.

& Open...

General Interfaces Port Mapping Physical Ports

VLNY

Wi 0 Wy 0 i
*~_ Autofill from file. Vendor _vendor_undefined_

Name incrl
< Validate...

Information

B Save

B SaveAs.. Module Name incrl
Category

Description IP imported from a VHDL file

Parameters Enumerations Files

Library VHDL Files

Version 1.0.0

The VLNV (Vendor/Library/Name/Version) is used to identify the IP block and serves as a unique
identifier. You can only have one block with the same combination of VLNV. The Vendor is typically
the domain name of your company. The Library is how you want the IP organized. The Name is the
name of the IP block (which does not have to exactly match the module name in the HDL). And

the Version denotes the version for the IP block.

The Module Name must match the module's name in the HDL source code. The Category is an
optional field if you want to subcategorize your IP finer than just with the Library field. The Descrip-
tion is shown to users when they add your IP block to their design and should give a brief summary of

the block. Fill out these fields as shown below:

B 1P Packager - C/TEMP/ipTutorial/incr1.1.0ami* O bt

= General Interfaces Port Mapping Physical Ports Parameters Enumerations Files:
W New.

& Open...

VLNY

*_Autofill from file._ Vendor mycompany.com Library MylpBlocks

Name incrl Version 1.0
Validate...

B Save Information

B SaveAs.. Module Name incrl
Category

Description Count increments in multiples of iru:rl

For this simple block, that's all you need to do (aside from saving it). Before we do that, let's explore
some of the other tabs. The Interfaces tab shows the modules logical interfaces:

B 1P Packager - C/TEMP/ipTutorial/incr1.1.0ami* O bt

General Interfaces Port Mapping Physical Ports Parameters Enumerations Files

R New.

& Open...

Name Interface
clk clock

ot o
*. Autofill from file... E,;L'nt - y EEVEET]

Name

incr 0 : e
<~ Validate . Description

B Save

B SaveAs..

Interface Role Secondary

count

* Close

In this case, the tool found four interfaces, a clock interface, a reset interface, an Axi4-streaming inter-
face, and a vector interface.

If desired, you can change the Display Name to something other than the interface name to make it
more descriptive. You may also enter a Description for the interface to help explain to users what the
interface is used for.

By clicking on the Port Mapping tab and selecting one of the interfaces, you can see how the logical
ports of the interface map to the physical ports in the hardware:

B 1P Packager - C/TEMP/ipTutorial/incr1.1.0ami* O bt

«
R New.

& Open...

General Interfaces Port Mapping Physical Ports Parameters Enumerations Files

Name Interface Role Mappings Physical Ports
clk ary
nrst nRst ary All Interfaces Hide Mapped v Hide Mapped
count axis Primary :
incr vector Secondary e Selected Interface Hide Optional v Hide Incompatible

*. Autofill from file...
< Validate...

Physical Port o Filter:

B Save tdata & count_tdata

B SaveAs.. of

tvalid & count_tvalid

count

This port mapping was able to be inferred from the HDL since the port names followed the PathWave
FPGA naming convention.

Clicking on the Physical Ports tab shows the physical ports for the module:

B 1P Packager - C/TEMP/ipTutorial/incr1.1.0ami* O bt

«
R New.

General Interfaces Port Mapping Physical Ports Parameters Enumerations Files

MName Direction Size Default Value Assigned Interface

& Open... clk input 1 0 clk Name count_tdata

. - . nrst input 1 nrst T
*. Autofill from file... iner input 8 0 incr Display Name

. count_tdata output 8 count S
« Validate... count_tvalid output 1 count Description
B Save
B SaveAs..

Direction output

v Is Vector

Left Bound

Right Bound

Note that the reason the IP Packager could figure out the Axi4-streaming interface count is because
the ports associated with this interface followed the convention of <interfaceName>_tdata and <inter-
faceName>_tvalid. If desired, the Display Name can be changed and a Description added just as in
the Interfaces tab.

This design doesn't have any parameters, so that tab will be blank. The Files tab will only have the
one source file incr1.vhd:

a IP Packager - C:/TEMP/ipTutorial/incrl.1.0xml* O

«

W New.
File Path + File Type
& Open... incr1.vhd VHDL (vhd)

*. Autofill from file...

General Interfaces Port Mapping Physical Ports Parameters Enumerations Files

< Validate...
B Save

B SaveAs..

[AddFiles.. @Add Folder.. [Add Folder (Recursive)..

Click Save to save the IP-XACT file, then close the module and exit the IP Packager. That's all there
was to packaging this simple example.

Parameterized HDL

IP blocks can be made more generalized and easier to be used through the use of parameters
(called generics in VHDL). These are values that are specified when the IP block is instantiated and
can be used to customize the block. This allows one IP block to fill more needs than a single non-
parameterized block would. For example, instead of requiring multiple IP blocks to support adders of
different sizes, one adder block can be parameterized so that the size of the adder can be specified
when the block is used.

This tutorial uses a block similar to that which was used in the earlier tutorials Simple HDL done auto-
matically with the difference being that this block uses two parameters, width which specifies the bit
width of the block, and dir which specifies whether the block increments or decrements. The process
for creating the IP-XACT file is very similar to the case for non-parameterized IP blocks with a few
steps added towards the end.

This tutorial will package the following block:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity incr2 is
generic (
width : integer := 8;
dir : integer := 0); -- Direction : @ = up, 1 = down
port (
clk : in std_logic;
nrst : in std_logic; -- Active low reset
incr : in std_logic_vector(width-1 downto 0);
count_tdata : out std_logic_vector(width-1 downto 0);
count_tvalid : out std_logic
)s
end incr2;
architecture Behavioral of incr2 is
signal count : std_logic_vector(width-1 downto 0);
begin -- Behavioral
count_tdata <= count;
count_tvalid <= '1' when (incr /= 0) else '@';
process(clk)
begin
if (nrst = '@"') then
count <= (others => '0');
else
if (incr = 1) then
count <= count + incr;
else
count <= count - incr;
end if;
end if;
end process;
end Behavioral;

To package this IP, first start the IP Packager which is located in the Tools menu inside PathWave
FPGA. Click the New... button and navigate to the desired location for the IP-XACT file, enter
incr2.7.0 for the name for the file, and click Save.

At this point you could start entering information manually (which is shown in the next tutorial), but
the simpler way is to use the HDL source file to pre-fill out much of information. To do this, click the
Autofill from file... button, navigate to the IP's source HDL file, select it, and click Open:

«

R New.
VLNY

& Open... a Import IP w0

*. Autofill from file...

General Interfaces Port Mapping Physical Poris Parameters Enumerations Files

} Lookin: B C:\TEMP\ipTutorial
Validate...

Name

B SaveAs..

4 L
File name: incr2.vhd Open

Files of type: Supported files (*.vhd *.vhdl *.v *.sv *.dcp *xpr *.xml *.xci) - Cancel

The IP Packager will ask you to confirm the operation. Make sure that "Infer interfaces from file" is
checked, and click "Yes".

The IP Packager will read incr2.vhd and determine the ports and interfaces. Firstfill out the General
tab with the identity of the IP.

The VLNV (Vendor/Library/Name/Version) is used to identify the IP block and serves as a unique
identifier. You can only have one block with the same combination of VLNV. The Vendor is typically
the domain name of your company. The Library is how you want the IP organized. The Name is the
name of the IP block (which does not have to exactly match the module name in the HDL). And

the Version denotes the version for the IP block.

The Module Name must match the module's name in the HDL source code. The Category is an
optional field if you want to subcategorize your IP finer than just with the Library field. The Descrip-
tion is shown to users when they add your IP block to their design and should give a brief summary of
the block. Fill out these fields as shown below:

B 1P Packager - C/TEMP/ipTutorial/incr2.1.0aml* O bt

= General Interfaces Port Mapping Physical Ports Parameters Enumerations Files:
R New.

& Open...

VLNY

*_Autofill from file._ Vendor _vendor_undefined_ Library MylpBlocks

. Name incr2 Version 1.0
Validate...

B Save Information

B Save As.. Module Name incr2
Category

Description Increment or decrement in multiples of incr with variable bit wil:lthl

As in the earlier tutorial, the IP Packager determines the ports and interfaces from the HDL source
file. The Interfaces tab shows the modules logical interfaces:

a IP Packager - C:/TEMP/ipTutorial/incr2. 1.0.ml* O

General Interfaces Port Mapping Physical Ports Parameters Enumerations
R New.
Name

& Open._.. clk - . i = Name count

st
*. Autofill from file... Egz'm - EEVEET]

recto Secondary L
<~ Validate . Description

B Save
B SaveAs..
Primary
Optional Ports Selection
Select All Deselect All
¥ tdata tdest tid

tkeep tlast tready
tstrb tuser

Synchronous Properties
ociated Clock clk

count Associated Reset nrst

* Close

In this case, the tool found four interfaces, a clock interface, a reset interface, an AXl4-streaming inter-
face, and a vector interface.

If desired, you can change the Display Name" to something other than the interface name to make it
more descriptive. You may also enter a Description for the interface to help explain to users what the
interface is used for.

By clicking on the Port Mapping tab and selecting one of the interfaces, you can see how the logical
ports of the interface map to the physical ports in the hardware:

B 1P Packager - C/TEMP/ipTutorial/incr2.1.0aml* O bt

«
W New.

& Open...

General Interfaces Port Mapping Physical Ports Parameters Enumerations Files

Name Interface Role Mappings Physical Ports
clk ary
nrst nRst ary All Interfaces Hide Mapped v Hide Mapped
count axis Primary :
incr vector Secondary e Selected Interface Hide Optional v Hide Incompatible

*. Autofill from file...
< Validate...

Physical Port o Filter:

B Save tdata & count_tdata

B SaveAs.. of

tvalid & count_tvalid

count

This port mapping was able to be inferred from the HDL since the port names followed the PathWave
FPGA naming convention.

Clicking on the Physical Ports tab shows the physical ports for the module:

a IP Packager - C:/TEMP/ipTutorial/incr2. 1.0.ml* O

«
R New.

General Interfaces Port Mapping Physical Ports Parameters Enumerations Files

MName Direction Size Default Value Assigned Interface

& Open... clk input 1 0 clk Name count_tdata

nrst input 1 nrst
incr input 8 0 incr
. count_tdata output 8 count X S
« Validate... count_tvalid output 1 count Description

*. Autofill from file... Display Name
&= save
B SaveAs..
Direction output
v Is Vector

Left Bound width-1

Right Bound 0

This tab is a bit different than that in the earlier tutorial. Notice that instead of the Left Bound being a
number, it is the expression width-1, where (as we'll see in a moment) width is a parameter.

Note that the reason the IP Packager could figure out the Axi4-streaming interface count is because
the ports associated with this interface followed the convention of <interfaceName>_tdata and <inter-
faceName>_tvalid. If desired, the Display Name can be changed and a Description added just as in
the Interfaces tab.

Now let us consider the parameters for this block. There are several types of parameter. A parameter
can be an integer, optionally with bounds to limit what values a user may enter. For example, it
doesn't make sense for a bit width to be -2 bits. A parameter may be a single bit or boolean. This
would show up in the PathWave FPGA IP Packager as a check box, with unchecked being O, and
checked being 1. A parameter may also be enumerated. An enumeration is a list of possible values
that a parameter is allowed to take along with optional text labels. In the PathWave FPGA IP Pack-
ager, these show up as drop down selection list. This can be convenient so the user doesn't have to
know how various options are encoded. In this example, instead of making the user know that dir=0
means count up and dir=1 means count down, we'll use an enumeration.

Click on the Enumerations tab. This will initially be empty. Click on the +Add button to add an
enumeration. Change the enumeration name to CntDir:

B 1P Packager - C/TEMP/ipTutorial/incr2.1.0aml* O bt

«
R New.

& Open...

General Interfaces Port Mapping Physical Ports Parameters Enumerations Files

Enumerations Name |CntDif

MName Enumeration Values
. - .
Autofill from file... ChitDir

. Value Only
< Validate...

Value
B Save

B SaveAs..

Now we have to specify the possible values. We'll be labeling these values with text labels, so change
the Enumerated Values to be Name Value Pair:

B 1P Packager - C/TEMP/ipTutorial/incr2.1.0aml* O bt

«
R New.

& Open...

General Interfaces Port Mapping Physical Ports Parameters Enumerations Files

Enumerations Mame CntDir

MName Enumeration Values
. - .
Autofill from file... ChitDir

. Name Value Pair
< Validate...
Name Value
B Save

B SaveAs..

Now we need to create two Name Value Pairs. Click the + button twice to create two pairs:

B 1P Packager - C/TEMP/ipTutorial/incr2.1.0aml* O bt

«
R New.

& Open...

General Interfaces Port Mapping Physical Ports Parameters Enumerations Files

Enumerations Mame CntDir

MName Enumeration Values
. - .
Autofill from file... ChitDir

. Name Value Pair
< Validate...
Name
| Save
=s ElementName_0 0

B Save As...
ave A ElementName_1 1

Double click on ElementName_0 and change it to Count Up. Likewise, double click on Ele-
mentName_T and change it to Count Down:

B 1P Packager - C/TEMP/ipTutorial/incr2.1.0aml* O bt

«
R New.

General Interfaces Port Mapping Physical Ports Parameters Enumerations Files

Enumerations

ame CntDi
& Open... Name CntDir

MName Enumeration Values

*. Autofill from file... ChtDir

. Name Value Pair
< Validate...
Name Value
| Save
=S Count Down
B Save As...
= = Count Up

In this case, the value fields 0, and 1, are okay. If different values were desired, you can double click
on those and change them to other values. Note that the values are sorted by the Name entries.
Hence Count Down shows up before Count Up, even though it has a higher value.

Now we can customize the parameters. Select the Parameters tab:

B 1P Packager - C/TEMP/ipTutorial/incr2.1.0aml* O bt

«

R New.
MName Datatype Value
& Open... width Integer 8

*. Autofill from file... i Infeqey L Display Name

General Interfaces Port Mapping Physical Ports Parameters Enumerations Files

Name

Validate... Description

B Save

B Save As...
Datatype Integer

Value 0
Range
Mo Range
Attributes

« Is User Configurable

In this example, the IP Packager found the parameters from the source HDL file. If needed, the +Add
button can be used to create new parameters, but that isn't needed in this example.

Select the width parameter. The parameter's Name is the name of the parameter in the source HDL.
The Display Name is what is displayed by the PathWave FPGA gui when the IP is instantiated.

