
User's
Guide

Keysight
M3601A
HVI Design
Environment

Notices

Copyright Notice
© Keysight Technologies 2013 - 2017

No part of this manual may be
reproduced in any form or by any means
(including electronic storage and
retrieval or translation into a foreign
language) without prior agreement and
written consent from Keysight
Technologies, Inc. as governed by
United States and international
copyright laws.

Manual Part Number
M3601-90001

Published By
Keysight Technologies
1400 Fountaingrove Parkway
Santa Rosa
CA 95405

Edition
Edition 1, May, 2021
Printed In USA

Regulatory Compliance
This product has been designed and
tested in accordance with accepted
industry standards, and has been
supplied in a safe condition. To review
the Declaration of Conformity, go to
http://www.keysight.com/go/conformity.

Warranty
THE MATERIAL CONTAINED IN THIS
DOCUMENT IS PROVIDED “AS IS,” AND
IS SUBJECT TO BEING CHANGED,
WITHOUT NOTICE, IN FUTURE
EDITIONS. FURTHER, TO THE
MAXIMUM EXTENT PERMITTED BY
APPLICABLE LAW, KEYSIGHT
DISCLAIMS ALL WARRANTIES, EITHER
EXPRESS OR IMPLIED, WITH REGARD
TO THIS MANUAL AND ANY
INFORMATION CONTAINED HEREIN,
INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE. KEYSIGHT
SHALL NOT BE LIABLE FOR ERRORS
OR FOR INCIDENTAL OR
CONSEQUENTIAL DAMAGES IN
CONNECTION WITH THE FURNISHING,

USE, OR PERFORMANCE OF THIS
DOCUMENT OR OF ANY INFORMATION
CONTAINED HEREIN. SHOULD
KEYSIGHT AND THE USER HAVE A
SEPARATE WRITTEN AGREEMENT
WITH WARRANTY TERMS COVERING
THE MATERIAL IN THIS DOCUMENT
THAT CONFLICT WITH THESE TERMS,
THE WARRANTY TERMS IN THE
SEPARATE AGREEMENT SHALL
CONTROL.

KEYSIGHT TECHNOLOGIES DOES NOT
WARRANT THIRD-PARTY SYSTEM-
LEVEL (COMBINATION OF CHASSIS,
CONTROLLERS, MODULES, ETC.)
PERFORMANCE, SAFETY, OR
REGULATORY COMPLIANCE, UNLESS
SPECIFICALLY STATED.

Technology Licenses
The hardware and/or software
described in this document are
furnished under a license and may be
used or copied only in accordance with
the terms of such license.

U.S. Government Rights
The Software is “commercial computer
software,” as defined by Federal
Acquisition Regulation (“FAR”) 2.101.
Pursuant to FAR 12.212 and 27.405-3
and Department of Defense FAR
Supplement (“DFARS”) 227.7202, the
U.S. government acquires commercial
computer software under the same
terms by which the software is
customarily provided to the public.
Accordingly, Keysight provides the
Software to U.S. government customers
under its standard commercial license,
which is embodied in its End User
License Agreement (EULA), a copy of
which can be found at
http://www.keysight.com/find/sweula. The
license set forth in the EULA represents
the exclusive authority by which the U.S.
government may use, modify, distribute,
or disclose the Software. The EULA and
the license set forth therein, does not
require or permit, among other things,
that Keysight: (1) Furnish technical
information related to commercial
computer software or commercial
computer software documentation that
is not customarily provided to the
public; or (2) Relinquish to, or otherwise

provide, the government rights in excess
of these rights customarily provided to
the public to use, modify, reproduce,
release, perform, display, or disclose
commercial computer software or
commercial computer software
documentation. No additional
government requirements beyond those
set forth in the EULA shall apply, except
to the extent that those terms, rights, or
licenses are explicitly required from all
providers of commercial computer
software pursuant to the FAR and the
DFARS and are set forth specifically in
writing elsewhere in the EULA. Keysight
shall be under no obligation to update,
revise or otherwise modify the Software.
With respect to any technical data as
defined by FAR 2.101, pursuant to FAR
12.211 and 27.404.2 and DFARS
227.7102, the U.S. government acquires
no greater than Limited Rights as
defined in FAR 27.401 or DFAR
227.7103-5 (c), as applicable in any
technical data.

Safety Notices

A CAUTION notice denotes a hazard. It
calls attention to an operating
procedure, practice, or the like that, if
not correctly performed or adhered to,
could result in damage to the product
or loss of important data. Do not
proceed beyond a CAUTION notice until
the indicated conditions are fully
understood and met.

A WARNING notice denotes a hazard. It
calls attention to an operating
procedure, practice, or the like that, if
not correctly performed or adhered to,
could result in personal injury or death.
Do not proceed beyond a WARNING
notice until the indicated conditions are
fully understood and met.

The following safety precautions should
be observed before using this product
and any associated instrumentation.

This product is intended for use by
qualified personnel who recognize
shock hazards and are familiar with the

ii

http://www.keysight.com/go/conformity
http://www.keysight.com/find/sweula

safety precautions required to avoid
possible injury. Read and follow all
installation, operation, and maintenance
information carefully before using the
product.

If this product is not used as specified,
the protection provided by the
equipment could be impaired. This
product must be used in a normal
condition (in which all means for
protection are intact) only.

The types of product users are:

Responsible body is the individual or group
responsible for the use and maintenance
of equipment, for ensuring that the equip-
ment is operated within its specifications
and operating limits, and for ensuring oper-
ators are adequately trained.

Operators use the product for its intended
function. They must be trained in electrical
safety procedures and proper use of the
instrument. They must be protected from
electric shock and contact with hazardous
live circuits.

Maintenance personnel perform routine
procedures on the product to keep it oper-
ating properly (for example, setting the line
voltage or replacing consumable mater-
ials). Maintenance procedures are
described in the user documentation. The
procedures explicitly state if the operator
may perform them. Otherwise, they should
be performed only by service personnel.

Service personnel are trained to work on
live circuits, perform safe installations, and
repair products. Only properly trained ser-
vice personnel may perform installation
and service procedures.

Operator is responsible to maintain safe
operating conditions. To ensure safe
operating conditions, modules should
not be operated beyond the full
temperature range specified in the
Environmental and physical
specification. Exceeding safe operating
conditions can result in shorter
lifespans, improper module
performance and user safety issues.

When the modules are in use and
operation within the specified full
temperature range is not maintained,
module surface temperatures may
exceed safe handling conditions which
can cause discomfort or burns if
touched. In the event of a module
exceeding the full temperature range,
always allow the module to cool before
touching or removing modules from
chassis.

Keysight products are designed for use
with electrical signals that are rated
Measurement Category I and
Measurement Category II, as described
in the International Electrotechnical
Commission (IEC) Standard IEC 60664.
Most measurement, control, and data
I/O signals are Measurement Category I
and must not be directly connected to
mains voltage or to voltage sources
with high transient over-voltages.
Measurement Category II connections
require protection for high transient
over-voltages often associated with
local AC mains connections. Assume all
measurement, control, and data I/O
connections are for connection to
Category I sources unless otherwise
marked or described in the user
documentation.

Exercise extreme caution when a shock
hazard is present. Lethal voltage may be
present on cable connector jacks or test
fixtures. The American National
Standards Institute (ANSI) states that a
shock hazard exists when voltage levels
greater than 30V RMS, 42.4V peak, or
60VDC are present. A good safety
practice is to expect that hazardous
voltage is present in any unknown
circuit before measuring.

Operators of this product must be
protected from electric shock at all
times. The responsible body must
ensure that operators are prevented
access and/or insulated from every
connection point. In some cases,
connections must be exposed to
potential human contact. Product
operators in these circumstances must
be trained to protect themselves from
the risk of electric shock. If the circuit is
capable of operating at or above 1000V,
no conductive part of the circuit may be
exposed.

Do not connect switching cards directly
to unlimited power circuits. They are
intended to be used with impedance-
limited sources. NEVER connect
switching cards directly to AC mains.
When connecting sources to switching
cards, install protective devices to limit
fault current and voltage to the card.

Before operating an instrument, ensure
that the line cord is connected to a
properly-grounded power receptacle.
Inspect the connecting cables, test
leads, and jumpers for possible wear,
cracks, or breaks before each use.

When installing equipment where
access to the main power cord is
restricted, such as rack mounting, a
separate main input power disconnect
device must be provided in close
proximity to the equipment and within
easy reach of the operator.

For maximum safety, do not touch the
product, test cables, or any other
instruments while power is applied to
the circuit under test. ALWAYS remove
power from the entire test system and
discharge any capacitors before:
connecting or disconnecting cables or
jumpers, installing or removing
switching cards, or making internal
changes, such as installing or removing
jumpers.

Do not touch any object that could
provide a current path to the common
side of the circuit under test or power
line (earth) ground. Always make
measurements with dry hands while
standing on a dry, insulated surface
capable of withstanding the voltage
being measured.

The instrument and accessories must be
used in accordance with its
specifications and operating
instructions, or the safety of the
equipment may be impaired.

Do not exceed the maximum signal
levels of the instruments and
accessories, as defined in the
specifications and operating
information, and as shown on the
instrument or test fixture panels, or
switching card.

When fuses are used in a product,
replace with the same type and rating

iii

for continued protection against fire
hazard.

Chassis connections must only be used
as shield connections for measuring
circuits, NOT as safety earth ground
connections.

If you are using a test fixture, keep the
lid closed while power is applied to the
device under test. Safe operation
requires the use of a lid interlock.

Instrumentation and accessories shall
not be connected to humans.

Before performing any maintenance,
disconnect the line cord and all test
cables.

To maintain protection from electric
shock and fire, replacement
components in mains circuits –
including the power transformer, test
leads, and input jacks – must be
purchased from Keysight. Standard
fuses with applicable national safety
approvals may be used if the rating and
type are the same. Other components
that are not safety-related may be
purchased from other suppliers as long
as they are equivalent to the original
component (note that selected parts
should be purchased only through
Keysight to maintain accuracy and
functionality of the product). If you are
unsure about the applicability of a
replacement component, call an
Keysight office for information.

No operator serviceable parts inside.
Refer servicing to qualified personnel.
To prevent electrical shock do not
remove covers. For continued
protection against fire hazard, replace
fuse with same type and rating.

PRODUCT MARKINGS:

The CE mark is a registered trademark
of the European Community.

Australian Communication and Media
Authority mark to indicate regulatory
compliance as a registered supplier.

This symbol indicates product
compliance with the Canadian
Interference-Causing Equipment
Standard (ICES-001). It also identifies
the product is an Industrial Scientific
and Medical Group 1 Class A product
(CISPR 11, Clause 4).

South Korean Class A EMC Declaration.
This equipment is Class A suitable for
professional use and is for use in
electromagnetic environments outside
of the home. A 급 기기 (업무용 방송통신기
자재) 이 기기는 업무용 (A 급) 전자파적합
기기로서 판 매자 또는 사용자는 이 점을 주
의하시기 바라 며 , 가정외의 지역에서 사용

하는 것을 목적으 로 합니다.

This product complies with the WEEE
Directive marketing requirement. The
affixed product label (above) indicates
that you must not discard this
electrical/electronic product in
domestic household waste. Product
Category: With reference to the
equipment types in the WEEE directive
Annex 1, this product is classified as
“Monitoring and Control
instrumentation” product. Do not
dispose in domestic household waste.
To return unwanted products, contact
your local Keysight office, or for more
information see
http://about.keysight.com/en/companyinfo/e
nvironment/takeback.shtml.

This symbol indicates the instrument is
sensitive to electrostatic discharge
(ESD). ESD can damage the highly
sensitive components in your
instrument. ESD damage is most likely
to occur as the module is being installed
or when cables are connected or
disconnected. Protect the circuits from
ESD damage by wearing a grounding
strap that provides a high resistance
path to ground. Alternatively, ground
yourself to discharge any built-up static
charge by touching the outer shell of
any grounded instrument chassis before
touching the port connectors.

This symbol on an instrument means
caution, risk of danger. You should refer
to the operating instructions located in
the user documentation in all cases
where the symbol is marked on the
instrument.

This symbol indicates the time period
during which no hazardous or toxic
substance elements are expected to
leak or deteriorate during normal use.
Forty years is the expected useful life of
the product.

iv

http://about.keysight.com/en/companyinfo/environment/takeback.shtml
http://about.keysight.com/en/companyinfo/environment/takeback.shtml

v

Contents

 1 Keysight HVI Design Environment 1

 1. 1 Introduction: the HVI Design Environment 1

 1. 2 M3601A HVI Design Environment Basics 1

 1. 2. 1 Main Window 1

 1. 2. 2 Creating an HVI Project 2

 1. 2. 3 Creating HVI Instructions 3

 1. 2. 4 HVI Compilation and Execution 3

 1. 2. 5 Hardware Module Options 3

 1. 2. 6 HVI Registers 3

 1. 3 HVI Flowcharts 4

 1. 3. 1 Timing Arrows 4

 1. 3. 2 Synchronized Flow-Control Statements 4

 1. 3. 2. 1 Start 5

 1. 3. 2. 2 End 5

 1. 3. 2. 3 Synchronized Junction 5

 1. 3. 2. 4 Synchronized Conditional 6

 1. 3. 2. 5 Local Flow-control Statements 7

 1. 3. 2. 6 If Block 8

 1. 3. 2. 7 For Block 9

 1. 3. 2. 8 While Block 10

 1. 3. 2. 9 Wait 10

 1. 3. 3 Instruction Statements 12

 1. 3. 3. 1 Built-in Instructions 12

 1. 3. 3. 2 External Variable Access 14

 2 Software Programming Guide: HVI-VI Interaction 15

 2. 1 Programming Functions 15

 2. 1. 1 SW Programming Overview Programming Libraries 15

 2. 1. 2 SD_HVI Functions 16

 2. 1. 2. 1 open 16

 2. 1. 2. 2 close 18

 2. 1. 2. 3 start 19

 2. 1. 2. 4 pause 19

 2. 1. 2. 5 resume 20

 2. 1. 2. 6 stop 21

 2. 1. 2. 7 reset 23

 2. 1. 2. 8 compile 23

 2. 1. 2. 9 compilationErrorMessage 24

 2. 1. 2. 10 load 25

 2. 1. 2. 11 assignHardware 26

 2. 1. 2. 12 getNumberOfModules 28

 2. 1. 2. 13 getModuleName 29

 2. 1. 2. 14 getModuleIndex 30

 2. 1. 2. 15 getModule 31

 2. 1. 2. 16 writeConstant 32

 2. 1. 2. 17 readConstant 33

 2. 1. 3 SD Module Functions (HVI-related) 35

 2. 1. 3. 1 writeRegister 35

 2. 1. 3. 2 readRegister 37

 2. 1. 4 Error Codes 39

 3 Addendum: Keysight Technology and Software Overview 41

 3. 1 Programming Tools 41

 3. 1. 1 SW Programming 41

 3. 1. 1. 1 Keysight SD1 Programming Libraries 42

 3. 1. 2 HW Programming 42

 3. 1. 2. 1 HVI Technology: Keysight M3601A 42

 3. 1. 2. 2 FPGA Programming: Keysight M3602A 46

 3. 1. 2. 3 Keysight M3602A: An FPGA Design Environment 47

 3. 2 Design Process: Customization vs. Complete Design 48

 3. 3 Application Software 49

 3. 3. 1 Keysight SD1 SFP 49

vi

1 Keysight HVI Design Environment

Keysight M3601A HVI Design Environment User's Guide 1

 1 Keysight HVI Design Environment

 1. 1 Introduction: the HVI Design Environment

Keysight’s exclusive Hard Virtual Instrumentation (HVI) technology provides the capability to create
time-deterministic execution sequences which are executed by the hardware modules in parallel
and with perfect intermodule synchronization.

M3601A HVI Design Environment is supported by all M3XXXA AWG and Digitizer PXIe modules with
-HV1 option enabled (this option should be selected with purchase). Additional information is
available at HVI Technology: Keysight M3601A (page 42)).

 1. 2 M3601A HVI Design Environment Basics

Keysight M3601A allows the user to create or edit HVIs using an intuitive graphical flowchart
interface. This section introduces the basics of this interface.

 1. 2. 1 Main Window

M3601A main window is shown in Figure 1. The Properties window located on the left part of the
screen is a multipurpose tool that shows the instructions and properties of all the objects which are
activated by a mouse left-click. The Flowcharts of the two hardware modules comprising this HVI
can be identified on the right side of the window. These flowcharts contain statements (different
shaped boxes) and time arrows (Section Timing Arrows (page 4)) which define the execution of the
HVI.