The Description field can be used to provide more information to the user. In the PathWave FPGA
gui, this text is shown when the user hovers the mouse over that parameter. Change the Display
Name to Data Width with a description of Bit width of incrementer:

a IP Packager - C:/TEMP/ipTutorial/incr2. 1.0.ml* O
«
R New.

& Open...

General Interfaces Port Mapping Physical Ports Parameters Enumerations Files

MName Datatype Value - =
width Integer g Name width

i it [
*. Autofill from file... i i L Display Name Data Width

~ Validate_. Description Bit width of incrementer]

B Save

B Save As...
Datatype Integer

Value
Range
Mo Range
Attributes

« Is User Configurable

This parameter should be an integer, so the Datatype can be left as Integer with the default Value of
8. The default Value is the value that initially shows in the PathWave FPGA gui before the user
changesit.

For this IP, we'll say the minimum value for width should be 1 (it doesn't make sense to have 0 or a
negative width). We'll also define a reasonable upper limit for the width to prevent users from enter-
ing an unreasonably large number which won't build. Change the Range selection to Min/Max, and
set the Minimum to 1 and the Maximum to 64:

B 1P Packager - C/TEMP/ipTutorial/incr2.1.0aml* O bt

«
R New.

General Interfaces Port Mapping Physical Ports Parameters Enumerations Files

MName Datatype Value
Integer 8

i it [
*. Autofill from file... i i L Display Name Data Width

Name width

& Open... width

~ Validate_. Description Bit width of incrementer

B Save

B Save As...
Datatype Integer

Value
Range
Min/Max
Minimum
Maximum
Attributes

v Is User Configurable

We'll leave the Attributes and Advanced check boxes at their default values.

Select the dir parameter and change the Display Name and Description as shown:

a IP Packager - C:/TEMP/ipTutorial/incr2. 1.0.ml*

«
W New.

General Interfaces

Name

& Open... width

dir
*. Autofill from file...

« Validate...

B Save

B SaveAs..

Port Mapping Physical Ports Parameters Enumerations Files

lue ;
Name dir

Display Name Direction

Description Incrementer directio r||

Datatype

Value
Range
Mo Range
Attributes

« Is User Configurable

Change the Datatype to Bit since this is a boolean parameter. Next, change the Range pull down

to Enumeration:

B 1P Packager - C/TEMP/ipTutorial/incr2.1.0aml* O bt
«

R New.
Name

& Open... width T 8 Name dir
*. Autofill from file... i Display Name Direction

General Interfaces Port Mapping Physical Ports Parameters Enumerations Files

<~ Validate... Description Incrementer direction

B Save

B Save As...
Datatype
Value
Range
Enumeration
Available Enumerations:
CntDir
Attributes

v Is User Configurable

In this case, there is only one enumeration defined, namely CntDir. If more than one enumeration had
been defined, you'd select which one to use here.

The Files tab will only have the one source file incr2.vha:

B 1P Packager - C/TEMP/ipTutorial/incr2.1.0aml* O bt

«
R New.

& Open...

General Interfaces Port Mapping Physical Ports Parameters Enumerations Files

File Path + File Type
incr2.vhd VHDL(.vhd)
*. Autofill from file...

< Validate...
B Save

B SaveAs..

[AddFiles.. @Add Folder.. [Add Folder (Recursive)..

Click Save to save the IP-XACT file, then close the module and exit the IP Packager. That's all there
was to packaging this example.

When this block is instantiated in PathWave FPGA, the user sees:

B Block: incr2 et

Description Identity

Increment or decrement in multiples of incr with
variable bit width

Parameters

Data Width
[1, 64]

Direction Count Down ~

Incrementer direction

Ok Cancel

It shows the description that was entered in the General tab along with any user configurable
parameters. In this case we see Data Width and Direction. If no Display Name had been entered,
then the name of the parameter would have been used. The limits of [1,64] for the Data Width para-
meter are shown. If a user tries to enter a value outside this range, PathWave FPGA will flag it as an
error and not let the user continue until he fixes the problem by entering a valid value. The mouse-
over on Direction shows the parameter's description field. The Direction parameter uses a pull down
box to select whether to count up or count down:

B Block: incr2 et

Description Identity

Increment or decrement in multiples of incr with
variable bit width

Parameters

Data Width
[1, 64]

LhEnlel Count Down

Count Up

Ok Cancel

Advanced IP Packaging

The previous tutorials showed how to easily package IP possibly using simple parameters. This
tutorial will show how to handle more complex situations. These include using non-user configurable
parameters, parameter expressions, multiple clock domains, and design hierarchy.

For this tutorial, we'll use a fictitious AWG (arbitrary waveform generator) design myAwg.v. Unlike
the earlier tutorials, this HDL uses Verilog rather than VHDL. Since the packaging operation only
needs information about the IP block's ports, this HDL file does not have any body, it is just the port
declarations. Thus it can't be built. This fictitious block has an MEM bus interface on one clock
domain for loading the AWG data, and an AXl4-streaming interface on a different clock domain for
streaming the data out. It calls two other IP blocks, myClockCrosser.v and myRam.v, which are loc-
ated in a subdirectory called ip. For the purposes of packing the IP, the contents of these files aren't
needed so these files are essentially blank.

The myAwg block is designed to output supersampled data. That means each output word can hold
multiple samples in parallel. The size of each sample is set by the dsize parameter, and the number of
parallel output samples/clock is set by the supersample parameter. Each output sample can have
one or more tuser bits. The number of these bits is set by the usize parameter. Finally, the size of the
memory used in the AWG is set by the depth parameter which denotes the number of 32-bit words
used in the RAM. This is also the number of bits needed in the MEM bus's address bus.

In addition to the user configurable parameters discussed above, there are a couple parameters that
are not user configurable. These parameters are not visible in the IP Packager and can't be directly
changed by the user. Instead, they are calculated from the user customizable parameters. Some-
times this can be convenient if a calculated value is used in multiple port declarations so that the
expression is only entered once and the results of the expression are used many times. Sometimes
separating the expression out can also make it clearer what the code is doing. This is not needed,
however, as one can also use the more complicated expressions directly without defining a separate
parameter for that expression. This example does it both ways.

For parameters to be correctly autofilled from Verilog, they must be defined in the IP block's module
definition line (prior to the port list). Parameters defined in the body of the Verilog code will not be
autofilled though they can always be added manually.

The parameters used in the IP Packager are IP-XACT parameters. These parameters follow the syn-
tax used by the IP-XACT specification which is the same syntax used by System Verilog. These are
related but distinct from the parameters/generics used in the HDL code. When a design is built in
PathWave FPGA, Pathwave FPGA will evaluate any parameter expressions using the IP-XACT syntax
and use evaluated constants when generating the output HDL file for synthesis.

In this tutorial, we will autofill from the source HDL file as that is much easier than manually entering
all that data by hand. This tutorial uses the following top level Verilog file:

/* -*-Verilog-*-
3k 3k 3k >k 3k sk skosk ok 3k >k sk sk sk ok 3k >k sk sk sk sk 3k 3k sk sk sk sk 3k 3k sk sk sk sk sk >k sk sk sk sk sk 3k sk sk sk sk ok 3k >k sk sk sk ok 3k >k sk sk sk sk 3k 3k sk sk sk sk ok >k sk skosk sk sk k sk sk skosk ok ok k

*
* File: myAwg . v
* Description: IP Packager tutorial example
*
3k 3k >k >k 3k 3k 3k sk >k 3k 3k 5k 3k sk 3k >k 3k 5k 3k 3k sk >k 3k ok 3k sk sk 3k 5k sk 3k sk 3k 3k 3k 3k 3k Sk sk >k 3k 3k 3k Sk sk 3k 5k 3k sk Sk 3k 3k 3k 3k 3k 3k sk 5k >k 3k ok Sk sk 3k ok ok ok sk sk sk ok ok sk sk sk sk Rk k ok
*/
module myAwg #(parameter
// First define user configurable parameters

dsize = 16, // Size of each sample
supersample = 1, // Supersample factor
depth = 1024, // Depth of memory in 32 bit words
usize =1, // Number of tuser bits per sample

// The following parameters are calculated
asize = $clog2(depth), // Number of address bits needed
osize = supersample*dsize // Size of output stream

)

// First declare mem interface for loading the AWG

input m_clk, // Mem bus clock
input m_nrst, // Mem bus reset
input [asize-1:0] m_address, // Mem address bus
input [31:0] m_wrdata, // Mem write data bus
output [31:0] m_rddata, // Mem read data bus
input m_rden, // Mem read enable

input m_wren, // Mem write enable

// Next declare the axi-streaming interface

input a_clk,
input a_rstn,
output [osize-1:0] awg_tdata,
output awg_tvalid,
input awg_tready,

// Axi bus clock

// Axi bus reset

// Awg output data

// Awg output valid
// Awg stream ready

output [usize*supersample-1:0] awg_tuser

// Awg tuser bits
)5

// For this tutorial, only the port and parameter definitions are needed

// Hence the body is empty
endmodule // myAwg

As in the previous tutorials, start the IP Packager, create a new IP-XACT file called myAwg. 1.0, and

autofill it from the myAwg.v file:

a IP Packager - C:/TEMP/ipTutorial/myAwg.1.0xml*

General Interfaces

R New.

& Open...

VLNV
Vi ar 0 i
*~_ Autofill from file. Vendor _vendor_undefined_

. Mame myAwg
Validate...

Information

B Save

B Save As... Module Name myAwg
Category

Description

Port Mapping

Physical Ports =~ Parameters

Library

Version

IP imported from a Verilog file

Fill out the VLNV and description as shown below:

Enumerations

Verilog_Files

1.00

Files

B 1P Packager - C:/TEMP/ipTutorial/myAwg.1.0xml* O bt

= General Interfaces Port Mapping Physical Ports Parameters Enumerations Files:
R New.

& Open...

VLNY
*_Autofill from file._ Vendor mycompany.com Library MylpBlocks

: Name MyAwg Version 1.0
« Validate...

B Save Information

B Save As... Module Name myAwg
Category

Description Example AWG with MEM host interface and AXI4-streaming output interfa |:e|

Note that the Name does not have to match the Module Name.

Click on the Interfaces tab and select the m_clk interface. Change the Display Name to Host Clock
and the Description to Clock used by the host mem interface:

B 1P Packager - C:/TEMP/ipTutorial/myAwg.1.0xml* O bt

General Interfaces Port Mapping Physical Ports Parameters Enumerations Files

R New.

& Open...

Name Interface
m_clk clock
m_nrst

Name
*. Autofill from file... EEVEET]

Validate... . ; - Description Clock used by the host mem int:

Interface Role

Close

Likewise, update the Display Names and Descriptions for the m_nrst, a_clk, and a_rstn ports:

B 1P Packager - C:/TEMP/ipTutorial/myAwg.1.0xml* O bt

Interfaces Port Mapping meters Enumerations Files

R New.

Interface

& Open... _ ; e Name m_nrst

*. Autofill from file... : . e P EEVEET] Host nRst

Validate...) Secon Description A t synchronous to the Host Clock|

B Save

B Save As..

Close

a IP Packager - C:/TEMP/ipTutorial/myAwg.1.0xml*

Interfaces Port Mapping

R New.
B Open Interface
en...

*. Autofill from file...

Validate...

B Save

B Save As..

awg

Close

ysical Ports

Name
EEVEET]

Description

Enumerations Files

Clock used by the AWG Axid-streaming in

B 1P Packager - C:/TEMP/ipTutorial/myAwg.1.0xml* O bt

General Interfaces Port Mapping Physical Ports Parameters Enumerations Files

R New.

& Open._.. i — i = Name a_rstn

*. Autofill from file... T Display Name

nRst a ry
mem 3 ary

axis

Validate... Description

B Save

B SaveAs..

Interface Role Secondary

Axiclock
Ax nRst
m

* Close

Select the host interface. This has additional fields, in particular the Associated Clock and Associated
Reset fields. These should indicate the clock and reset used by this interface. In this case they are
already correct so we can just leave them as is. Update the Display Name and Description:

B 1P Packager - C:/TEMP/ipTutorial/myAwg.1.0xml* O bt

General Interfaces Port Mapping Physical Ports Parameters Enumerations Files

R New.

Name

& Open... - S Name host

*. Autofill from file... a Ir- i - Display Name Host

a_rstn a r;f .
~ Validate_. host Secondar;r Host interface|
awg axi Primary
B Save
B SaveAs..
Interface Role Secondary

Synchronous Properties
Associated Clock m_clk

Associated Reset m_nrst

H
Axicloc
Ax nRst
Host

* Close

Select the awg interface. In addition to changing the Display Name and Description, we'll need to
change the Associated Clock and Associated Reset to a_clk and a_rstn as this interface uses that
clock:

B 1P Packager - C:/TEMP/ipTutorial/myAwg.1.0xml* O bt

General Inte: Port Mapping Physical Poris amete Enumerations Files:
R New.
Name

& Open._.. mICE = . - _ Name awg

*. Autofill from file... E ; = - Display Name Awg Out

<~ Validate . o 2 Description Supersampled A'.".'Gu:nutpuﬂ

B Save
= As.

Primary

Deselect All
¥ tdata tdest tid
tkeep tlast v ftready

tstrb
MyAwg Synchronous Properties
Host Clock
Host nRst

Associated Clock a_clk

Awg Out Associated Reset | a_rstn

Close

The Port Mapping tab shows the port mappings. Nothing needs to be changed here:

a IP Packager - C:/TEMP/ipTutorial/myAwg.1.0xml*

«
R New.

B Open Mame Interface lole Mappings Physical Ports
S m_clk ary

- . t 0 All Interfaces Hide Mapped v Hide Mapped
*. Autofill from file... ;

General Interfaces Port Mapping Physical Ports Parameters Enumerations Files

e Selected Interface Hide Optional ¥ Hide Incompatible
Validate...

:rar)l(?;n = 0 ort Physical Port o~ Filter:

B Save tdata £ awg_tdata

B Save As.. tready £ awg_tready
tuser £ awg_tuser

tvalid & awg_tvalid

MyAwg
Host Clock
Host nRst
Axi clock Awg Out

Click on the Physical Ports tab. You can see all the ports and which interfaces they are assigned to.
While nothing needs to be changed here, there are a few things to note. Click on the host_

address port and see that the Left Bound of the bus is the expression asize-1, just as in the source
HDL code:

B 1P Packager - C:/TEMP/ipTutorial/myAwg.1.0xml* O bt
«
R New.

& Open...

General Interfaces Port Mapping Physical Ports Parameters Enumerations Files

MName Direction Size Default Value Assigned Interface
m_clk input 1 0 m_clk
m_nrst input 1 m_nrst ;
*. Autofill from file... RS in;ut 0 0 host Display Name
. m_wrdata input 0 X .
~ Validate.. rddata outpu Description
1 input 0
B Save n_wre input
g input
B SaveAs.. _rstl input
at: output
output
input
output

Name m_address

Direction input
Default Value

¥ Is Vector
Left Bound

Right Bound

MyAwg
Host Clock

Awg Out

Click on the awg_tuser port and see that the Left Bound is the more complicated expression usize*su-
persample-T. The bounds for vector size can use complicated expressions if desired.

Now let's work on the parameters. Click on the Parameters tab and select dsize. Change the Display
Name, Descriptoin, and Range as shown below:

a IP Packager - C:/TEMP/ipTutorial/myAwg.1.0xml*
«
R New.

& Open...

General Interfaces Port Mapping Physical Ports Parameters

Name
dsize

supersample
depth

Datatype Value
Integer 16

Integer
*. Autofill from file... .

< Validate... Integer

Integer

Enumerations Files

Name
Display Name

Description ample

Datatype Integer

Value 16
Range

Min/Max
Minimum

Maximum

Attributes

v Is User Configurable

Click on supersample and change its entries as shown below. Note that some of these values, such

as Maximum are subjective.

B 1P Packager - C:/TEMP/ipTutorial/myAwg.1.0xml* O bt
«
R New.

& Open...

Port Mapping Physical Poris arameters Enumerations Files

MName EE Value
dsize Integer 16 MName supersample

supersample Integer ; o
*. Autofill from file... EIeth P Intgger Display Name Supersample
ze

Integer -
<~ Validate... ; Integer Description Number of parallel samples to process
si Integer

Datatype Integer
Value 1
Range
Min/Max
Minimum
Maximum
Attributes

v Is User Configurable

Likewise, click on depth and change its entries as shown below:

B 1P Packager - C:/TEMP/ipTutorial/myAwg.1.0xml* O bt
«
R New.

Port Mapping Physical Poris arameters Enumerations Files

MName EE Value

& Open... e Integer 16 Mame depth

supersam t
*_ Autofill from file.. SRR ',:t:g:{ 1024 Display Name Mem Depth

Integer L -
< Validate._. : IrltEIjE'r 10 Description Depth of memory

Integer 16

Datatype
Value
Range
Min/Max
Minimum
Maximum
Attributes

v Is User Configurable

Finally, click on usize and change its entries as shown below:

a IP Packager - C:/TEMP/ipTutorial/myAwg.1.0xml* O
«
R New.

& Open...

General Interfaces Port Mapping Physical Ports Parameters Enumerations Files

MName Datatype Value - -
dsize Integer 16 Name usize
supersample vienl: [P Ser siz
depth Integer Display Name Tuser size
Integer - -
<~ Validate . . Int:ger Description Number of tuser bits per sample
Integer

*. Autofill from file...

Datatype Integer

Value 1
Range
Min/Max
Minimum
Maximum
Attributes

v Is User Configurable

We've finished with the user configurable parameters. We now move onto the non-user configurable
parameters. Click on asize:

a IP Packager - C:/TEMP/ipTutorial/myAwg.1.0xml*
«
R New.

& Open...

General Interfaces Port Mapping

Name

dsize

supersample Integer
* Autofill from file... depth | nteg

Integer
: usize Integer
< Validate... asize Integer
osize Integer

B Save

B SaveAs..

Physical Ports Parameters Enumerations Files

Name
Display Name

Description

Datatype Integer

Value 10
Range
Mo Range
Attributes

« Is User Configurable

Since asize is not configured by the user, there is no point in changing the Display Name or Descrip-
tion or setting a range. Uncheck the Is User Configurable box to indicate this is not a user con-

figurable parameter.

Note that for a Value the number 10 is shown. When importing parameters involving expressions, the
expression is evaluated using the default value of the other parameters, and that number is used

for Value. We want the Value to be the expression, not just the number, so that it changes when the
other parameters change. In the Value field enter the expression for this parameter, remembering to
use IP-XACT (System Verilog) syntax which in this case is $clog2(depth):

a IP Packager - C:/TEMP/ipTutorial/myAwg.1.0xml*

«
R New.

& Open...

General Interfaces Port Mapping

Name

dsize

supersample Integer
*. Autofill from file... ;EEth“ P]

Integer
usize Integer
< Validate... asize Integer
osize Integer

B Save

B SaveAs..

Physical Ports Parameters Enumerations Files

Name
Display Name

Description

Datatype

Value
Range
Mo Range
Attributes

Is User Configurable

Notice that while entering the expression in the Value field, the text turns red when the expression
isn't valid, as it isn't until the whole expression is finished.

The $clog2(x) function calculates ceil(log,(x)) which is the number of binary address bits needed to

address this much memory.

Next click on osize. Uncheck the Is User Configurable box, and change the Value field to the correct

expression supersample*dsize:

a IP Packager - C:/TEMP/ipTutorial/myAwg.1.0xml*

<«

General Interfaces Port Mapping Phy:

R New.

& Open...

In
In
In
In
Integer
Integer

*. Autofill from file...
« Validate...

B Save

B SaveAs..

Value
16

1
1024
.

10

16

Ports

Parameters

Enumeratio

Name
Display Name

Description

Datatype Integer

Value supersample*d size|
Range
Mo Range
Attributes

Is User Configurable

If we now click on Supersample and change its value, say to 2, note that the value shown for osize

also changes, in this case to 32:

a IP Packager - C:/TEMP/ipTutorial/myAwg.1.0xml* O

«
R New.

& Open...

General Interfaces Port Mapping Physical Ports Parameters Enumerations Files

Name
dsize

supersample Integer : -
*. Autofill from file... EIeth P Intgger Display Name Supersample

MName supersample

<~ Validate... " Description Number of parallel samples to process
B Save

B SaveAs..

Datatype Integer
Value 2
Range
Min/Max
Minimum
Maximum
Attributes

v Is User Configurable

If you've changed the supersample value, change it back to 1.

The remaining task for this IP block is to update the fileset with the extra source files needed to build
the block. Click on the Files tab:

a IP Packager - C:/TEMP/ipTutorial/myAwg.1.0xml*

«
R New.

File Path
@ Open.. myAwg.v

General Interfaces Port Mapping Physical Ports Parameters Enumerations Files

*. Autofill from file...
« Validate...
B Save

B SaveAs..

[AddFiles.. @Add Folder.. [Add Folder (Recursive)..

The IP Packager has already entered the source file used to Autofill from file... . We need to add the
two other source files, the ram block and the clock crossing block.

Click Add Files... . Since these other files are in the IP subdirectory, click on the ip folder:

5 Select one or more files to add
<« v A l This PC » Windows (C:) » TEMP ipTutorial
Organize v Mew folder

OneDrive - Keysi Mame Date modified Type
. myClockCrosser.y 2022-02-02 2:58 PM V File

B This P(
= B myRam.v 2022-02-02 2:58 PM V File

" 2D Objects
M Desktop
E Documents

Downloads

Music

B3 Pictures

id

File name: | "myRam.v" rosser.v” ~ | | Implementation

[AddFiles.. @Add Folder.. [Add Folder (Recursive)..

Note that you can add the two files separately by clicking Add Files... more than once, or you can
select multiple files at the same time. After selecting the two files, click Open to add them to the file-
set:

B 1P Packager - C:/TEMP/ipTutorial/myAwg.1.0xml* O bt

«
R New.

& Open...

General Interfaces Port Mapping Physical Ports Parameters Enumerations Files

File Path
ip/myClockCrosserv
WwRam.v

*. Autofill from file... myAwg.v

< Validate...
B Save

B SaveAs..

[l AddFiles.. | W@ Add Folder.. [Add Folder (Recursive)..

If you make a mistake and add the wrong file, you can use Remove Selected Files to remove the
wrong one.

If desired, you can click Validate to test to see if IP Packager finds any problems with your settings:

«
R New.

& Open...

General Interfaces Port Mapping Physical Ports Parameters Enumerations Files

File Path

ckCrossery

*. Autofill from file...
< Validate...
B Save

B SaveAs..

B PathWave FPGA 4

Validation Succesded.

[AddFiles.. @Add Folder.. [Add Folder (Recursive)..

Now we can Save the IP-XACT file. Note that saving the file will also do a validation and indicate any
errors found. Click Close and Exit to complete and exit the IP Packager.

This IP is now packaged and may be used in PathWave FPGA. When the user instantiates it, they can
directly modify only the user configurable parameters:

B Block: myAwg X

Description Identity

Example AWG with MEM host interface and AXI4-
streaming output interface

Parameters

Supersample
[1, 64] -

Mumber of parallel samples to process

hem Depth) 1024

Cancel

Since there are more parameters than fit on one screen, the Parameters window needed to be
scrolled to see all of them. The non-user configurable parameters are not shown but are calculated
based on these parameters.

The Identity tab shows the VNLV and filepath for the module:

B Block: myAwg X

Description Identity

Module Name mydwg

Vendor MyCoOMmpany.com
Library MylpBlocks
Mame My Awg

Version 1.0

File Path C/TEMP/ipTutorial/myAwag. 1.0 xml

Parameters

Supersample

[1, 64]

hem Depth

Cancel

HVI Example

This example is created in conjunction with the KS2201A Programming Example 3. To complete this
example, you will need both PathWave FPGA and KS2201A Test Sync Executive installed.

In this part of the example, will be walking through how to create two different designs in PathWave
FPGA that will be built and sent off to KS2201A.

Two completed PathWave FPGA projects, and their associated bitfiles, are included in the
HVlexample directory of the PathWave FPGA install. If you wish to skip ahead and send these pre-
produced bitfiles right to KS2201A, go to the bottom of this example and follow the link provided.

Create the blank M3202A design (Version 4.02.45 4 channels, fixed clock, 7k410 fpga). Give it a
name, this one is called HviPortExampleleader, as it is what the rest of the example expects, but you
can change it to any name you find fitting.

A different firmware version that matches your hardware will work for this example as well. If you are
not creating the project from scratch by following this example, simply retarget the provided projects
to your target firmware version.

KEYSIGHT PATH FPGA 2022 Update 1.0 - HviPoriExampleLeader
File Edit Project Tools Help
RESE a6 0QQR 6 x & BD

Design Interfaces
» Communications
F Real-time HVI
b System

IP Catalog

Name 4 Version
» Basic

» BSP

b Connectors

» DSP

» Math

» Memory

]
M32024 - 04.02.45 - channels: 4, clock: Fixed, fpga: 7k410

Add the 10 from the Design Interfaces panel.

» PXltriggerin(4-7), PXItriggerOut(4-7), & Host_mem_1 from Communications.
- Host_mem_1 was renamed from the default of Host_1.
— Host_mem_1 has an address width of 10.

¢ HVI UserAction4 and HVI UserEvent4 from Real-time HVI.
= MainEngine_Memory_1 has an address width of 10.

e Clock & nRst from System.

G Olnnl e)
@ Clock Clock

G n)
@© nRst nRst

(PXItrigerIn4 PXitriggerin4 PXItriggerOut4 PXItrigerOut4_1)
[PXItrigerInS PXltriggerin5 {_PXltriggerOut5 PXItrierOut5_1)
(PXItrigerIn6 PXltriggeriné PXItriggerOut6 PXItrierO uté6_1)

" 5 OV e T BDYReim e o2 1
§ PXItr|erIn7 PXltriggerin7 PXitriggerOut7 PXItriggerOut7_1)

¢ HVI_UserAction4 HVI_UserAction4 HVI_UserEvent4 HVI_UserEvent4_1
(Host_mem_1[mem] Host +

MainEngine_Memory +

MainEngine_Memory_1

Add the register banks and set their names accordingly.

» Register_Bank from the MainEngine_Memory interface.
e Debug from the Host interface.

Register_Bank[MainEngine_Memory]
HviPxiTrigln_Din(31:0) HviPxi Trigln_Dout(31:0)
HviPxiTrigln_Din_v HviPxiTrigin_Dout_v
HviPxiTrigOut_Din(31:0) HviPxi TrigOut_Dout(31:0)
HviPxiTrigOut_Din_v HviPxiTrigOut_Dout_v
HviAction4Cnt_Din(31:0) HviAction4Cnt_Dout(31:0)
HviAction4Cnt_Din_v HviAction4Cnt_Dout_v
HviEvent4_Din(31:0) HviEvent4_Dout(31:0)
HviEvent4_Din_v HviEvent4_Dout_v

Debug[Host]
HviAction4Counter_Din(31:0) HviAction4Counter_Dout(31:0)
HviAction4Counter_Din_v HviAction4Counter_Dout_v
HviEvent4Counter_Din(31:0) HviEvent4Counter_Dout(31:0)
HviEvent4Counter_Din_v HviEvent4Counter_Dout_v
PxiTrigOut_Din(31:0) PxiTrigOut_Dout(31:0)
PxiTrigOut_Din_v PxiTrigOut_Dout_v
PxiTrigln_Din(31:0) PxiTrigin_Dout(31:0)
PxiTrigin_Din_v PxiTrigin_Dout_v

Add the IP blocks from the IP Catalog

e Combiner from Basic (din width = 4).

e Decombiner from Basic (dout width = 4).

e Slice from Basic (din width = 32, dout width = 1).
e Latch from Basic (din width = 32).

» Adder from Math (input width = 32).

= One named HviAction4Counter, other named HviEvent4Counter.

» DualPortRam from Memory (data width = 32, address width = 10).

Decombiner_1
Dout[0]
Din(3:0) Dout[1]
Dout[2]
Din[3] Dout[3]

HviAction4 Counter HviEvent4Counter
Clk Clk
nRst Dout(31:0) : nRst Dout(3
A(31:0) AB1:0)

B(31:0) ' B(31:0)

DualPortRam_1
Clk
| nRst

+ PortA

l + PortB

Latch_1
Din(31:0)
Dout(31:0)

Combiner_1
Dinfo]

@ PXitriggerins _Pxiig:

|

Dinf1 DoutE0) \)

‘DMH uiz:0) SE—— Oud_PXitriggerouta
i Piiggen e X > Decombiner_1

©_PXltriggerin6 iggennt ‘ in[3] L) H Douf] Outs__ PXItriggerouts

HViPXiTigOut_Din(31:0) HyiPxiTrigOut_| Din(3:0) Dout(1]

HViPATigOut Din.v HViPATr gOut Douttz] ¢

H nACHT_Din(31:0) A Dout(3] ‘
n4Cnt Diny “PAitiggerout PXIriggerouty O

a5 10) Ty PXItiggerOut7__PXItriggerout7

HyiEventa Din_y.

i PXitriggerin7_ i
PXitriggerin7 iggertn PXitiggerOuts_PXItriggerouté.