1 Keysight HVI Design Environment

Figure 1: M3601A HVI Design Environment

Docking options: all windows of Keysight M3601A can be docked
at will to adapt its appearance to the application and the screen
size. These windows can also be undocked using the thumbtack.
Take your time to familiarize with the flexible window system.

 1. 2. 2 Creating an HVI Project

An HVI is defined by a group of hardware modules* that are fully synchronized, working as a single
integrated hardware module. Therefore, the creation of a new HVI starts by selecting its modules
(Figure 2), after clicking File ⇒ New HVI Project.

Reassigning hardware modules: (Module ⇒ Change) once the
HVI was created, a hardware module can be reassigned to
another hardware module of the same type. This is particularly
useful when modules are changed from one physical slot to
another, or when the HVI is created without the hardware
connected (modules are opened offline) and must be assigned to
a physical hardware module when available.

2 Keysight M3601A HVI Design Environment User's Guide

1 Keysight HVI Design Environment

Keysight M3601A HVI Design Environment User's Guide 3

Figure 2: New Hard Virtual Instrument (HVI) project creation. Dialog to select the hardware modules
that will become part of the HVI.

 1. 2. 3 Creating HVI Instructions

An empty project shows all the hardware modules* with the Start (page 5). A mouse right-click over
any statement (like the Start Statement) opens a menu to create and delete new flowchart elements
(see HVI Flowcharts (page 4) to learn more about these elements).

 1. 2. 4 HVI Compilation and Execution

HVI Projects can be compiled and executed directly within M3601A using the Build option on the
main menu. An HVI Project can also be compiled into an HVI object (File ⇒ Generate HVI...). With
this file, the HVI can be executed from a VI using the Keysight SD1 Programming Libraries, e.g. from
C/C++, LabVIEW, Python, MATLAB, etc. See Software Programming Guide: HVI-VI Interaction (page
15) for more information about the interaction between VIs and HVIs.

 1. 2. 5 Hardware Module Options

Each hardware module may have different options, e.g. an AWG may be able to define arbitrary
waveforms, etc., which are accessible from the module menu in the Main thread window (Module
⇒ ...).

 1. 2. 6 HVI Registers

Each hardware module has 16 local registers (32 bits integers) that can be used in the programming
of the HVI. Most statements can write or read into/from these registers. Registers can be

1 Keysight HVI Design Environment

read/written between modules, providing a fast tool to transfer small amounts of data (see how to
access external variables External Variable Access (page 14)).

PC-HVI Semaphores: HVI module registers are also useful for
signaling purposes between the PC and the HVI. For example, the
HVI can wait until the PC changes a register or viceversa,
allowing the user to perform tasks in the PC and in the HVI
simultaneously or alternatively.

 1. 3 HVI Flowcharts

Flowcharts represent a program or execution sequence by means of instructions and flow-control
boxes (called statements), and timing arrows. Statements define HVI actions, while arrows define
the execution flow and timing. All these elements are explained throughout this section.

 1. 3. 1 Timing Arrows

Timing Arrows define and inform about the time between statements. Therefore, the user may thing
as if statements do not take any time and all the timing information is given by the Timing Arrows.
There are two kind of arrows:

Solid Arrows: Normal arrows which connect statements. They can have a well
defined time at programming time, or they can show a time uncertainty with a
question mark (e.g. Figure 4).

Dashed Arrows: The dashed arrows show a time uncertainty due to a syn-
chronization recovery (the modules must wait for other modules). These arrows
appear before a (Synchronized Flow-Control Statements (page 4)) when there
has been a desynchronization event (e.g. after Wait Statements, loops with vari-
able cycles, etc.). For dashed arrows, the user can set the minimum time, but
the maximum its only defined at runtime.

Synchronization: Dashed arrows indicate a desynchronization
between the modules which is being recovered by introducing a
Synchronized Flow-control Statement.

 1. 3. 2 Synchronized Flow-Control Statements

Flow-control statements are elements that control the HVI execution flow. Synchronized Flow-
Control Statements are particular Flow- control Statements that are executed in all modules at the
same time.

4 Keysight M3601A HVI Design Environment User's Guide

1 Keysight HVI Design Environment

Keysight M3601A HVI Design Environment User's Guide 5

Synchronization Recovery: Some statements like Wait, For
Blocks or While Blocks may have an undefined execution time
while programming (their timing is only defined during runtime).
Therefore, these statements produce a desynchronization of the
modules. Synchronized Flow-Control Statements can be used as
synchronization elements after a desynchronization.

Synchronized and Local Flow-control Statements Colors:
Synchronized Flow-Control Statements are show in the flowchart
as violet elements, while Local Flow-Control Statements are
show as yellow elements.

 1. 3. 2. 1 Start

Every flowchart begins with a Start Statement (Figure 3), which is in fact a Synchronized Junction
Statement (Figure 4), This statement ensures that all the hardware modules in an HVI start the
execution fully synchronized.

Junction Statement: The Start Statement is really a Junction
Statement (Synchronized Junction (page 5)), and therefore can
be used as a destination for Conditional Statements (Figure 4).

 1. 3. 2. 2 End

The End Statement indicates the end of the HVI execution, and must be placed by the user to
terminate the HVI properly (Figure 3).

 1. 3. 2. 3 Synchronized Junction

A Synchronized Junction Statement is an element that can be used as a destination for conditional
jumps (Synchronized Conditional (page 6)).

Synchronization Recovery: In addition to operate as a destination
for conditional jumps, the Synchronized Junction Statement is
ideal to perform synchronization recovery (Figure 4).

1 Keysight HVI Design Environment

Figure 3: Flowcharts of two modules, showing the Start and the End Statements

Figure 4: A Synchronized Junction Statement (ellipse-shaped element) can also be used to
synchronize flowcharts

 1. 3. 2. 4 Synchronized Conditional

M3601A allows the user to perform conditional jumps to control the HVI execution flow, enabling
the implementation of ultra-fast decision making, loops, etc.

A synchronized jump in the execution flow requires two elements:

 1. Synchronized Conditional Statement, which is the element that evaluates the
condition and performs the jump

 2. Destination element.

The latter can be the statement right below the conditional or a Junction Statement placed
anywhere in the flowchart (Figure 5).

6 Keysight M3601A HVI Design Environment User's Guide

1 Keysight HVI Design Environment

Keysight M3601A HVI Design Environment User's Guide 7

Leader and follower synchronized conditionals: In a Synchronized Conditional Statement, the
decision is taken by only one of the modules (called Leader), and all the others (follower) will comply
with the same conditional result.

Synchronization Recovery: Like any other Synchronized Flow-
control Statement, a Synchronized Conditional will synchronize
all modules after a desynchronization.

 1. 3. 2. 5 Local Flow-control Statements

Flow-control Statements are elements that control the HVI execution flow. Local Flow-Control
Statements are particular Flow-control Statements that are executed only in one module, without
affecting the execution flow of other modules.

Figure 5: A Synchronized Conditional Statement (diamond-shaped element) jumps to a Junction
Statement (ellipse-shaped element) in two modules exactly at the same time. The GUI maintains the
synchronization by adjusting automatically the time of the last Timing Arrow. The solid dot in the
arrow below the Conditional indicates the jump under a FALSE condition evaluation, while the side
branch indicates the jump under a TRUE condition evaluation.

Synchronized and Local Flow-control Statements Colors:
Synchronized Flow-Control Statements are show in the flowchart

1 Keysight HVI Design Environment

as violet elements, while Local Flow-Control Statements are
show as yellow elements.

 1. 3. 2. 6 If Block

The If Block Statement is the classical ”if/else structure” available in any programming language.
The If Block provides two operation options:

Branch Synchronization Forced: the total time of the two branches (if and else)
is forced to be equal, and therefore the execution time is well defined (does not
depend on the branch). In this case, the If Block Statement does not desyn-
chronize.

Branch Synchronization Unforced: the total time of the two branches (if and
else) can be different, and therefore the execution time may be defined only at
runtime (when the branch is decided). If this is the case, the If Block Statement
produces desynchronization.

Figure 6: An If Block with equal timing in both branches does not desynchronize

8 Keysight M3601A HVI Design Environment User's Guide

1 Keysight HVI Design Environment

Keysight M3601A HVI Design Environment User's Guide 9

Figure 7: An If Block with different timing in both branches desynchronizes, as it it shown in the
flowchart of the other modules (right)

 1. 3. 2. 7 For Block

The For Block Statement is the classical ”for loop structure” of any programming language. The user
can choose which local register (M3601A HVI Design Environment Basics (page 1)) is used for the
loop index, and the exit value (number of loops).

Undefined number of loops: If the number of loops is not fixed at
programming time (e.g. it is defined by a local register), the For
Block Statement desynchronizes.

1 Keysight HVI Design Environment

Figure 8: For Block Statement

 1. 3. 2. 8 While Block

A While Block Statement is the classical ”while loop” structure of any programming language. The
execution loops while a condition is fulfilled.

Undefined number of loops: Like in the case of the For Block, if
the exit condition depends on registers (which values are only
defined at runtime), then the While Block desynchronizes.

Figure 9: While Block Statement

 1. 3. 2. 9 Wait

The Wait Statement can be configured to wait for two different events:

10 Keysight M3601A HVI Design Environment User's Guide

1 Keysight HVI Design Environment

Keysight M3601A HVI Design Environment User's Guide 11

Variable Time: It waits the amount of time defined in a local register. The time
unit in the register is defined in tens of nanoseconds.

PXI Trigger: It waits until the selected PXI trigger has the desired value (On or
Off).

Undefined waiting time: The exit condition of the Wait Statement
depends on registers (which values are only defined at runtime)
or external signals (e.g. PXI triggers), therefore the execution
time is not well defined at programming time, producing
desynchronization. The Timing Arrow below the Wait Statement
informs about the undefined execution time by adding a question
mark to the specified time (Figure 10).

Figure 10: Wait Statement with an undefined execution time (left flowchart). This timing uncertainty
can be seen in the arrow below the Wait. Please note that this also produces a desynchronization,
which is shown with the dashed arrows above the Synchronized Junction. The latter performs a
synchronization recovery in both modules (left and right).

PXI triggers: PXI triggers are dedicated lines available in the PXI
backplane, and can be used at will to exchange signals between
modules.

1 Keysight HVI Design Environment

ADVANCED: Converting a Local Wait into a Synchronized Wait :
By inserting a Synchronized Junction after a Wait, all modules
will be forced to wait for the module that takes more time to
reach the junction, as the junction resynchronizes all flowcharts.

 1. 3. 3 Instruction Statements

Instruction statements describe the main actions of an HVI, without altering the execution flow
directly.

 1. 3. 3. 1 Built-in Instructions

Built-in instructions are the main execution statements of an HVI. There are two kind of instructions
statements: module-specific, e.g. an instruction to change the amplitude of an Arbitrary Waveform
Generator (AWG) (built-in module-specific instructions are described in the User Guide of the
module), and universal instruction statements, like arithmetic operations, etc., which are available in
all Keysight compatible modules with -HV1 programming enabled option.

Instruction Execution Latency: Instructions are triggered according to the statement timing within
the flowchart, however each module-specific instruction has its own execution latency. Check the
module datasheet for latency values.

 1. 3. 3. 1. 1 Built-in Instructions: Universal

This chapter describes the universal instruction statements available in all modules.

 1. 3. 3. 1. 1. 1 MathAssign (D=S)

This function copies the value of the source parameter (S) into the destination variable (D).

Parameters

Name Description

Inputs

Destination Destination local register

Source Source value to be assigned:
· Constant in the specified format (Decimal, Binary, Hexadecimal, etc.)

· Source local register
· Module-specific digital values

 1. 3. 3. 1. 1. 2 MathArithmetics (R=A[+-*/]B)

This function subtracts, adds, multiplies or divides the values of the operands A and B, writing the
result in R.

Parameters

12 Keysight M3601A HVI Design Environment User's Guide

1 Keysight HVI Design Environment

Keysight M3601A HVI Design Environment User's Guide 13

Name Description

Inputs

Result Destination local register

A First operand of the arithmetic operation:
· Constant in the specified format (Decimal, Binary, Hexadecimal, etc.)
· Source local register
· Module-specific digital values

Operation Arithmetic operation (+, -, *, /)

B Second operand of the arithmetic operation:
· Constant in the specified format (Decimal, Binary, Hexadecimal, etc.)
· Source local register
· Module-specific digital values

 1. 3. 3. 1. 1. 3 MathLogic (R=A [op] B)

This function performs a logic operation with the values of the operands A and B, writing the result
in R.

Parameters

Name Description

Inputs

Result Destination local register

A First operand of the operation:
· Constant in the specified format (Decimal, Binary, Hexadecimal, etc.)
· Source local register
· Module-specific digital values

Operation Logic operation (and, or, xor, etc.)

B Second operand of the operation:
· Constant in the specified format (Decimal, Binary, Hexadecimal, etc.)
· Source local register
· Module-specific digital values

 1. 3. 3. 1. 1. 4 MathSQRT (R=sqrt(A))

This function performs the square of the source parameter (A), writing the result in R.

Parameters

Name Description

Inputs

Destination Destination local register

A Source value to be assigned:
· Constant in the specified format (Decimal, Binary, Hexadecimal,
etc.)
· Source local register

1 Keysight HVI Design Environment

Name Description
· Module-specific digital values

 1. 3. 3. 1. 1. 5 HVIport

This function performs a read or write operation on port HVI available in M3602A.

Parameters

Name Description

Inputs

Port Port index of HVI port

Operation Defines if it’s a read or write operation

Address Offset from HVI port base address expressed in double words

Source (Available only on write operation) Source value to be write on HVI port

Destination (Available only on read operation) Destination local register

 1. 3. 3. 1. 2 Built-in Instructions: Module-specific

Module-specific instructions are explained in the user guides of the corresponding hardware
modules.

 1. 3. 3. 2 External Variable Access

This statement writes or reads into/from a variable of another module (M3601A HVI Design
Environment Basics (page 1)).

External Variable Access time: The execution time of the External
Variable Access Statement is undefined, because it depends,
among others, on the data bus bandwidth and congestion. For
this reason, this statement produces a desynchronization and
dashed Time Arrows will appear in the flowcharts (see Timing
Arrows (page 4) for more details).

14 Keysight M3601A HVI Design Environment User's Guide

2 Software Programming Guide: HVI-VI Interaction

Keysight M3601A HVI Design Environment User's Guide 15

 2 Software Programming Guide: HVI-VI Interaction
Thanks to the Keysight Programming Libraries, HVIs created with Keysight M3601A integrate
seamlessly with the user application, commonly referred in Keysight documentation as VI (Virtual
Instrument, Section Programming Tools (page 41)).

Within M3601A, an HVI Project can be compiled into an HVI binary file (File ⇒ Generate HVI...).
With this file, the HVI can be executed and controlled from the user application, e.g. the HVI can be
launched, paused, stopped, etc. VIs and HVIs can also exchange data and signals.

This Section describes the programming functions designed to control HVIs.

 2. 1 Programming Functions

 2. 1. 1 SW Programming Overview Programming Libraries

Keysight provides highly optimized programming libraries to operate the Keysight M3601A HVI
Design Environment which is supported by the following modules: M3100A, M3102A, M3201A,
M3202A, M3300A and M3302A with -HV1 option enabled.

Native Programming Languages

Ready-to-use native libraries are supplied for the following programming languages and compilers:

Language Compiler Library Files
C Microsoft Visual Studio . NET .NET Library *.dll

 MinGW (Qt), GCC C Library *.h, *.a

 Any C compiler C Library *.h, *.lib

C++ Microsoft Visual Studio . NET .NET Library *.dll

 MinGW (Qt), GCC C++ Library *.h, *.a

 C++ Builder / Turbo C++ C++ Library *.h, *.lib

C# Microsoft Visual Studio .NET .NET Library *.dll

MATLAB MathWorks MATLAB .NET Library *.dll

Python Any Python compiler Python Library *.py

Basic Microsoft Visual Studio .NET .NET Library *.dll

LabVIEW National Instruments LabVIEW LabVIEW Library *.vi

Other Languages

Dynamic-link libraries are compatible with any programming language that has a compiler capable
of performing dynamic linking. Here are some case examples:

2 Software Programming Guide: HVI-VI Interaction

Compilers not listed above.

Other programming languages: Java, PHP, Perl, Fortran, Pascal, etc.

Computer Algebra Systems (CAS): Wolfram Mathematica, Maplesoft Maple,
etc. Dynamic-link libraries available:

Exported Functions Language Operating System Files
C Microsoft Windows *.dll

DLL function prototypes: The exported functions of the dynamic
libraries have the same prototype as their counterparts of the
static libraries

Function Parameters: Some of the parameters of the library
functions are language dependent. The table of inputs and
outputs parameters for each function is a conceptual description,
therefore, the user must check the specific language function to
see how to use it. One example are the ID parameters (moduleID,
etc.), which identify objects in non object-oriented languages. In
object-oriented languages the objects are identified by their
instances, and therefore the IDs are not present.
Function Names: Some programming languages like C++ or
LabVIEW have a feature called function overloading or
polymorphism, that allows creating several functions with the
same name but with different input/output parameters. In
languages without this feature, functions with different
parameters must have different names.