HviActiondCounter

L st DoutE1:0) - ‘ Shice_1 e
| AG1o) 4 7—‘ Din@10) pout:0) 4 HVLUserEientd HVI UserEventd O
HVL UserActiond H\ 1

B(31:0)

Clock Cic HViEvent4 Counter

Cik

© nRst__nRst | .
__ —— GnRatl ofet ; nRst Dout31:0)
O Clock _Clock _ DualPortRam_1 }

cik

AB10)
B31:0)
© nRst_nRst

Latch_1)
Din(31:0) Debug[Host]
cE Do — | HviAction4Counter Din(31:0)
cik HhiACtionaCounter_Din_yv
Retn HyiEient4Counter Din(31:0)
HvEventaCounter_Din_yv
PATAgOUt Din@1
PaTiGOULDin_v
PATigin D
PATigin D

Now that the design is all set up, its time to run the build and wait for the results.

Configuration Hooks Output

Compile Output

INFO: [Common 17-206] Exiting Vivado at Thu Sep 15 15:1

=== Build Finished ===

TOTAL ELAPSED TIME: 40:23

v ® Errors & Critical Warnings __&._W:arnirn;s m Infos Show All

A& Build Finished

You can find the bitfile produced from this build in the HviPortExampleLeader.data/bin folder in your
project directory.

We will now make the second project, the HviPortExampleFollower. This project uses the same basic
project configuration as the leader project. The follower project is less complex than the leader and
we will skip the block placement and just show what the end design looks like. The IP placed in the
design use the same parameters as the leader project.

Register_Bank_PC[Host]
PxiTrigin_Din(31:0) PxiTrigin_Dout(31:0) |

l PxiTrigin_Din_v PxiTrigin_Dout_v

@ 2

f%i

© PXltriggerind PXitriggerin4 Combiner_1 i T —

@ PXltriggerIin5 PXltriggerin5 5— | g::{?} Dout(3:0) | HViPxiTrigin_Din(31:0) HviPxiTrigin_Dout(31:0)
| ' (O} HuiPxiTrigin Din_v HviPxi Trigin_Dout v

(@ PXltriggeriné PXltriggeriné - | B:;E}

@ PXlHtriggerIin7 PXltriggerin7

P T R
@ Clock Clock 53— DualPortRam_1

AEEET ha) —— Clk
Rst »—
© nRst nRs -

+ PortA

| + PortB
(Host_mem_1[mem] Host + e

(@ MainEngine_Memory_1 MainEngine_Memory +

Now that you have your bitfiles have been produced, please go to the following link to learn how to
use these outputs in KS2201A using programming example 3. www.keysight.com/find/KS2207A-pro-
gramming-examples

http://www.keysight.com/find/KS2201A-programming-examples
http://www.keysight.com/find/KS2201A-programming-examples

Tutorials Import Vivado High-Level Synthesis (HLS) generated IP

Import Vivado High-Level Synthesis (HLS) generated IP

Vivado High-Level Synthesis (HLS) accelerates IP creation by enabling C, C++ and System C spe-
cifications to be directly targeted into Xilinx FPGAs without the need to manually create HDL. This
tutorial describes the creation of an IP using HLS. The design is a scale and offset circuit. The input
and output data streams use an AXIS interface. The scale and offset are programmable via an AXILite
interface.

Create the Vivado HLS IP

Creating a Vivado HLS project

e Start Vivado HLS application

 Click on Create New Project, then set the project name to HLS_scale_and_offset as shown in the
figure below. Then click Next.

Find us at www.keysight.com Page 386

¢ Mew Vivado HLS Project [-=

Project Configuration
Create YWivado HLS project of selected type

>
g

Project narme: HLS_scale_and_DFFseﬂ

Location: ChProjectshpathwave_fpgat\Blocks,

 Inthe next window click on New File, name the file HLS_scale_and_offset.cpp and save it in the
same location as the HLS project. Then set the top function to HLS_scale_and_offset as shown in
the figure below. Then click Next.

/

Meww Wivado HLE Praject

Add/Remove Files

Addfremove C-based source files (design specification)

el

i

Tap Function: HLS_scaIe_and_u:uFFseﬂ

Design Files

Marme

CFLAGS

|=/ HLE scale_and_offset.cpp

ma |

Mext =

Finizh

Browwse,..

Add Files.. |
MewFile.. |
Edit CFLAGS. .
Remuowe

Cancel

In the next window click Next.

¢ MewVivado HLE Project | = '@
AddfRemove Files S=R—
Addfremove C-based testhench files (design test)

TestBench Files

Narne CFLAGS | AddFiles.. |
| HNewFile.. |
| AddFolder.. |

Edit CFLAGS..,
Rernove

<Back | Be¢> §| Einish

* Inthe next window set the clock period to 5 (200 MHz clock) and set the part to xc7k410tffg676-2
for the M3202A as shown in the figure below. Then click Finish.

¢ MewVivado HLE Project = @

Solution Configuration

Create YWivado HLS solution for selected technology

Solution Marme: solutionl
Clock
Period: & Uncertainty:

Part Selection

Part: xcfk4TOHIgH76-2

< Back Einish] | Cancel

¢ Inthe Explorer window double click on HLS_scale_and_offset.cpp.

Tutorials

Import Vivado High-Level Synthesis (HLS) generated IP

rTﬁj Explorer &3

a =5 HL% scale_and offset

[» @‘]] Includes

F |

= Source
@ HL=_scale_and_offset.cpp

i Test Bench

LY solutiont

Implementing the IP function in C

e Tocreate the IP function in C, open the file HLS_scale_and_offset.cpp and paste the following
code block:

HLS_scale_and_offset.cpp

#include <ap_fixed.h>

#include <hls_stream.h>

using namespace hls;

typedef ap_fixed<16, 1, AP_TRN, AP_SAT> SAMPLE_T;
typedef stream<SAMPLE_T> SAMPLE_FIFO_T;

void HLS_scale_and_offset(SAMPLE_FIFO_T data,

{

#pragma
#pragma
#pragma
#pragma
#pragma
#pragma

HLS
HLS
HLS
HLS
HLS
HLS

SAMPLE_T scale,
SAMPLE_T offset,
SAMPLE_FIFO_T output)

PIPELINE II=1 enable_flush

INTERFACE axis register both port=output name=DataOut
INTERFACE axis register both port=data name=Dataln
INTERFACE s_axilite register port=scale bundle=Control
INTERFACE s_axilite register port=offset bundle=Control
INTERFACE s_axilite port=return bundle=Control

SAMPLE_T product;

data >> product;

product = (product * scale + offset);
output << product;

Find us at www.keysight.com

Page 391

Tutorials Import Vivado High-Level Synthesis (HLS) generated IP

Generating the synthesizable HLS IP
« Next, click the C Synthesis button B .

« Next, click on the Export RTL button £ . Make sure 'IP Catalog' is selected and click OK.

¢ Export RTL >

Export RTL as IP

Format Selection

Evaluate Generated RTL
WHDL L

[Vivado synthesis
[[]Vivado synthesis, place and route

[] Do not show this dialog box again.

QK Cancel

Using the Vivado HLS IP in PathWave FPGA

Importing the HLS IP into a project

e Start PathWave FPGA

e Create any project using the M3202A BSP. Even though the HLS IP was created for FPGA

part xc7k410tffg676-2, it can be used with any Kintex7 family board, as long as the clock is 200
MHz.

Find us at www.keysight.com Page 392

» Click on Add External Block and browse to the location of the HLS project. Inside the HLS project
directory, go to sub-directory solution1/impl/ip and select file component.xml.

e Click Open. This will bring the newly created HLS IP into the PathWave FPGA project.
e Atthis point, you are ready to use the IP in your design.

IP Catalog

Wame ~ \ersion

b Basic

F BSP
HLS_scale_and_offset_1 S —

- » DSP
+ s_axi_Control it

ap_clk imermpt . HLS scale_and_offset
r Math
ap_rst.n DataQut V.V + b M:morf

+ Dataln_V_V F Submodule

Create a design using the HLS IP

A sample design is the following:

Host_axilite_1[axilite] Host +
HLS_scale_and_offset_1
+ s_axi_Control Register_Bank[Host]
Clock Clock ap_clk intemupt Dataln_Din(31:0) Dataln_Dout(31:0)
ap_rst.n DataOut V.V = Dataln_Din_v Dataln_Dout v

— Dataln_V._V TDATA(15:0) »———— = DataOut Din(31:0) DataOut_Dout(31:0)
nRst _nRst L TDATA(15:0) TREADY +—] 1 DataOut Din_v DataOut Dout v
TREADY TVALID

TVALID

This design is using the HLS scale_and_offset IP that was created earlier. It has its clock and reset
ports connected to the sandbox'es clock and reset signals. The input and output ports of the block
are connected to a host register bank. Note that only the 16 LSBs of the register bank values are
used since the HLS_scale_and_offset block is using 16 bit data.

To control the value of scale and offset, the sandbox's Host interface is connected to the s_axi Con-
trol interface of the IP at an address offset of 0x0000. The register bank is at an address offset of
0x1000.

Note that the scale, offset, and data values in this example are fixed point numbers representing val-
ues +/-1. Thus for a gain of 0.999 one should program a gain value of Ox7/fff.

Tutorials Import Vivado High-Level Synthesis (HLS) generated IP

At this point, we can run the Implementation process to generate the bitstream file to be loaded into
the FPGA.

Running design on FPGA

Before we can be able to see valid data from the output channel, we need to set the scale and offset
values and start the HLS IP. This can be done using the Host interface and write to the following
addresses (this information is provided in the file <HLS Project Dir-
ectory>/solution1/impl/ip/drivers/HLS_scale_and_offset_v1_0/src/xhls_scale_and_offset_hw.h) :

// @x00 : Control signals

// bit @ - ap_start (Read/Write/COH)

// bit 1 - ap_done (Read/COR)

// bit 2 - ap_idle (Read)

// bit 3 - ap_ready (Read)

// bit 7 - auto_restart (Read/Write)

// others - reserved

// ©0x10 : Data signal of scale_V

// bit 15~0 - scale_V[15:0] (Read/Write)
// ©0x18 : Data signal of offset_V

// bit 15~0 - offset_V[15:0] (Read/Write)

To start processing data through the HLS block, you need to write 0x81 to the
control signals (address 0x00). This will start the HLS design and cause it to
continually process data until the auto_restart bit is cleared.

Find us at www.keysight.com Page 394

Power of Two Decimation Tutorial

Purpose of Tutorial

This tutorial will show how to create a design that uses a power-of-two decimator that streams data
into and out of the DDR memory.

Requirements

1. PathWave FPGA
M3XXXA BSP

Vivado 2017.3 or newer
Microsoft Visual Studio
CMake 3.11.3 or newer

ok~ W N

Description of Decimator Design

This design uses a power-of-two decimator block written in Verilog HDL. This block implements a
two channel (which could be used for complex (real/imaginary) data, or could be used for two inde-
pendent data streams) decimation filter that accepts input samples at up to one sample per clock,
and outputs at a relative rate of 1/2", where n can be 1 to 16. Since the data comes from DDR
memory and the results go back into DDR memory, there is no real sample rate - the data is just
samples. The data could represent data that was sampled at any arbitrary rate. For convenience in
this tutorial, we'll assume the input samples represent data sampled at 100 Ms/s. In that case, the
output of the decimator would represent data rates of 100/2" Ms/s or 50 Ms/s, 25 Ms/s, 12.5 Ms/s, ...
, 1.526 ks/s.

The decimation process has two parts. First the data is low pass filtered to protect against aliasing,
and second the sample rate is reduced by throwing away samples. This particular filter is imple-
mented as 16 cascaded stages with each stage low pass filtering to half the bandwidth and then dis-
carding every other sample to half the data rate. Then the output of one of these stages is selected as
the output of the decimator block. This is selected via the nDecim(4:0) port. The nDecim=0 value rep-
resents no decimations (the data just passes through) while nDecim=1..16 selects one of the 16
stages for output. Values larger than 16 should not be used.

The inputs and output ports of the power2decim block uses AXI-streaming interfaces. These inter-
faces use a data bus width of 32 bits, with the 16 low order bits being one input channel and the 16

high order bits being the other input channel. Since these data streams go into and out of DDR, the
power2decim's AXI-streaming interfaces must include both forward and reverse flow control using

the TVALID and TREADY signals.

Access to DDR memory is via an addressable random access AXI bus. The power2decim block uses
non-addressable streaming AXI-streaming interfaces. To facilitate the use of streaming data,

Keysight provides a Streamer32x2 IP block. This block contains 2 independent channels each of
which has a read stream and a write stream. In this design, only one of the two channels are used.
Inside the Streamer32x2 block are DMA engines that can be programmed to read or write DDR data
and convert this to 32 bit wide streaming data.

In addition, there is a Register_Bank consisting of one register that is used to select which of the 16

available output bandwidths is selected.
' Streamer32x2_1
clock

nRst DDRtoStr0 +
+ host DDRtoStr1 +

| e

+ ctl DDR + + DDR DDR @

—
+ StrToDDRO

+ StrToDDR1

& Host_aximm_1 Host+:'

@ Host_axilite_1 _Host +)

|

L |

power2decim_1

Clk

nRst

+ X
nDecim(4:0)

e

F ceesssess—
@ npRst nRst »—

@ Clock Clock) {
|
|

Register_Bank
nDecim_Din(31:0) nDecim_Dout(31:0)
nDecim_Din_v nDecim_Dout.v

| __J

Description of Test Software

The test software is in a Microsoft Visual Studio solution and consists of the main C++ code in
main.cpp as well as driver class for the Streamer32x2 IP in ddr.h and ddr.cpp.

This program treats the two channels of the power2decim as independent channels. Here is the
basic flow of the program:

1. Find and load the bit file for this test design.

2. Open a connection to the hardware module.

3. Initialize the driver code for controlling the streamer32x2 block.

4

. Program the desired number of decimations into the nDecim register in the register bank. In this
tutorial, 3 passes of decimation are selected, so the output sample rate is 1/23 or 1/8 the input
sample rate.

5. Create the two test waveforms in memory (described below). One channelis the odd samples, the
other channel is the even samples.

6. Write this waveform data into the hardware DDR memory.

7. For diagnostic purposes, we pre-fill the destination area of DDR with a known pattern. In normal
usage you would not do this.

8. The two DMA channels (inside the streamer32x2 block) are programmed. Once both channels are
configured, data flows from the DDR through the power2decim and back into DDR.

9. The code waits for the Streamer Write DMA operation to finish.

10. For diagnostic purposes, pre-fill the host memory buffer with a known pattern. In normal usage
you would not do this.

11. Read the waveform data from DDR into a host buffer.
12. Write the results data into standard output.
13. Release resources to clean up and end.

Test Signal Description

As noted above, this design just uses sampled data which could represent any sample rate, but for
the purposes of discussion, we will assume an input sample rate of 100 Ms/s.

This tutorial uses the two channels of the power2decim as independent channels rather than as one
complex channel. The two channels are interleaved in memory, with one channel occupying the even
samples and the other channel occupying the odd samples in the buffer.

This tutorial uses 3 passes of decimation, so the output sample rate is 1/2° or 1/8 the input sample
rate or 100/8 Ms/s = 12.5 Ms/s. The passband is approx. 60% of Nyquist or 3.75 MHz. The stopband
starts at 6.25 MHz. Between 3.75 and 6.25 MHz is the transition band of the filter.

One input signal is a tone at 0.5 MHz with a second tone, 3 dB smaller, at 4.5 MHz. The other input
signal has the same 0.5 MHz tone, this time with a second 6.5 MHz tone 3 dB lower. Below is shown
the time domain waveforms as well as the spectrum of the two signals (note: even though the input
bandwidth extends up to 50 MHz, only the lower 10 MHz are shown for clarity).

Tutorials

20000

15000

10000

5000 f

-5000

-10000

-15000

Input Waveform 1

Power of Two Decimation Tutorial

20000 ©

20000

15000

10000 |

5000 |

-5000

-10000 |

200

Find us at wwwikeysight i

-15000 |

)

400

Input Waveform 2

600
Samples

800

1000

1200

Page 398

Tutorials Power of Two Decimation Tutorial

Spectrum of Input Waveform 1

dB

-30

.

4 5 6 7 8 9 10
Frequency (MHz)

Spectrum of Input Waveform 2

R
=
T

dB

-30

-40

Find us at_vv5v[v]vv: sig '“M N\WWM N\Wm Page 399
. — ”Mﬁhnm.

——

Both of these channels are low pass filtered and then decimated by 8. The 0.5 MHz component of
both signals is well within the passband of the decimator and passes through unchanged. The first
signal has a tone component at 4.5 MHz. This falls in the transition band of the decimation filter.
Thus the 4.5 MHz signal is attenuated (by about 5.4 dB) but partially passes through. The second sig-

nal's component at 6.5 MHz is completely in the stopband of the decimation filter and is completely
removed.

Below are shown the time domain and spectrum of the output signals as read back from the

hardware. Note that the x-axis scaling of the output waveforms is different that the input waveforms.
This is due to the sample rate of the output being 1/8 of the sample rate of the input.

Output Waveform 1
15000
10000 | |l| |/|| I" || 1| |' |ﬂ |ﬂ| |'| M
j'll | |'|| It ||| Il
| |V| |||| || | I || lll I|| |||| Vl
5000 | | | / | | I||'| T — |
_ || |I |I | |]
:||||| |; | \ |||| (-
0 I |

| |

| N
_ I d

5000 _ I.| | | ||| | N [raJ

A
| I | 'u'|| ||
| |l | | i
ﬂ A | I
_ U' ! '|| U || | I|| |‘ﬁ| |(||| lJ| |(1||
-10000 | |||| | ||| | ||| | J
| | | |
_15[}[}[} I I I N N N I N N N I |
0 20 40 60 80 100 120
Samples
Output Waveform 2
15000
10000 r
"/ \I'l.l f/ \"'l.)/ x"'.; ;/ \
o [[[
I III / II| ||I IIII / III
5000 | | \ —

Tutorials Power of Two Decimation Tutorial

-4[1:—
o rm N\ﬂﬂﬂﬂﬂnu

www sighteamd A U VLYW AR .+ Page401

Building the Bitfile

Navigate to the examples directory under the PathWave FPGA install directory. Copy the Power-
2Decim directory to a location with write permissions. Open the Power2Decim .kfdk file in PathWave
FPGA. The Power2Decim PathWave FPGA project is currently built for the 4 channel Variable clock
M3202A module.

If you have a different module or BSP, then you will need to retarget the PathWave FPGA project for
your module. To retarget the project select File-=Retarget Project... in the PathWave FPGA GUI. See
Power2Decim\readme.md for more details.

To build the Power2Decim project select the Project—=Generate Bit Flle... menu pick or click on the
Generate Bit File... icon in the toolbar. Make sure the Build Type is set to Implementation and that

the Project Generation Only and the Launch Vivado Gui boxes are unchecked. Then click the Run but-
ton to start the FPGA build process.

B FPGA Hardware Build X

Build directory: C:/FPGA/Rosetta/Examples/Power2Decim/Power2Decim.buil |:I|
Sandbox: pr_awglG -

Build Type: Implementation - Project Generation Only Launch Vivado Gui

Compile Output

Issues

v ® Errors ﬁ Critical Warnings + ﬁ Warnings + @ Infos Hide All

When the build is completed, there will be a directory in the project directory called <pro-
jectName>.build. Inside this will be one (or more) directories for each build process. They will have
the project name as well as the date stamp. Inside the directory for the last build, there will be a dir-
ectory called bitfiles. Inside that directory will be the <projectName>.k7z file. This file contains the
necessary information for loading the routed design into the hardware module.

Running the C++ Example

Follow the steps below to run the C++ example and load the Power2Decim.k7z bitfile example onto
the hardware module:

1. Navigate to the examples directory under the PathWave FPGA install directory.

2. Copy the Power2Decim project from Program Files to a location with write permissions.

3.

4. Navigate to the build directory and open the Visual Studio solution (the default solution name is

To create the Visual Studio C++ project, follow the instructions in Power2Decim\readme.md.

Power2Decim.sln).

Build the C++ example program and copy the Debug or Release folder to a PC connected to the
M3XXXA module.

Run the C++ example.

BN Administrator ChWYindowshsystem3homd,exe == @

—355% 741
3165 -1564
-8857? -39
—-1166 6127
-12865 7781
—-4293 2177
-14686 —-2877
-5456 -2956
-13688 -7487
—4439 8271
-186817 -6613
-1617 —4548
—4578 —2182
2145 314
1553 2778

Testzs completed successfully.

Xilinx System Generator for DSP™ Tutorial

The Xilinx System Generator for DSP™ is a Simulink library blockset that can be used for creating
FPGA designs from Simulink. The System Generator library blocks instantiate Xilinx IP like filters,

adders, multipliers, CORDIC, etc. The output of System Generator can be easily imported into
PathWave FPGA.

Before importing your Xilinx System Generator design into PathWave FPGA, make sure there are no
build errors when generating the HDL code from System Generator. For help getting started with Sys-
tem Generator, see the Xilinx document Model-Based DSP Design Using System Generator in
DocNav (UG948). You can also find System Generator documentation by clicking on the help button
in the System Generator Simulink library block.

4| System Generator: ssrTest - X

9 -~
1]
)
Compilation Clocking General
Board :
> |None
Part :
> |Kintex7 xcTkd10t-21fgb76
Compilation :
> |P Catalog Settings
Hardware description language : VHDL library :
VHDL v | xi_defautlib
[0 Use STD_LOGIC type for Boolean or 1 bit wide gateways
Target directory :

Inetiist Browse.

Synthesis strategy : Implementation strategy :
Vivado Synthesis Defaults. v Vivado Implementation Defaults

[create interface document [create testbench Model upgrade.

System

- .y Performance Tips | | Generate oK Apply Cancel Help
Generator

* Run System Generator from the start menu.

. Windows System

l WinPcap

WE Word
X

'." Xbaox

l Xilinx Design Tools

Add Design Tools or Device

Add Design Tools or Devices 201...
Add Design Tools or Device:
Add Design Tools or Devices 201...
DocMav
Manage Xilinx Licenses
Manage Xilinx Licenses
Manage Xilinx Licenses 2017.4
Manage Xilinx Licenses 2018.1
System Generator 2018.1

System Generator 2018.1 MATL...

i
g
g
i
2l
&
i
L
i
(5]
(53]

Uninstall 2015.2

po) r[ype here to search

» Start Simulink by clicking on the Simulink icon on the Matlab toolbar.

: Code ..-b_a.. E G

| Time -

Simulink Layout [=
immands -
DE SIMULINK

» Select Blank Model on the Simulink startup page.

v My Templates

You have no

v Simulink

i o

o
Blank Model Blank Library

Simulink will create a blank model where users can create their designs.

#3 untitled - Simulink - a X |
Fil

Display Diagram Simulation Analysis Code Tools Help

me-=- 17 - [0 normal 2@~

BUES e

4]

FvPE

2

100% VariableStepAuto

e Save the design by selecting File=Save. Make sure you save the Simulink project to a location that
does not have any spaces in the filepath. Vivado will return errors when generating HDL code from
the System Generator design if there are spaces in the filepath.

* Click on the Library Browser button g% and navigate to Xilinx Blockset-> Basic elements

Tutorials Xilinx System Generator for DSP™ Tutorial

5= Simulink Library Browser - O X
Lo Enter search term ~ 'tl - e @
Milinx Blockset/Basic Elements
Ports & Subsystems ~ ~
signal Attributes (d ap
Signal Routing
Sinks System Generator Absolute
Sources o
User-Defined Functions i M Assert D
> Additional Math & Discrete =
> Communications. System Toolbox Addressable shift Register Assart
» Communications System Toolbox HDL Suppc I
Control System Toolbox e L
> DSP System Toolbox
» DSP System Toolbox HDL Support BitBagher Black Box
> HDL Cader K
> Simulink 3D Animation CEProbe) S }
> Simulink Coder
» Simulink Extras . Clock Enable Probe Concat
Stateflow =]
v Xilinx Blockset 1 7 cast [»
AXI4
Basic Elements. Censtant Convert
Communication
Contral Logic =+ P b
g:? Types Counter Delay
Floating-Point a da
Index 1 5L P " Saib
Math -
Memory Down Sample Expression
Toals
> Xilinx Reference Blockset X In b j Ol.lt b
Recently Used v Gateway In Gateway Out
< > | | v

e Drag the System Generator icon on to the design canvas.
e Click on the System Generator icon in the Simulink design:

System
Generator

e The System Generator properties dialog will open.

Find us at www.keysight.com Page 407

[4] System Generator: sysgenQAM16

0] o~
1]
¥ & @

Compilation Clocking General

Board :

> ||None

Part :

> ||Kintex7 xcTk325t-2ffgB00

Compilation :

= ||IP Catalog Settings ...
Hardware description language : VHDL library :
WVHDL ~ | |xil_defaultlib

|:| Use STD_LOGIC type for Boolean or 1 bit wide gateways
Target directory :

Unetlist Browse...
Synthesis strategy : Implementation strategy :

Vivado Synthesis Defaults ~ Vivado Implementation Defaults ~

|:| Create interface document |:| Create testbench Model upgrade...
Performance Tips Generate oK Apply Cancel Help

« Ifyou are using an M3XXXA module with the k410 fpga option, set the Part to xc7k410t-2ffg676. If
you are using an M3XXXA module with the k325 option, set the Part dialog box to xc7k325t-
2ffg676. Set the Compilation dialog box to IP Catalog. The Hardware description language dialog

box can be set to either VHDL or Verilog. This example will use VHDL. Click Ok to close the dialog
window.

* Inthe Library browser go to Xilinx Blockset=Math and drag the AddSub block onto the design can-
vas. The AddSub block defaults to a latency of 1. Leave the default value setat 1.

AddSub

e Theninthe Library Browser navigate to Xilinx Blockset-Basic Elements and drag two In ports and
one Out port onto the design canvas. Connect the In ports to the a and b inputs of the AddSub
block and connect the Out port to the a+b output of the AddSub block. Both the In and Out blocks
default to a port width of 16. Leave the default value set at 16.

Tutorials Xilinx System Generator for DSP™ Tutorial

An 1

Gateway In

»a

b Gateway Oul
Gateway In1

e Change the name on the upper input port to A and the name on the lower input port to B by double
clicking on the text below the port. Change the name on the output port to C.

R

A
alt! &
b C

B

e The final design should look something like this.

Find us at www.keysight.com Page 409

¥4 sysgenidder - Simulink

File Edit View Display Diagram Simulation Analysis Code Tools Help
%-=-8 WO E-egOP = [] [rom 1@

sysgenAdder

© |[Pa]sysgenadder

Q
8
=
s (
e
System
Generator
A
gk \
Fase
—»{b c
AddSub
B
7]
»
Ready View 3 warnings 150%

auto(VariableStepDiscrete)

e Click on the System Generator icon and then click Generate in the System Generator dialog win-

dow. System Generator will generate the HDL code for the design.

ip= Generate

When System Generator finishes generating the HDL code, open PathWave FPGA and create a new

project with the correct FPGA option (either k410 or k325).

e Launch PathWave FPGA .
» Click on File==New...-~Sandbox Project in the PathWave FPGA GUI.

File Edit Tools Help
MNew... » [Sandbox Project
B Open.. Ctri+0]

Recent Projects

Retarget Project...

e Choose a Project name and Project location in the New Sandbox Project dialog and click Next.

B New Sandbox Project *

Project Name
Enter a name for your project and specify a directory
where the project data files will be stored.

Project name: mySandbox
Project location: C:/FPGA/PathWave FPGA
¥ Create project subdirectory

Sandbox project will be created at. C./FPGA/PathWave FPGA/mySandbox

Cancel

» Select a Board Support Package and click the Next button. This example uses the M3202A.

B Mew Sandbox Project X

Project Type
Choose a Board Support Package:

Cancel

e Select a k325 or k410 configuration depending on your hardware module and click Next.