 2. 1. 2 SD_HVI Functions

 2. 1. 2. 1 open

This function loads a Hard Virtual Instrument (HVI) previously created with Keysight M3601A into
the hardware modules (see Software Programming Guide: HVI-VI Interaction (page 15)).

Advanced

Memory usage: HVIs do not occupy RAM in the hardware modules, they have a dedicated HVI
memory.

16 Keysight M3601A HVI Design Environment User's Guide

2 Software Programming Guide: HVI-VI Interaction

Keysight M3601A HVI Design Environment User's Guide 17

Parameters

Name Description

 Inputs

HVIfile The path of the HVI file (*.HVI) created with Keysight M3601A

errorIn If it contains an error, the function will not be executed .and errorIn will be passed to errorOut

Outputs

HVIID HVI Identifier, or a negative number in case of error (see error codes in Table 1)

errorOut See error codes in Table 1

C Function

int SD_HVI_open(char* HVIfile);

C++ Function

int SD_HVI::open(char* HVIfile);

Visual Studio .NET, MATLAB

int SD_HVI::open(string HVIfile);

Python

int SD_HVI::open(string HVIfile);

LabVIEW

SD_HVI open.vi

2 Software Programming Guide: HVI-VI Interaction

 2. 1. 2. 2 close

This function closes the HVI, removing it from the hardware modules.

Parameters

Name Description

Inputs

HVIID HVI identifier (returned by Open)

errorIn If it contains an error, the function will not be executed and errorIn will be passed to errorOut

Outputs

errorOut See error codes in Table 1

C Function

int SD_HVI_close(int HVIID);

C++ Function

int SD_HVI::close();

Visual Studio .NET, MATLAB

int SD_HVI::close();

Python

int SD_HVI::close();

LabVIEW

SD_HVI close.vi

18 Keysight M3601A HVI Design Environment User's Guide

2 Software Programming Guide: HVI-VI Interaction

Keysight M3601A HVI Design Environment User's Guide 19

 2. 1. 2. 3 start

This function starts the HVI execution from the beginning.

Parameters

Name Description

Inputs

HVIID HVI identifier (returned by Open)

errorIn If it contains an error, the function will not be executed and errorIn will be passed to errorOut

Outputs

HVIIDOut A copy of HVIID

errorOut See error codes in Table 1

C Function

int SD_HVI_start(int HVIID);

C++ Function

int SD_HVI::start();

Visual Studio .NET, MATLAB

int SD_HVI::start();

Python

int SD_HVI::start();

LabVIEW

SD_HVI start.vi

 2. 1. 2. 4 pause

This function pauses the execution of an HVI.

2 Software Programming Guide: HVI-VI Interaction

Parameters

Name Description

Inputs

HVIID HVI identifier (returned by Open)

errorIn If it contains an error, the function will not be executed and errorIn will be passed to errorOut

Outputs

HVIIDOut A copy of HVIID

errorOut See error codes in Table 1

C Function

int SD_HVI_pause(int HVIID);

C++ Function

int SD_HVI::pause();

Visual Studio .NET, MATLAB

int SD_HVI::pause();

Python

int SD_HVI::pause();

LabVIEW

SD_HVI pause.vi

 2. 1. 2. 5 resume

This function resumes the execution of an HVI paused with the function Pause.

20 Keysight M3601A HVI Design Environment User's Guide

2 Software Programming Guide: HVI-VI Interaction

Keysight M3601A HVI Design Environment User's Guide 21

Parameters

Name Description

Inputs

HVIID HVI identifier (returned by Open)

errorIn If it contains an error, the function will not be executed and errorIn will be passed to errorOut

Outputs

HVIIDOut A copy of HVIID

errorOut See error codes in Table 1

C Function

int SD_HVI_resume(int HVIID);

C++ Function

int SD_HVI::resume();

Visual Studio .NET, MATLAB

int SD_HVI::resume();

Python

int SD_HVI::resume();

LabVIEW

SD_HVI resume.vi

 2. 1. 2. 6 stop

This function finishes the HVI execution, releasing all the resources needed for the HVI.

2 Software Programming Guide: HVI-VI Interaction

Parameters

Name Description

Inputs

HVIID HVI identifier (returned by Open)

errorIn If it contains an error, the function will not be executed and errorIn will be passed to errorOut

Outputs

HVIIDOut A copy of HVIID

errorOut See error codes in Table 1

C Function

int SD_HVI_stop(int HVIID);

C++ Function

int SD_HVI::stop();

Visual Studio .NET, MATLAB

int SD_HVI::stop();

Python

int SD_HVI::stop();

LabVIEW

SD_HVI stop.vi

22 Keysight M3601A HVI Design Environment User's Guide

2 Software Programming Guide: HVI-VI Interaction

Keysight M3601A HVI Design Environment User's Guide 23

 2. 1. 2. 7 reset

This function resets the HVI.

Parameters

Name Description

Inputs

HVIID HVI identifier (returned by Open)

errorIn If it contains an error, the function will not be executed and errorIn will be passed to errorOut

Outputs

HVIIDOut A copy of HVIID

errorOut See error codes in Table 1

C Function

int SD_HVI_reset(int HVIID);

C++ Function

int SD_HVI::reset();

Visual Studio .NET, MATLAB

int SD_HVI::reset();

Python

int SD_HVI::reset();

LabVIEW

SD_HVI reset.vi

 2. 1. 2. 8 compile

This function compiles the HVI.

2 Software Programming Guide: HVI-VI Interaction

Parameters

Name Description

Inputs

HVIID HVI identifier (returned by Open)

errorIn If it contains an error, the function will not be executed and errorIn will be passed to errorOut

 Outputs

HVIIDOut A copy of HVIID

nErrors Number of error found during HVI compilation. To read the error message call function com-
pilationErrorMessage (Section 2.1.2.9)

errorOut See error codes in Table 1

C Function

int SD_HVI_compile(int HVIID);

C++ Function

int SD_HVI::compile();

Visual Studio .NET, MATLAB

int SD_HVI::compile();

Python

int SD_HVI::compile();

LabVIEW

SD_HVI_compile.vi  

 2. 1. 2. 9 compilationErrorMessage

This function gets the indicated compilation error message.

Parameters

Name Description

24 Keysight M3601A HVI Design Environment User's Guide

2 Software Programming Guide: HVI-VI Interaction

Keysight M3601A HVI Design Environment User's Guide 25

Name Description
Inputs

HVIID HVI identifier (returned by Open)

errorIndex Index of error (from 0 to nErrors -1: section 2.1.2.8)

maxSize Size of message buffer

errorIn If it contains an error, the function will not be executed and errorIn will be passed to errorOut

Outputs

HVIIDOut A copy of HVIID

message Buffer to copy indicated error message

errorOut See error codes in Table 1

C Function

int SD_HVI_compilationErrorMessage(int HVIID, int errorIndex, char *message, int maxSize);

C++ Function

int SD_HVI::compilationErrorMessage(int errorIndex, char *message, int maxSize);

Visual Studio .NET, MATLAB

int SD_HVI::compilationErrorMessage(int errorIndex, out string message);

Python

{int, string} SD_HVI::compilationErrorMessage(int errorIndex);

LabVIEW

SD_HVI_compilationErrorMessage.vi

 2. 1. 2. 10 load

This function loads the HVI to the modules.

Parameters

Name Description

 Inputs

HVIID HVI identifier (returned by Open)

errorIn If it contains an error, the function will not be executed and errorIn will be passed to errorOut

2 Software Programming Guide: HVI-VI Interaction

Name Description

Outputs

HVIIDOut A copy of HVIID

errorOut See error codes in Table 1

C Function

int SD_HVI_load(int HVIID);

C++ Function

int SD_HVI::load();

Visual Studio .NET, MATLAB

int SD_HVI::load();

Python

int SD_HVI::load();

LabVIEW

SD_HVI_load.vi

 2. 1. 2. 11 assignHardware

This function substitutes one HVI module by another compatible module.