B Mew Sandbox Project X

Project Options
Board Support Package Option Filters
\ersion channels

clock . fpga

Board Configurations

Configuration Version channels clock

03.67.00 2 Variable
VENEDIS
Fixed
Fixed
Variable
VENEDIS
Fixed
Variable

11 M3202A_ch4_clv_k41 Variable
L |

Cancel

e Choose either the Default or Blank template and click Next. The Default template comes with AWG
IP and the Blank template does not instantiate any IP blocks.

B Mew Sandbox Project X

Project Template
Choose a template:

Default
Elank

Cancel

e Thefinal page is the Project Summary page. Click Finish and PathWave FPGA will create the pro-
ject.

B MNew Sandbox Project *

Project Summary
Project Name: mySandbox
Project Lt

Proj y

Project Options:
Configurati A_chd_clv_k41
Version:

7-a2bb-edab00034900

yado 20173

Project Template: Default

Cancel Finish

e Then click on the Add External Block button on the toolbar.

4
W N D

Add External Block

« Navigate to the SystemGenerator output directory. Go to netlist/ip and select the component.xml
file. Click OK on the dialog box that shows the block description.

B Block: incr2 et

Description Identity

This IP was generated from System Generator. All
changes must be made in SysGen model.

Parameters

Component_Mame sysgenadder v1_0

Cancel

e The System Generator IP block will be imported into PathWave FPGA and will show up in the IP
Catalog.

IP Catalog

Name « Versio
sysgenadder_1 b Basic .
» BSP
clk Fosp
F Math

a(15:0) c(16:0) e

. sysgenadder 1.0

b(15:0)

Appendix

Appendix

Contents

* Infer Interface Reference

e Importing IP with Invalid IP-XACT
e VHDL Support

» Verilog Support

Find us at www.keysight.com Page 417

Infer Interface Reference

This section details the standard naming conventions used to infer interfaces from physical ports in
an HDL file. Physical ports may be named with an arbitrary common prefix, followed by an under-
score ("_"), followed by the standard port names for that interface. The physical ports may also be
named as the standard port names for that interface, with no prefix. PathWave FPGA ignores the cap-
italization of the standard port names and prefix. The inferred interface name will usually be the com-
mon prefix of the included physical ports. The inference rules generally follow the conventions in the
Xilinx document ug1118, for packaging custom IP in Vivado. Clock, reset, AXIMM, AXILite, AXIS, and
PathWave FPGA mem interfaces may be inferred.

When inferring interfaces, physical ports with a fixed width of T are valid mappings to logical ports of
width 1. The following, for example is valid:

-- valid when inferring interfaces
port (

rdata: in STD_LOGIC_VECTOR (© downto ©);
)

Parameterized physical ports with width 1 are not valid mappings to logical ports of width T; this is
because the width is not guaranteed to be 1. The following, for example, is not valid when inferring
interfaces:

-- not valid when inferring interfaces
generic (
size : integer := 0
)s
port (
rdata: in STD_LOGIC_VECTOR (size downto 0);

)5

The tables below contain the name of the interface port, whether it is required on Primary, and
whether it is required on a Secondary. To infer an interface, all of the required ports on either the
Primary or Secondary must be present. The checks for matching are case-insensitive.

CLOCK

Port Name Required on Primary Required on Secondary
clk required required

Clock interfaces may be inferred from port names of several patterns. In Xilinx UG1118 nomenclature,
clocks may be matched with: [*_]clk, [*_]clkin, [*_Jaclk, [*_Jaclkin, or [*_]clock[_*]

NRST

PortName Required on Primary Required on Secondary
nrst required required

Reset interfaces may be inferred from port names of several patterns. In Xilinx UGT118 nomenclature,

resets may be matched with: [*_Jresetn, [*_Jaresetn, [*_]rstn, or [*_Inrst Patterns for positive active
resets are not recognized.

Appendix Infer Interface Reference

AXIMM

Find us at www.keysight.com Page 420

Port Name Required on Primary Required on Secondary

araddr required required
arburst optional required
arcache optional optional
arid optional optional
arlen optional required
arlock optional optional
arprot required optional
arqos optional optional
arready required required
arregion optional optional
arsize optional required
aruser optional optional
arvalid required required
awaddr required required
awburst optional required
awcache optional optional
awid optional optional
awlen optional required
awlock optional optional
awprot required optional
awqos optional optional
awready required required
awregion optional optional
awsize optional required
awuser optional optional
awvalid required required
bid optional optional
bready required required
bresp optional optional
buser optional optional
bvalid required required
rdata required required
rid optional optional
rlast optional required
rready required required
rresp optional optional
ruser optional optional
rvalid required required
wdata required required

wlast optional optional

wready required required

wstrb optional required

wuser optional optional

wvalid required required
AXILite

Port Name Required on Primary Required on Secondary

araddr required required
arprot optional optional
arready required required
arvalid required required
awaddr required required
awprot optional optional
awready required required
awvalid required required
bready required required
bresp optional optional
bvalid required required
rdata required required
rready required required
rresp optional optional
rvalid required required
wdata required required
wready required required
wstrb optional required
wvalid required required
AXIS

Port Name Required on Primary Required on Secondary

tdata optional optional
tdest optional optional
tid optional optional
tkeep optional optional
tlast optional optional
tready optional optional
tstrb optional optional
tuser optional optional

tvalid required required

MEM

Port Name Required on Primary Required on Secondary

address required required
rddata required required
rden required required
wrdata required required
wren required required
FDS RX
Port Name Required on Primary Required on Secondary
address required required
data required required
valid required required
ready required required
start required required
end required required
FDS TX
Port Name Required on Primary Required on Secondary
address required required
data required required
valid required required
ready required required
start required required
end required required

HVI Custom Instruction

Port Name Required on Primary Required on Secondary

cmdld required required
dataA required required
dataB optional optional
valid required required

apply required required

Importing IP with Invalid IP-XACT

When importing IP, Pathwave FPGA can use IP-XACT files to determine the modules ports and
interfaces. However, some third party tools can generate invalid IP-XACT files. These are IP-XACT
files that violate the IP-XACT specification. An example of this is if the IP-XACT file uses names that
include invalid characters such as embedded spaces. Pathwave FPGA will generate errors when try-
ing to parse these IP-XACT files.

To use one of these IP blocks, the best solution would be to obtain valid IP-XACT files. If thisis not
possible, the alternative is to create valid IP-XACT using Pathwave FPGA's IP Packager and replacing
the invalid IP-XACT with the valid IP-XACT. Creating this IP-XACT will require knowledge of the IP
block's ports and interface structure. If the IP block is from Vivado's IP Catalog, then the "Files" sec-
tion of the IP-XACT should point to the *.xci file generated by Vivado. If the IP block is HDL, then the
"Files" section of the IP-XACT should include the HDL as well as any submodules necessary to build
it.

Note that Vivado generates the older, incompatible version of IP-XACT, and hence Vivado's IP-XACT
can not be edited in the Pathwave FPGA's IP Packager.

VHDL Support

This page describes the supported VHDL types and constructs when importing a VHDL file into
PathWave FPGA. These limitations apply to the following flows:

® |P Packager, when using the "Autofill from File" or "Load from File" action.
® |mported User IP

It is recommended that you create IP-XACT for any VHDL IP that does not meet the conditions
described in this section.

Generics

All generics are treated as user-configurable parameters by PathWave FPGA.

The supported datatypes for generics are:

" bit

" boolean

® natural - treated as integer, but with minimum boundary setto O
® positive - treated as integer, but with minimum boundary set to 1
® integer

" string

The supported operators for the default values of integer type generics are:

B+ addition
® _: subtraction
® > multiplication

m /- division

Ports

All ports are treated as std_logic or std_logic_vector type by PathWave FPGA. The supported data-
types are:

® std_logic

® std_logic_vector

® bit - treated as std_logic

® bit_vector - treated as std_logic_vector, with the same range
® boolean - treated as std_logic

® natural - treated as std_logic_vector(30 downto 0)

positive - treated as std_logic_vector(30 downto 0)
integer - treated as std_logic_vector(31 downto 0)
character - treated as std_logic_vector(7 downto 0)

Port ranges can use generics and the supported operators described above. See Known Issues below
for limitations on port boundaries.

Known Issues

The value range of an Integer datatype of a port is ignored. Directly importing such a file in
PathWave FPGA will be completed successfully, however, the synthesis of any design that contains
that IP will fail. A workaround is to create an IP-XACT file for the VHDL file using the IP Packager.
Then, in the Physical Ports tab, modify the width to match the actual width required.

Some VHDL errors are ignored by PathWave FPGA when importing VHDL, but will fail during syn-
thesis. Vivado is the authority on whether a VHDL file is valid, not PathWave FPGA.

For vector ports with a 'downto' range, the right boundary must be literal '0". For a 'to' range, the
left boundary must be literal '0".

Constants or datatypes imported from another package cannot be used in the entity declaration.

When Kactus?2 is used for creating IP-XACT for a VHDL file, the VHDL entity declaration must end
with "end <entity name>" and not "end entity."

Arrays are not supported. They may or may not load into the schematic properly, but they will not
build properly.

Verilog Support

This page describes known issues when importing a Verilog file into PathWave FPGA. These lim-
itations apply to the following flows:

e |P Packager, when using the "Autofill from File" or "Load from File" action.
¢ Imported User IP

It is recommended that you create IP-XACT for any Verilog IP that does not meet the conditions
described in this section.

Parameters
All parameters are treated as user-configurable parameters by PathWave FPGA.

The parameter keyword is supported, but the localparam keyword is not. Local parameters are per-
mitted, but they cannot be used in a port definition.

Parameters are always treated as 32 bit integers. It is valid to declare an integer type, or give a range
declaration, but it will still be treated as a 32 bit signed integer. For example, in "parameter [1:0]
myParam = 5", the parameter has the value 5 instead of being truncated to 1.

Fora parameter to be automatically inferred from a Verilog source file (e.g. when using Autofill from
file in the IP Packager), the parameter should be defined in the module name declaration. For
example, "module modname #(parameter a=5, b=6)" would detect the parameters a and b. If the para-
meters are defined in the body of the module (after the port definitions), they will not be automatically
inferred and should be entered manually.

Expressions

Most Verilog expressions and functions are supported.

All Verilog math functions are supported except In.

The following operators are not supported: bit select ([]), concatenation({ }), and replication({{ }})
Reduction operators are supported, but they are always evaluated from a 64 bit signed integer. For

example, "&1'x1" returns 0 because "&'x0000000000000001" is O.

Known Issues

Importing Verilog IP into PathWave FPGA has a number of known limitations. It is recommended that
you create IP-XACT for any Verilog IP that does not meet the following conditions. Note that only
module declarations, port and parameter definitions and 'endmodule’ are checked. A violation of the
following conditions will produce a "Syntax Error" message when importing Verilog IP:

Module declarations must include at least one port definition.

Ports and parameters cannot have the same name differing only by case (e.g. "myPort" and
"myport").

Tasks and functions are not supported because their ports are misinterpreted as part of the mod-
ule's interface.

Output registers cannot be assigned an initial value in the same statement where it is defined, such
as "output reg myReg = 0;"

Definition of port attributes is not supported, such as "(* attribute definition *) input
portName,".

Parameters and port definitions in a module declaration may not be conditionally included
using “ifdef / “endif statements and they cannot use any preprocessor Variables.

Expressions are limited to 32-bit signed integers. For example, "*hFFFF_FFFF" is treated as -1
instead of 4294967295.

Size constants in expressions are ignored. For example, "4'des" is treated as 65 instead of being
truncated to 1.

Arrays will fail to parse and will not load.

Legal

Legal

Contents

e 3rd Party Licenses

e Apache License v2.0
e GNU GPLv3

e GNU LGPLv3

Find us at www.keysight.com Page 429

3rd Party Licenses

Contents

e 7-7ip

e bzip2

e Doxygen

e Inja

e Lua

o Ot

e Xerces-C++
e zlib

Portions of this software are licensed by third parties including open source terms and conditions.

7-zip
PathWave FPGA uses parts of 7-Zip, which is licensed under the GNU LGPL license. For more inform-
ation or to receive a copy of the source code for 7-Zip, visit http://support.keysight.com.

http://support.keysight.com/

License for use and distribution

7-Zip Copyright (C) 1999-2016 Igor Pavlov.
Licenses for files are:

1) 7z.dll: GNU LGPL + unRAR restriction
2) All other files: GNU LGPL

The GNU LGPL + unRAR restriction means that you must follow both GNU LGPL rules and unRAR restriction
rules.

Note: You can use 7-Zip on any computer, including a computer in a commercial organization. You don't
need to register or pay for 7-Zip.

GNU LGPL information

This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at
your option) any later version.

This library is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You can receive a copy of the GNU Lesser General Public License from: http://www.gnu.org/

UnRAR restriction

The decompression engine for RAR archives was developed using source code of unRAR program.
All copyrights to original unRAR code are owned by Alexander Roshal.

The license for original unRAR code has the following restriction:

The unRAR sources cannot be used to re-create the RAR compression algorithm,
which is proprietary. Distribution of modified unRAR sources in separate form

or as a part of other software is permitted, provided that it is clearly

stated in the documentation and source comments that the code may

not be used to develop a RAR (WinRAR) compatible archiver.

Igor Pavlov

http://www.gnu.org/

bzip2

PathWave FPGA uses bzip2 v1.0.6, used with permission. For more information, visit https://sp-
dx.org/licenses/bzip2-1.0.6.html.

Doxygen

PathWave FPGA uses Doxygen 1.8.13, which is licensed under the GNU LGPL license. For more
information or to receive a copy of the source code for Doxygen, visit http://support.keysight.com

Doxygen license
Copyright © 1997-2018 by Dimitri van Heesch.

Permission to use, copy, modify, and distribute this software and its documentation under the terms of the
GNU General Public License is hereby granted. No representations are made about the suitability of this

software for any purpose. It is provided "as is" without express or implied warranty. See the GNU General
Public License for more details.

Documents produced by doxygen are derivative works derived from the input used in their production; they
are not affected by this license.

Inja

PathWave FPGA uses Inja. For more information, visit https://github.com/pantor/inja

https://spdx.org/licenses/bzip2-1.0.6.html
https://spdx.org/licenses/bzip2-1.0.6.html
http://support.keysight.com/
https://github.com/pantor/inja

MIT License
Copyright (c) 2018 lbersch

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Copyright (c) 2009-2018 FIRST
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of the FIRST nor the

names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY FIRST AND CONTRIBUTORS™AS IS" AND ANY

EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY NONINFRINGEMENT AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL FIRST OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Lua
PathWave FPGA uses parts of Lua 5.3.4.

Copyright © 1994-2017 Lua.org, PUC-Rio.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and
to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions
of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT
OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

Qt

PathWave FPGA uses @t 5.7.0 and 5.6.2, licensed under the terms of GNU LGPLv3. For more inform-
ation or to receive a copy of the source code for Qt, visit http://support.keysight.com.

The Qt Toolkit is Copyright (C) 2015 The Qt Company Ltd.
Contact: http://www.qt.io/licensing/

You may use, distribute and copy the Qt GUI Toolkit under the terms of GNU Lesser General Public
License version 3, which is displayed below. This license makes reference to the version 3 of the GNU
General Public License, which you can find below.

Xerces-C++

PathWave FPGA uses Xerces-C++ 3.2.0, licensed under the terms of Apache License v2.0, which is
displayed below. For more information, visit https://xerces.apache.org/xerces-c/.

http://lua.org/
http://support.keysight.com/
http://www.qt.io/licensing/
https://xerces.apache.org/xerces-c/

== NOTICE file corresponding to section 4(d) of the Apache License, ==
== Version 2.0, in this case for the Apache Xerces distribution. ==

This product includes software developed by
The Apache Software Foundation (http://www.apache.org/).

Portions of this software were originally based on the following:
- software copyright (c) 1999, IBM Corporation., http://www.ibm.com.

zlib

PathWave FPGA uses zlib 1.2.11, used by permission. For more information, visit https://www.z-
lib.net/zlib_license.html.

http://www.apache.org/
http://www.ibm.com/
https://www.zlib.net/zlib_license.html
https://www.zlib.net/zlib_license.html

Apache License v2.0

Apache License
Version 2.0, January 2004

http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and distribution as defined by
Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is grant-
ing the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that control, are con-
trolled by, or are under common control with that entity. For the purposes of this definition, "control"
means (i) the power, direct or indirect, to cause the direction or management of such entity, whether
by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or
(iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this
License.

"Source" form shall mean the preferred form for making modifications, including but not limited to
software source code, documentation source, and configuration files.

"Object" form shall mean any form resulting from mechanical transformation or translation of a
Source form, including but not limited to compiled object code, generated documentation, and con-
versions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made available under
the License, as indicated by a copyright notice that is included in or attached to the work (an example
is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or
derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modi-
fications represent, as a whole, an original work of authorship. For the purposes of this License, Deriv-
ative Works shall not include works that remain separable from, or merely link (or bind by name) to
the interfaces of, the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version of the Work and any
modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to
Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity

http://www.apache.org/licenses/

authorized to submit on behalf of the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent to the Licensor or its rep-
resentatives, including but not limited to communication on electronic mailing lists, source code con-
trol systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the
purpose of discussing and improving the Work, but excluding communication that is conspicuously
marked or otherwise designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution
has been received by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor
hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sub-
license, and distribute the Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor
hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made, use, offer to sell, sell, import,
and otherwise transfer the Work, where such license applies only to those patent claims licensable by
such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of
their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute pat-
ent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the
Work or a Contribution incorporated within the Work constitutes direct or contributory patent
infringement, then any patent licenses granted to You under this License for that Work shall ter-
minate as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in
any medium, with or without modifications, and in Source or Object form, provided that You meet the
following conditions:

1. You must give any other recipients of the Work or Derivative Works a copy of this License; and

2. You must cause any modified files to carry prominent notices stating that You changed the files;
and

3. You must retain, in the Source form of any Derivative Works that You distribute, all copyright, pat-
ent, trademark, and attribution notices from the Source form of the Work, excluding those notices
that do not pertain to any part of the Derivative Works; and

4. Ifthe Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that
You distribute must include a readable copy of the attribution notices contained within such
NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at
least one of the following places: within a NOTICE text file distributed as part of the Derivative
Works; within the Source form or documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and wherever such third-party notices nor-
mally appear. The contents of the NOTICE file are for informational purposes only and do not
modify the License. You may add Your own attribution notices within Derivative Works that You

distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such
additional attribution notices cannot be construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide additional or
different license terms and conditions for use, reproduction, or distribution of Your modifications,
or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of
the Work otherwise complies with the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally
submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions. Notwithstanding the above, nothing herein
shall supersede or modify the terms of any separate license agreement you may have executed with
Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names, trademarks, service
marks, or product names of the Licensor, except as required for reasonable and customary use in
describing the origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides
the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation,
any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or
redistributing the Work and assume any risks associated with Your exercise of permissions under this
License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence),
contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent
acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct,
indirect, special, incidental, or consequential damages of any character arising as a result of this
License or out of the use or inability to use the Work (including but not limited to damages for loss of
goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages
or losses), even if such Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works
thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or
other liability obligations and/or rights consistent with this License. However, in accepting such oblig-
ations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any
other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for
any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any
such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: HOW TO APPLY THE APACHE LICENSE TO YOUR WORK

To apply the Apache License to your work, attach the following boilerplate notice, with the fields
enclosed by brackets "[]" replaced with your own identifying information. (Don't include the brackets!)
The text should be enclosed in the appropriate comment syntax for the file format. We also recom-
mend that a file or class name and description of purpose be included on the same "printed page" as
the copyright notice for easier identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

GNU GPLv3

GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

Copyright © 2007 Free Software Foundation, Inc. <https://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing
itis not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of works.

The licenses for most software and other practical works are designed to take away your freedom to
share and change the works. By contrast, the GNU General Public License is intended to guarantee
your freedom to share and change all versions of a program--to make sure it remains free software
for all its users. We, the Free Software Foundation, use the GNU General Public License for most of
our software; it applies also to any other work released this way by its authors. You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses
are designed to make sure that you have the freedom to distribute copies of free software (and
charge for them if you wish), that you receive source code or can get it if you want it, that you can
change the software or use pieces of it in new free programs, and that you know you can do these
things.

To protect your rights, we need to prevent others from denying you these rights or asking you to sur-
render the rights. Therefore, you have certain responsibilities if you distribute copies of the software,
or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on
to the recipients the same freedoms that you received. You must make sure that they, too, receive or
can get the source code. And you must show them these terms so they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the soft-
ware, and (2) offer you this License giving you legal permission to copy, distribute and/or modify it.

For the developers' and authors' protection, the GPL clearly explains that there is no warranty for this
free software. For both users' and authors' sake, the GPL requires that modified versions be marked
as changed, so that their problems will not be attributed erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the software
inside them, although the manufacturer can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic pattern of such abuse occurs in the

https://fsf.org/

area of products for individuals to use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those products. If such problems
arise substantially in other domains, we stand ready to extend this provision to those domains in
future versions of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States should not allow patents
to restrict development and use of software on general-purpose computers, but in those that do, we
wish to avoid the special danger that patents applied to a free program could make it effectively pro-
prietary. To prevent this, the GPL assures that patents cannot be used to render the program non-
free.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as semiconductor
masks.

“The Program” refers to any copyrightable work licensed under this License. Each licensee is

» oo«

addressed as “you”. “Licensees” and “recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion requiring copyright
permission, other than the making of an exact copy. The resulting work is called a “modified version”
of the earlier work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based on the Program.

To “propagate” a work means to do anything with it that, without permission, would make you directly
or secondarily liable for infringement under applicable copyright law, except executing it on a com-
puter or modifying a private copy. Propagation includes copying, distribution (with or without modi-
fication), making available to the public, and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make or receive cop-
ies. Mere interaction with a user through a computer network, with no transfer of a copy, is not con-
veying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it includes a con-
venient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells
the user that there is no warranty for the work (except to the extent that warranties are provided), that
licensees may convey the work under this License, and how to view a copy of this License. If the inter-
face presents a list of user commands or options, such as a menu, a prominent item in the list meets
this criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modifications to it.
“Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined by a recognized
standards body, or, in the case of interfaces specified for a particular programming language, one
that is widely used among developers working in that language.

The “System Libraries” of an executable work include anything, other than the work as a whole, that
(a) is included in the normal form of packaging a Major Component, but which is not part of that
Major Component, and (b) serves only to enable use of the work with that Major Component, or to
implement a Standard Interface for which an implementation is available to the public in source code
form. A “Major Component”, in this context, means a major essential component (kernel, window sys-
tem, and so on) of the specific operating system (if any) on which the executable work runs, or a com-
piler used to produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code needed to gen-
erate, install, and (for an executable work) run the object code and to modify the work, including
scripts to control those activities. However, it does not include the work's System Libraries, or gen-
eral-purpose tools or generally available free programs which are used unmodified in performing
those activities but which are not part of the work. For example, Corresponding Source includes inter-
face definition files associated with source files for the work, and the source code for shared libraries
and dynamically linked subprograms that the work is specifically designed to require, such as by
intimate data communication or control flow between those subprograms and other parts of the
work.

The Corresponding Source need not include anything that users can regenerate automatically from
other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the Program, and are
irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited per-
mission to run the unmodified Program. The output from running a covered work is covered by this
License only if the output, given its content, constitutes a covered work. This License acknowledges
your rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without conditions so long
as your license otherwise remains in force. You may convey covered works to others for the sole pur-
pose of having them make modifications exclusively for you, or provide you with facilities for running
those works, provided that you comply with the terms of this License in conveying all material for
which you do not control copyright. Those thus making or running the covered works for you must do

so exclusively on your behalf, under your direction and control, on terms that prohibit them from mak-
ing any copies of your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under the conditions stated below.
Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users' Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under any applicable
law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996,
or similar laws prohibiting or restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid circumvention of technological
measures to the extent such circumvention is effected by exercising rights under this License with
respect to the covered work, and you disclaim any intention to limit operation or modification of the
work as a means of enforcing, against the work's users, your or third parties' legal rights to forbid cir-
cumvention of technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program's source code as you receive it, in any medium,
provided that you conspicuously and appropriately publish on each copy an appropriate copyright
notice; keep intact all notices stating that this License and any non-permissive terms added in accord
with section 7 apply to the code; keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer support or
warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from the Program,
in the form of source code under the terms of section 4, provided that you also meet all of these con-
ditions:

 a) The work must carry prominent notices stating that you modified it, and giving a relevant date.

» b) The work must carry prominent notices stating that it is released under this License and any con-
ditions added under section 7. This requirement modifies the requirement in section 4 to “keep
intact all notices”.

» ¢) You must license the entire work, as a whole, under this License to anyone who comes into pos-
session of a copy. This License will therefore apply, along with any applicable section 7 additional
terms, to the whole of the work, and all its parts, regardless of how they are packaged. This License
gives no permission to license the work in any other way, but it does not invalidate such permission
if you have separately received it.

« d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; how-
ever, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.

A compilation of a covered work with other separate and independent works, which are not by their
nature extensions of the covered work, and which are not combined with it such as to form a larger
program, in or on a volume of a storage or distribution medium, is called an “aggregate” if the com-
pilation and its resulting copyright are not used to limit the access or legal rights of the compilation's
users beyond what the individual works permit. Inclusion of a covered work in an aggregate does not
cause this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and 5, provided
that you also convey the machine-readable Corresponding Source under the terms of this License, in
one of these ways:

 a) Convey the object code in, or embodied in, a physical product (including a physical distribution
medium), accompanied by the Corresponding Source fixed on a durable physical medium cus-
tomarily used for software interchange.

» b) Convey the object code in, or embodied in, a physical product (including a physical distribution
medium), accompanied by a written offer, valid for at least three years and valid for as long as you
offer spare parts or customer support for that product model, to give anyone who possesses the
object code either (1) a copy of the Corresponding Source for all the software in the product that is
covered by this License, on a durable physical medium customarily used for software interchange,
for a price no more than your reasonable cost of physically performing this conveying of source, or
(2) access to copy the Corresponding Source from a network server at no charge.

» ¢) Convey individual copies of the object code with a copy of the written offer to provide the Cor-
responding Source. This alternative is allowed only occasionally and noncommercially, and only if
you received the object code with such an offer, in accord with subsection 6b.

 d) Convey the object code by offering access from a designated place (gratis or for a charge), and
offer equivalent access to the Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the Corresponding Source along with the
object code. If the place to copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party) that supports equivalent copying
facilities, provided you maintain clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain
obligated to ensure that it is available for as long as needed to satisfy these requirements.

» ¢e) Convey the object code using peer-to-peer transmission, provided you inform other peers where
the object code and Corresponding Source of the work are being offered to the general public at
no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding
Source as a System Library, need not be included in conveying the object code work.

A “User Product” is either (1) a “consumer product”, which means any tangible personal property
which is normally used for personal, family, or household purposes, or (2) anything designed or sold
for incorporation into a dwelling. In determining whether a product is a consumer product, doubtful
cases shall be resolved in favor of coverage. For a particular product received by a particular user,
“normally used” refers to a typical or common use of that class of product, regardless of the status of
the particular user or of the way in which the particular user actually uses, or expects or is expected to
use, the product. A product is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent the only significant mode
of use of the product.

“Installation Information” for a User Product means any methods, procedures, authorization keys, or
other information required to install and execute modified versions of a covered work in that User
Product from a modified version of its Corresponding Source. The information must suffice to ensure
that the continued functioning of the modified object code is in no case prevented or interfered with
solely because modification has been made.

If you convey an object code work under this section in, or with, or specifically for use in, a User
Product, and the conveying occurs as part of a transaction in which the right of possession and use of
the User Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the
transaction is characterized), the Corresponding Source conveyed under this section must be accom-
panied by the Installation Information. But this requirement does not apply if neither you nor any third
party retains the ability to install modified object code on the User Product (for example, the work has
been installed in ROM).

The requirement to provide Installation Information does not include a requirement to continue to
provide support service, warranty, or updates for a work that has been modified or installed by the
recipient, or for the User Product in which it has been modified or installed. Access to a network may
be denied when the modification itself materially and adversely affects the operation of the network
or violates the rules and protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with this section
must be in a format that is publicly documented (and with an implementation available to the public
in source code form), and must require no special password or key for unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by making exceptions
from one or more of its conditions. Additional permissions that are applicable to the entire Program
shall be treated as though they were included in this License, to the extent that they are valid under
applicable law. If additional permissions apply only to part of the Program, that part may be used sep-
arately under those permissions, but the entire Program remains governed by this License without
regard to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any additional per-
missions from that copy, or from any part of it. (Additional permissions may be written to require their
own removal in certain cases when you modify the work.) You may place additional permissions on
material, added by you to a covered work, for which you have or can give appropriate copyright per-
mission.