Parameters

Name Description

Inputs

HVIID HVI identifier (returned by Open)

index Module index inside the HVI

moduleUserName Nick name of the module defined by the user within HVI

productName Complete product name (e.g.”M3100A”). This name can be found on the product, or in
nearly any Keysight software. It can also be retrieved with the function getPro-
ductName. 1

serialNumber Module Serial Number (e.g.”ES5641”). The serial number can be found on the
product, or in nearly any Keysight software. It can also be retrieved with the function
getSerialNumber. 1

26 Keysight M3601A HVI Design Environment User's Guide

2 Software Programming Guide: HVI-VI Interaction

Keysight M3601A HVI Design Environment User's Guide 27

Name Description
chassis Number where the device is located. The chassis number can be found in nearly any

Keysight software. It can also be retrieved with the function getChassis. 1

module ID or module object to assign.

slot Slot number where the device is plugged in. This number can be found on the chassis,
in nearly any Keysight software. It can also be retrieved with the function getSlot. 1

errorIn (LabVIEW only) If it contains an error, the function will not be executed and errorIn will
be passed to errorOut

Outputs

moduleID (Non-object-oriented languages only) Module identifier, or a negative number for
Error Codes in Table 1

errorOut See Error Codes in Table 1

1 These are module related functions: please, consult the User Guide of your product

C

int SD_HVI_assignHardwareWithIndexAndSerialNumber(int HVIID, int index, const char
*productName, const char *serialNumber);

int SD_HVI_assignHardwareWithIndexAndSlot(int HVIID, int index, int chassis, int slot);

int SD_HVI_assignHardwareWithUserNameAndSerialNumber(int HVIID, const char
*moduleUserName, const char *productName, const char *serialNumber);

int SD_HVI_assignHardwareWithUserNameAndSlot(int HVIID, const char *moduleUserName, int
chassis, int slot);

int SD_HVI_assignHardwareWithUserNameAndModuleID(int HVIID, const char *moduleUserName,
int module);

C++

int SD_HVI::assignHardware(int index, const char *productName, const char *serialNumber);

int SD_HVI::assignHardware(int index, int chassis, int slot);

int SD_HVI::assignHardware(const char *moduleUserName, const char *productName, const char
*serialNumber);

int SD_HVI::assignHardware(const char *moduleUserName, int chassis, int slot);

int SD_HVI::assignHardware(const char *moduleUserName, SD_Module *module);

Visual Studio .NET, MATLAB

int SD_HVI::assignHardware(int index, string productName, string serialNumber);

int SD_HVI::assignHardware(int index, int chassis, int slot);

int SD_HVI::assignHardware(string moduleUserName, string productName, string serialNumber);

2 Software Programming Guide: HVI-VI Interaction

int SD_HVI::assignHardware(string moduleUserName, int chassis, int slot);

int SD_HVI::assignHardware(string moduleUserName, SD_Module module);

Python

int SD_HVI::assignHardwareWithIndexAndSerialNumber(int index, string productName, string
serialNumber);

int SD_HVI::assignHardwareWithIndexAndSlot(int index, int chassis, int slot);

int SD_HVI::assignHardwareWithUserNameAndSerialNumber(string moduleUserName, string
productName, string serialNumber);

int SD_HVI::assignHardwareWithUserNameAndSlot(string moduleUserName, int chassis, int slot);

int SD_HVI::assignHardwareWithUserNameAndModuleID(string moduleUserName, SD_Module
module);

LabVIEW

assignHardware.vi

 2. 1. 2. 12 getNumberOfModules

This function returns the number of modules controlled by the HVI. '

Parameters

Name Description

Inputs

HVIID HVI identifier (returned by Open)

errorIn If it contains an error, the function will not be executed and errorIn will be passed to errorOut

Outputs

HVIIDOut A copy of HVIID

nModules Number of modules controlled by the HVI

errorOut See error codes in Table 1

C Function

int SD_HVI_getNumberOfModules(int HVIID);

C++ Function

int SD_HVI::getNumberOfModules();

28 Keysight M3601A HVI Design Environment User's Guide

2 Software Programming Guide: HVI-VI Interaction

Keysight M3601A HVI Design Environment User's Guide 29

Visual Studio .NET, MATLAB

int SD_HVI::getNumberOfModules();

Python

int SD_HVI::getNumberOfModules();

LabVIEW

SD_HVI_getNumberOfModules.vi

 2. 1. 2. 13 getModuleName

This function returns the nick name of one of the modules controlled by the HVI.

Parameters

Name Description

Inputs

HVIID HVI identifier (returned by Open)

index Module index inside the HVI

size Size of the buffer

errorIn If it contains an error, the function will not be executed and errorIn will be passed to errorOut

Outputs

HVIIDOut A copy of HVIID

buffer Nick name of the indicated module

errorOut See error codes in Table 1

C Function

int SD_HVI_getModuleName(int HVIID, int index, char *buffer, int size);

C++ Function

int SD_HVI::getModuleName(int index, char *buffer, int size);

Visual Studio .NET, MATLAB

string SD_HVI::getModuleName(int index);

2 Software Programming Guide: HVI-VI Interaction

Python

string SD_HVI::getModuleName(int index);

LabVIEW

SD_HVI_getModuleName.vi

 2. 1. 2. 14 getModuleIndex

This function returns the nick name of one of the modules controlled by the HVI.

Parameters

Name Description

Inputs

HVIID HVI identifier (returned by Open)

moduleUserName Nick name of the module defined by the user within HVI

errorIn If it contains an error, the function will not be executed and errorIn will be passed to
errorOut

Outputs

HVIIDOut A copy of HVIID

errorOut See error codes in Table 1

C Function

int SD_HVI_getModuleIndex(int HVIID, const char *moduleUserName);

C++ Function

int SD_HVI::getModuleIndex(const char *moduleUserName);

Visual Studio .NET, MATLAB

int SD_HVI::getModuleIndex(string moduleUserName);

Python

int SD_HVI::getModuleIndex(string moduleUserName);

30 Keysight M3601A HVI Design Environment User's Guide

2 Software Programming Guide: HVI-VI Interaction

Keysight M3601A HVI Design Environment User's Guide 31

LabVIEW

SD_HVI_getModuleIndex.vi

 2. 1. 2. 15 getModule

This function returns the selected module from the HVI.

Parameters

Name Description

Inputs

HVIID HVI identifier (returned by Open)

index Module index inside the HVI

moduleUserName Nick name of the module defined by the user within HVI

errorIn If it contains an error, the function will not be executed and errorIn will be passed to
errorOut

Outputs

HVIIDOut A copy of HVIID

module ID or module object

errorOut See error codes in Table 1

C Function

int SD_HVI_getModuleIDwithIndex(int HVIID, int index);

int SD_HVI_getModuleIDwithUserName(int HVIID, const char *moduleUserName);

C++ Function

SD_Module* SD_HVI::getModule(int index);

SD_Module* SD_HVI::getModule(const char *moduleUserName);

Visual Studio .NET, MATLAB

SD_Module SD_HVI::getModule(int index);

SD_Module SD_HVI::getModule(string moduleUserName);

Python

SD_Module SD_HVI::getModuleByIndex(int index);

SD_Module SD_HVI::getModuleByName(string moduleUserName);

2 Software Programming Guide: HVI-VI Interaction

LabVIEW

SD_HVI_getModuleID.vi

 2. 1. 2. 16 writeConstant

This function writes a value in an HVI constant of a module.

Parameters

Name Description

 Inputs

HVIID HVI identifier (returned by Open)

moduleIndex Mod-
ule

index inside the HVI

moduleUserName Nick name of the module defined by the user within HVI

constantName Constant name

value Constant value

unit Unit of the constant

errorIn (LabVIEW only) If it contains an error, the function will not be executed and errorIn will
be passed to errorOut

Outputs

HVIIDOut A copy of HVIID

errorOut See Error Codes in Table 1

C

int SD_HVI_writeIntegerConstantWithIndex(int HVIID, int moduleIndex, const char *constantName,
int value);

int SD_HVI_writeIntegerConstantWithUserName(int HVIID, const char *moduleUserName, const
char *constantName, int value);

int SD_HVI_writeDoubleConstantWithIndex(int HVIID, int moduleIndex, const char *constantName,
double value, const char *unit);

int SD_HVI_writeDoubleConstantWithUserName(int HVIID, const char *moduleUserName, const
char *constantName, double value, const char *unit);

C++

int SD_HVI::writeConstant(int moduleIndex, const char *constantName, int value);

int SD_HVI::writeConstant(const char *moduleUserName, const char *constantName, int value);

32 Keysight M3601A HVI Design Environment User's Guide

2 Software Programming Guide: HVI-VI Interaction

Keysight M3601A HVI Design Environment User's Guide 33

int SD_HVI::writeConstant(int moduleIndex, const char *constantName, double value, const char
*unit);

int SD_HVI::writeConstant(const char *moduleUserName, const char *constantName, double value,
const char *unit);

Visual Studio .NET, MATLAB

int SD_HVI::writeConstant(int moduleIndex, string constantName, int value);

int SD_HVI::writeConstant(string moduleUserName, string constantName, int value);

int SD_HVI::writeConstant(int moduleIndex, string constantName, double value, string unit);

int SD_HVI::writeConstant(string moduleUserName, string constantName, double value, string unit);

Python

int SD_HVI::writeIntegerConstantWithIndex(int moduleIndex, string constantName, int value);

int SD_HVI::writeIntegerConstantWithUserName(string moduleUserName, string constantName, int
value);

int SD_HVI::writeDoubleConstantWithIndex(int moduleIndex, string constantName, double value,
string unit);

int SD_HVI::writeDoubleConstantWithUserName(string moduleUserName, string constantName,
double value, string unit);

LabVIEW

writeConstant.vi

 2. 1. 2. 17 readConstant

This function reads the value of an HVI constant of a module.

Parameters

Name Description

Inputs

HVIID HVI identifier (returned by Open)

moduleIndex Module index inside the HVI

moduleUserName Nick name of the module defined by the user within HVI

constantName Constant name

errorIn (LabVIEW only) If it contains an error, the function will not be executed and errorIn will
be passed to errorOut

2 Software Programming Guide: HVI-VI Interaction

Name Description
Outputs

HVIIDOut A copy of HVIID

value Constant value

unit Unit of the constant

errorOut See Error Codes in Table 1

C

int SD_HVI_readIntegerConstantWithIndex(int HVIID, int moduleIndex, const char *constantName,
int &value);

int SD_HVI_readIntegerConstantWithUserName(int HVIID, const char *moduleUserName, const
char *constantName, int &value);

int SD_HVI_readDoubleConstantWithIndex(int HVIID, int moduleIndex, const char *constantName,
double &value, const char * &unit);

int SD_HVI_readDoubleConstantWithUserName(int HVIID, const char *moduleUserName, const
char *constantName, double &value, const char * &unit);

C++

int SD_HVI::readConstant(int moduleIndex, const char *constantName, int &value);

int SD_HVI::readConstant(const char *moduleUserName, const char *constantName, int &value);

int SD_HVI::readConstant(int moduleIndex, const char *constantName, double &value, const char
*&unit);

int SD_HVI::readConstant(const char *moduleUserName, const char *constantName, double
&value, const char *&unit);

Visual Studio .NET, MATLAB

int SD_HVI::readConstant(int moduleIndex, string constantName, out int value);

int SD_HVI::readConstant(string moduleUserName, string constantName, out int value);

int SD_HVI::readConstant(int moduleIndex, string constantName, out double value, out string unit);

int SD_HVI::readConstant(string moduleUserName, string constantName, out double value, out
string unit);

Python

[int errorOut, int value] SD_HVI::readIntegerConstantWithIndex(int moduleIndex, string
constantName);

[int errorOut, int value] SD_HVI::readIntegerConstantWithUserName(string moduleUserName,
string constantName);

34 Keysight M3601A HVI Design Environment User's Guide

2 Software Programming Guide: HVI-VI Interaction

Keysight M3601A HVI Design Environment User's Guide 35

[int errorOut, double value, string unit] SD_HVI::readDoubleConstantWithIndex(int moduleIndex,
string constantName);

[int errorOut, double value, string unit] SD_HVI::readDoubleConstantWithUserName(string
moduleUserName, string constantName);

LabVIEW

readConstant.vi

 2. 1. 3 SD Module Functions (HVI-related)

The following programming functions are related to Keysight's HVI technology and Keysight
M3601A Design Environment. Please, check M3601A User Guide for more information.

 2. 1. 3. 1 writeRegister

This function writes a value in an HVI register of a hardware module.

Parameters

Name Description

Inputs

moduleID (Non-object-oriented languages only) Module identifier, returned by function open (page
16)

regNumber Register number

regName Register name

regValue Register value

unit Unit of the register value

errorIn (LabVIEW only) If it contains an error, the function will not be executed and errorIn will be
passed to errorOut

Outputs

moduleIDout (LabVIEW only) A copy of moduleID

errorOut See Error Codes in Table 1

C

int SD_Module_writeRegister(int moduleID, int regNumber, int regValue);

int SD_Module_writeRegisterWithName(int moduleID, const char* regName, int regValue);

int SD_Module_writeDoubleRegister(int moduleID, int regNumber, double regValue, const char*
unit);

2 Software Programming Guide: HVI-VI Interaction

int SD_Module_writeDoubleRegisterWithName(int moduleID, const char* regName, double
regValue, const char* unit);

C++

int SD_Module::writeRegister(int regNumber, int regValue);

int SD_Module::writeRegister(const char* regName, int regValue);

int SD_Module::writeRegister(int regNumber, double regValue, const char* unit);

int SD_Module::writeRegister(const char* regName, double regValue, const char* unit);

Visual Studio .NET, MATLAB

int SD_Module::writeRegister(int regNumber, int regValue);

int SD_Module::writeRegister(string regName, int regValue);

int SD_Module::writeRegister(int regNumber, double regValue, string unit);

int SD_Module::writeRegister(string regName, double regValue, string unit);

Python

int SD_Module::writeRegisterByNumber(int regNumber, int regValue);

int SD_Module::writeRegisterWithName(string regName, int regValue);

int SD_Module::writeDoubleRegisterByNumber(int regNumber, double regValue, string unit);

int SD_Module::writeDoubleRegisterWithName(string regName, double regValue, string unit);

LabVIEW

writeRegister.vi

M3601A

Available: No (the value can be accessed using math operations: e.g. MathAssign)

36 Keysight M3601A HVI Design Environment User's Guide

2 Software Programming Guide: HVI-VI Interaction

Keysight M3601A HVI Design Environment User's Guide 37

 2. 1. 3. 2 readRegister

This function reads a value from an HVI register of a hardware module.

Parameters

Name Description

Inputs

moduleID (Non-object-oriented languages only) Module identifier, returned by function open (page
16)

regNumber Register number

regName Register name

regValue Register value

unit Unit of the register value

errorIn (LabVIEW only) If it contains an error, the function will not be executed and errorIn will be
passed to errorOut

Outputs

regValue Register value

moduleIDout (LabVIEW only) A copy of moduleID

errorOut Error Codes (page 39)

C

int SD_Module_readRegister(int moduleID, int regNumber, int regValue);

int SD_Module_readRegisterWithName(int moduleID, const char* regName, int regValue);

double SD_Module_readDoubleRegister(int moduleID, int regNumber, const char* unit, int&
errorOut);

double SD_Module_readDoubleRegisterWithName(int moduleID, const char* regName, const char*
unit, int& errorOut);

C++

int SD_ Module::readRegister(int regNumber, int regValue);

int SD_ Module::readRegister(const char* regName, int regValue);

double SD_ Module::readRegister(int regNumber, const char* unit, int& errorOut);

double SD_ Module::readRegister(const char* regName, const char* unit, int& errorOut);

Visual Studio .NET, MATLAB

int SD_ Module::readRegister(int regNumber, int regValue);

int SD_ Module::readRegister(string regName, int regValue);

2 Software Programming Guide: HVI-VI Interaction

int SD_ Module::readRegister(int regNumber, string unit, out int error);

int SD_ Module::readRegister(string regName, string unit, out int error);

Python

int SD_Module::readRegisterByNumber(int regNumber);

int SD_Module::readRegisterWithName(string regName);

[int errorOut, double regValue] SD_Module::readDoubleRegisterByNumber(int regNumber, string
unit;

[int errorOut, double regValue] SD_Module::readDoubleRegisterWithName(string regName, string
unit);

LabVIEW

readRegister.vi

M3601A

Available: No (the value can be accessed using math operations: e.g. MathAssign)