Notwithstanding any other provision of this License, for material you add to a covered work, you may
(if authorized by the copyright holders of that material) supplement the terms of this License with
terms:

« a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this
License; or

» b) Requiring preservation of specified reasonable legal notices or author attributions in that mater-
ial or in the Appropriate Legal Notices displayed by works containing it; or

« c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of
such material be marked in reasonable ways as different from the original version; or

« d) Limiting the use for publicity purposes of names of licensors or authors of the material; or

« e) Declining to grant rights under trademark law for use of some trade names, trademarks, or ser-
vice marks; or

« f) Requiring indemnification of licensors and authors of that material by anyone who conveys the
material (or modified versions of it) with contractual assumptions of liability to the recipient, for any
liability that these contractual assumptions directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within the meaning of
section 10. If the Program as you received it, or any part of it, contains a notice stating that it is gov-
erned by this License along with a term that is a further restriction, you may remove that term. If a
license document contains a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms of that license document,
provided that the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant source
files, a statement of the additional terms that apply to those files, or a notice indicating where to find
the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a separately written
license, or stated as exceptions; the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided under this License.
Any attempt otherwise to propagate or modify it is void, and will automatically terminate your rights
under this License (including any patent licenses granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular copyright holder
is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates
your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some
reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright
holder notifies you of the violation by some reasonable means, this is the first time you have received
notice of violation of this License (for any work) from that copyright holder, and you cure the violation
prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have
received copies or rights from you under this License. If your rights have been terminated and not per-
manently reinstated, you do not qualify to receive new licenses for the same material under section
10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the Program. Ancillary
propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However, nothing other than this License
grants you permission to propagate or modify any covered work. These actions infringe copyright if
you do not accept this License. Therefore, by modifying or propagating a covered work, you indicate
your acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license from the original
licensors, to run, modify and propagate that work, subject to this License. You are not responsible for
enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an organization, or substantially all
assets of one, or subdividing an organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that transaction who receives a copy of the
work also receives whatever licenses to the work the party's predecessor in interest had or could give
under the previous paragraph, plus a right to possession of the Corresponding Source of the work
from the predecessor in interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or affirmed under
this License. For example, you may not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation (including a cross-claim or coun-
terclaim in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.

11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of the Program or a work
on which the Program is based. The work thus licensed is called the contributor's “contributor

version”.

A contributor's “essential patent claims” are all patent claims owned or controlled by the contributor,
whether already acquired or hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version, but do not include claims that
would be infringed only as a consequence of further modification of the contributor version. For pur-
poses of this definition, “control” includes the right to grant patent sublicenses in a manner con-
sistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the con-
tributor's essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify
and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or commitment, how-
ever denominated, not to enforce a patent (such as an express permission to practice a patent or cov-
enant not to sue for patent infringement). To “grant” such a patent license to a party means to make
such an agreement or commitment not to enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of
the work is not available for anyone to copy, free of charge and under the terms of this License,
through a publicly available network server or other readily accessible means, then you must either
(1) cause the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit
of the patent license for this particular work, or (3) arrange, in a manner consistent with the require-
ments of this License, to extend the patent license to downstream recipients. “Knowingly relying”
means you have actual knowledge that, but for the patent license, your conveying the covered work
in a country, or your recipient's use of the covered work in a country, would infringe one or more iden-
tifiable patents in that country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by
procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving
the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered
work, then the patent license you grant is automatically extended to all recipients of the covered work
and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its coverage, prohibits the
exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically
granted under this License. You may not convey a covered work if you are a party to an arrangement
with a third party that is in the business of distributing software, under which you make payment to
the third party based on the extent of your activity of conveying the work, and under which the third
party grants, to any of the parties who would receive the covered work from you, a discriminatory pat-
ent license (a) in connection with copies of the covered work conveyed by you (or copies made from
those copies), or (b) primarily for and in connection with specific products or compilations that con-
tain the covered work, unless you entered into that arrangement, or that patent license was granted,
prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or other
defenses to infringement that may otherwise be available to you under applicable patent law.

12. No Surrender of Others' Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you from the conditions of this License. If you cannot
convey a covered work so as to satisfy simultaneously your obligations under this License and any
other pertinent obligations, then as a consequence you may not convey it at all. For example, if you
agree to terms that obligate you to collect a royalty for further conveying from those to whom you con-
vey the Program, the only way you could satisfy both those terms and this License would be to refrain
entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or combine any
covered work with a work licensed under version 3 of the GNU Affero General Public License into a
single combined work, and to convey the resulting work. The terms of this License will continue to
apply to the part which is the covered work, but the special requirements of the GNU Affero General
Public License, section 13, concerning interaction through a network will apply to the combination as
such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU General Public
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that a certain
numbered version of the GNU General Public License “or any later version” applies to it, you have the
option of following the terms and conditions either of that numbered version or of any later version
published by the Free Software Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published by the Free Software Found-
ation.

If the Program specifies that a proxy can decide which future versions of the GNU General Public
License can be used, that proxy's public statement of acceptance of a version permanently authorizes
you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no additional oblig-
ations are imposed on any author or copyright holder as a result of your choosing to follow a later ver-
sion.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER

PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE
QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE
DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY
COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM
AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED
INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given local legal
effect according to their terms, reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the Program, unless a warranty or assump-
tion of liability accompanies a copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the
best way to achieve this is to make it free software which everyone can redistribute and change under
these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each
source file to most effectively state the exclusion of warranty; and each file should have at least the
“copyright” line and a pointer to where the full notice is found.

<one line to give the program's name and a brief idea of what it
does.>

Copyright (C) <year> <name of author>

This program is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see
<https://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it starts in an
interactive mode:

<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type
“show w'.

This is free software, and you are welcome to redistribute it
under certain conditions; type “show c¢' for details.

The hypothetical commands ‘show w' and ‘show c' should show the appropriate parts of the General
Public License. Of course, your program's commands might be different; for a GUI interface, you
would use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to sign a “copy-
right disclaimer” for the program, if necessary. For more information on this, and how to apply and fol-
low the GNU GPL, see <https://www.gnu.org/licenses/>.

The GNU General Public License does not permit incorporating your program into proprietary pro-
grams. If your program is a subroutine library, you may consider it more useful to permit linking pro-
prietary applications with the library. If this is what you want to do, use the GNU Lesser General

Public License instead of this License. But first, please read <https://www.gnu.org/licenses/why-not-
lgpl.html>.

https://www.gnu.org/licenses/
https://www.gnu.org/licenses/why-not-lgpl.html
https://www.gnu.org/licenses/why-not-lgpl.html

GNU LGPLv3

GNU LESSER GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

Copyright © 2007 Free Software Foundation, Inc. <https://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing
itis not allowed.

This version of the GNU Lesser General Public License incorporates the terms and conditions of ver-
sion 3 of the GNU General Public License, supplemented by the additional permissions listed below.

0. Additional Definitions.

As used herein, “this License” refers to version 3 of the GNU Lesser General Public License, and the
“GNU GPL” refers to version 3 of the GNU General Public License.

“The Library” refers to a covered work governed by this License, other than an Application or a Com-
bined Work as defined below.

An “Application” is any work that makes use of an interface provided by the Library, but which is not
otherwise based on the Library. Defining a subclass of a class defined by the Library is deemed a
mode of using an interface provided by the Library.

A “Combined Work” is a work produced by combining or linking an Application with the Library. The
particular version of the Library with which the Combined Work was made is also called the “Linked
Version”.

The “Minimal Corresponding Source” for a Combined Work means the Corresponding Source for the
Combined Work, excluding any source code for portions of the Combined Work that, considered in
isolation, are based on the Application, and not on the Linked Version.

The “Corresponding Application Code” for a Combined Work means the object code and/or source
code for the Application, including any data and utility programs needed for reproducing the Com-
bined Work from the Application, but excluding the System Libraries of the Combined Work.

1. Exception to Section 3 of the GNU GPL.

You may convey a covered work under sections 3 and 4 of this License without being bound by sec-
tion 3 of the GNU GPL.

2. Conveying Modified Versions.

If you modify a copy of the Library, and, in your modifications, a facility refers to a function or data to
be supplied by an Application that uses the facility (other than as an argument passed when the facil-
ity is invoked), then you may convey a copy of the modified version:

https://fsf.org/

 a) under this License, provided that you make a good faith effort to ensure that, in the event an
Application does not supply the function or data, the facility still operates, and performs whatever
part of its purpose remains meaningful, or

» b) under the GNU GPL, with none of the additional permissions of this License applicable to that
copy.

3. Object Code Incorporating Material from Library Header Files.

The object code form of an Application may incorporate material from a header file that is part of the
Library. You may convey such object code under terms of your choice, provided that, if the incor-
porated material is not limited to numerical parameters, data structure layouts and accessors, or
small macros, inline functions and templates (ten or fewer lines in length), you do both of the fol-
lowing:

« a) Give prominent notice with each copy of the object code that the Library is used in it and that the
Library and its use are covered by this License.

» b) Accompany the object code with a copy of the GNU GPL and this license document.

4. Combined Works.

You may convey a Combined Work under terms of your choice that, taken together, effectively do not
restrict modification of the portions of the Library contained in the Combined Work and reverse engin-
eering for debugging such modifications, if you also do each of the following:

 a) Give prominent notice with each copy of the Combined Work that the Library is used in it and
that the Library and its use are covered by this License.

» b) Accompany the Combined Work with a copy of the GNU GPL and this license document.

 ¢) For a Combined Work that displays copyright notices during execution, include the copyright
notice for the Library among these notices, as well as a reference directing the user to the copies of
the GNU GPL and this license document.

+ d) Do one of the following:

= 0) Convey the Minimal Corresponding Source under the terms of this License, and the Cor-
responding Application Code in a form suitable for, and under terms that permit, the user to
recombine or relink the Application with a modified version of the Linked Version to produce a
modified Combined Work, in the manner specified by section 6 of the GNU GPL for conveying
Corresponding Source.

= 1) Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is
one that (a) uses at run time a copy of the Library already present on the user's computer sys-
tem, and (b) will operate properly with a modified version of the Library that is interface-com-
patible with the Linked Version.

 ¢) Provide Installation Information, but only if you would otherwise be required to provide such
information under section 6 of the GNU GPL, and only to the extent that such information is neces-
sary to install and execute a modified version of the Combined Work produced by recombining or
relinking the Application with a modified version of the Linked Version. (If you use option 4d0, the
Installation Information must accompany the Minimal Corresponding Source and Corresponding
Application Code. If you use option 4d1, you must provide the Installation Information in the man-
ner specified by section 6 of the GNU GPL for conveying Corresponding Source.)

5. Combined Libraries.

You may place library facilities that are a work based on the Library side by side in a single library
together with other library facilities that are not Applications and are not covered by this License, and
convey such a combined library under terms of your choice, if you do both of the following:

» a) Accompany the combined library with a copy of the same work based on the Library, uncom-
bined with any other library facilities, conveyed under the terms of this License.

 b) Give prominent notice with the combined library that part of it is a work based on the Library,
and explaining where to find the accompanying uncombined form of the same work.

6. Revised Versions of the GNU Lesser General Public License.

The Free Software Foundation may publish revised and/or new versions of the GNU Lesser General
Public License from time to time. Such new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library as you received it specifies that a
certain numbered version of the GNU Lesser General Public License “or any later version” applies to
it, you have the option of following the terms and conditions either of that published version or of any
later version published by the Free Software Foundation. If the Library as you received it does not spe-
cify a version number of the GNU Lesser General Public License, you may choose any version of the
GNU Lesser General Public License ever published by the Free Software Foundation.

If the Library as you received it specifies that a proxy can decide whether future versions of the GNU
Lesser General Public License shall apply, that proxy's public statement of acceptance of any version
is permanent authorization for you to choose that version for the Library.

Find us at www.keysight.com Page 455

KEYSIGHT

TECHNOLOGIES

This information is subject to change
without notice.

© Keysight Technologies 2018-2022
Edition 3.0, February, 2023

Printed in USA 2/3/2023 6:32 PM

www.keysight.com

http://www.keysight.com/

	Getting Started
	System Requirements
	Installation
	Licensing

	User Guide
	Overview
	GUI Overview
	Keyboard and Mouse Shortcuts
	Basic Controls
	Adding Blocks
	Connecting Ports and Interfaces
	Connection Rules

	Adding and Editing Comments

	Configuring PathWave FPGA
	Designing your FPGA Logic
	Creating a New Sandbox Project
	Creating a New Submodule Project
	Project Settings Dialog
	Design Interfaces
	Keysight Standard Interfaces
	Adding a Memory Map
	Adding a Register Bank
	Configuring Submodule Interfaces
	Deciding the Address Width of an Interface
	Registering Sandbox Interfaces
	Symbol Names

	IP Catalog
	PathWave FPGA IP Repository
	Basic IP Blocks
	Connector Blocks
	Math Blocks
	DSP Blocks
	Memory Blocks
	DSP Library IP Blocks
	IP Repositories
	Imported User IP
	Vivado XCI (Xilinx Core Instance)
	PathWave FPGA Submodule

	Naming Conventions
	Name Collisions

	Building your FPGA Logic
	Generating the Bit File

	Simulating your FPGA Logic
	Simulation Testbench Design
	Test Bench Address Mapping

	Advanced Features
	Command Line Arguments
	Migrating a design to a new BSP
	Changing a Submodule Project Target Hardware
	Debugging in Hardware
	User Constraint Files

	Glossary

	IP Developers Guide
	Overview: IP Developers Guide
	IP Packager
	Additional Interface Properties

	IP Repository Manifest

	Tutorials
	IP Packager Tutorial
	Simple HDL done manually
	Simple HDL done automatically
	Parameterized HDL
	Advanced IP Packaging

	HVI Example
	Import Vivado High-Level Synthesis (HLS) generated IP
	Power of Two Decimation Tutorial
	Xilinx System Generator for DSP™ Tutorial

	Appendix
	Infer Interface Reference
	Importing IP with Invalid IP-XACT
	VHDL Support
	Verilog Support

	Legal
	3rd Party Licenses
	Apache License v2.0
	GNU GPLv3
	GNU LGPLv3