38 Keysight M3601A HVI Design Environment User's Guide

2 Software Programming Guide: HVI-VI Interaction

Keysight M3601A HVI Design Environment User's Guide 39

 2. 1. 4 Error Codes

Error Define
Error
No

Error Description

SD_ERROR_OPENING_MODULE -8000 Keysight Error: Opening module

SD_ERROR_CLOSING_MODULE -8001 Keysight Error: Closing module

SD_ERROR_OPENING_HVI -8002 Keysight Error: Opening HVI

SD_ERROR_CLOSING_HVI -8003 Keysight Error: Closing HVI

SD_ERROR_MODULE_NOT_OPENED -8004 Keysight Error: Module not opened

SD_ERROR_MODULE_NOT_OPENED_BY_
USER

-8005 Keysight Error: Module not opened by user

SD_ERROR_MODULE_ALREADY_OPENED -8006 Keysight Error: Module already opened

SD_ERROR_HVI_NOT_OPENED -8007 Keysight Error: HVI not opened

SD_ERROR_INVALID_OBJECTID -8008 Keysight Error: Invalid ObjectID

SD_ERROR_INVALID_MODULEID -8009 Keysight Error: Invalid ModuleID

SD_ERROR_INVALID_MODULEUSERNAME -8010 Keysight Error: Invalid Module User Name

SD_ERROR_INVALID_HVIID -8011 Keysight Error: Invalid HVI

SD_ERROR_INVALID_OBJECT -8012 Error: Invalid Object

SD_ERROR_INVALID_NCHANNEL -8013 Keysight Error: Invalid channel number

SD_ERROR_BUS_DOES_NOT_EXIST -8014 Keysight Error: Bus doesn’t exist

SD_ERROR_BITMAP_ASSIGNED_DOES_
NOT_EXIST

-8015 Keysight Error: Any input assigned to the bitMap
does not exist

SD_ERROR_BUS_INVALID_SIZE -8016 Keysight Error: Input size does not fit on this bus

SD_ERROR_BUS_INVALID_DATA -8017 Keysight Error: Input data does not fit on this bus

SD_ERROR_INVALID_VALUE -8018 Keysight Error: Invalid value

SD_ERROR_CREATING_WAVE -8019 Keysight Error: Creating Waveform

SD_ERRO_NOT_VALID_PARAMETERS -8020 Keysight Error: Invalid Parameters

SD_ERROR_AWG -8021 Keysight Error: AWG function failed

SD_ERROR_DAQ_INVALID_
FUNCTIONALITY

-8022 Keysight Error: Invalid DAQ functionality

SD_ERROR_DAQ_POOL_ALREADY_
RUNNING

-8023 Keysight Error: DAQ buffer pool is already running

SD_ERROR_UNKNOWN -8024 Keysight Error: Unknown error

SD_ERROR_INVALID_PARAMETERS -8025 Keysight Error: Invalid parameter

SD_ERROR_MODULE_NOT_FOUND -8026 Keysight Error: Module not found

SD_ERROR_DRIVER_RESOURCE_BUSY -8027 Keysight Error: Driver resource busy

SD_ERROR_DRIVER_RESOURCE_NOT_
READY

-8028 Keysight Error: Driver resource not ready

SD_ERROR_DRIVER_ALLOCATE_BUFFER -8029 Keysight Error: Cannot allocate buffer in driver

SD_ERROR_ALLOCATE_BUFFER -8030 Keysight Error: Cannot allocate buffer

SD_ERROR_RESOURCE_NOT_READY -8031 Keysight Error: Resource not ready

SD_ERROR_HARDWARE -8032 Keysight Error: Hardware error

2 Software Programming Guide: HVI-VI Interaction

Error Define
Error
No

Error Description

SD_ERROR_INVALID_OPERATION -8033 Keysight Error: Invalid Operation

SD_ERROR_NO_COMPILED_CODE -8034 Keysight Error: No compiled code in the module

SD_ERROR_FW_VERIFICATION -8035 Keysight Error: Firmware verification failed

SD_ERROR_COMPATIBILITY -8036 Keysight Error: Compatibility error

SD_ERROR_INVALID_TYPE -8037 Keysight Error: Invalid type

SD_ERROR_DEMO_MODULE -8038 Keysight Error: Demo module

SD_ERROR_INVALID_BUFFER -8039 Keysight Error: Invalid buffer

SD_ERROR_INVALID_INDEX -8040 Keysight Error: Invalid index

SD_ERROR_INVALID_NHISTOGRAM -8041 Keysight Error: Invalid histogram number

SD_ERROR_INVALID_NBINS -8042 Keysight Error: Invalid number of bins

SD_ERROR_INVALID_MASK -8043 Keysight Error: Invalid mask

SD_ERROR_INVALID_WAVEFORM -8044 Keysight Error: Invalid waveform

SD_ERROR_INVALID_STROBE -8045 Keysight Error: Invalid strobe

SD_ERROR_INVALID_STROBE_VALUE -8046 Keysight Error: Invalid strobe value

SD_ERROR_INVALID_DEBOUNCING -8047 Keysight Error: Invalid debouncing

SD_ERROR_INVALID_PRESCALER -8048 Keysight Error: Invalid prescaler

SD_ERROR_INVALID_PORT -8049 Keysight Error: Invalid port

SD_ERROR_INVALID_DIRECTION -8050 Keysight Error: Invalid direction

SD_ERROR_INVALID_MODE -8051 Keysight Error: Invalid mode

SD_ERROR_INVALID_FREQUENCY -8052 Keysight Error: Invalid frequency

SD_ERROR_INVALID_IMPEDANCE -8053 Keysight Error: Invalid impedance

SD_ERROR_INVALID_GAIN -8054 Keysight Error: Invalid gain

SD_ERROR_INVALID_FULLSCALE -8055 Keysight Error: Invalid fullscale

SD_ERROR_INVALID_FILE -8056 Keysight Error: Invalid file

SD_ERROR_INVALID_SLOT -8057 Keysight Error: Invalid slot

SD_ERROR_INVALID_NAME -8058 Keysight Error: Invalid product name

SD_ERROR_INVALID_SERIAL -8059 Keysight Error: Invalid serial number

SD_ERROR_INVALID_START -8060 Keysight Error: Invalid start

SD_ERROR_INVALID_END -8061 Keysight Error: Invalid end

SD_ERROR_INVALID_CYCLES -8062 Keysight Error: Invalid number of cycles

SD_ERROR_HVI_INVALID_NUMBER_
MODULES

-8063 Keysight Error: Invalid number of modules on HVI

SD_ERROR_DAQ_P2P_ALREADY_
RUNNING

-8064 Keysight Error: DAQ P2P is already running

Table 1: Software error codes

40 Keysight M3601A HVI Design Environment User's Guide

3 Addendum: Keysight Technology and Software Overview

Keysight M3601A HVI Design Environment User's Guide 41

 3 Addendum: Keysight Technology and Software Overview
This is an overview of the M3100A, M3102A, M3201A, M3202A, M3300A and M3302A family of
PXIe modules.

 3. 1 Programming Tools

The diagram shown in Figure 9 summarizes the programming tools available to control M3XXA
Keysight PXIe Hardware.

Figure 9: Programming tools for the following Keysight PXIe AWGs and digitizers: M3100A,
M3102A, M3201A, M3202A, M3300A and M3302A

 3. 1. 1 SW Programming

A comprehensive set of highly optimized software instructions controls the off-the-shelf
functionalities of the compatible Keysight hardware. These instructions are compiled into the
Programming Libraries. The use of customizable software to create user-defined control, test and
measurement systems is commonly referred as Virtual Instrumentation. In all Keysight
documentation, the concept of a Virtual Instrument (or VI) describes user software that uses
programming libraries and is executed by a computer

3 Addendum: Keysight Technology and Software Overview

 3. 1. 1. 1 Keysight SD1 Programming Libraries

Keysight provides native programming libraries for a comprehensive set of programming languages,
such as C, C++, Visual Studio (VC++, C#, VB), MATLAB, National Instruments LabVIEW, Python, etc.,
ensuring full software compatibility and seamless multivendor integration. Keysight provides also
dynamic libraries, e.g. DLLs, which can be used in virtually any programming language.

 3. 1. 2 HW Programming

 3. 1. 2. 1 HVI Technology: Keysight M3601A

Virtual Instrumentation is the use of customizable software and modular hardware to create user-
defined measurement systems, called Virtual Instruments (VIs). Thus, a Virtual Instrument is based
on a software which is executed by a computer, and therefore its real-time performance (speed,
latency, etc.) is limited by the computer and by its operating system. In many cases, this real-time
performance might not be enough for the application, even with a real-time operating system. In
addition, many modern applications require tight triggering and precise intermodule
synchronization, making the development of final systems very complex and time consuming. For all
these applications, Keysight has developed an exclusive technology called Hard Virtual
Instrumentation. In a Hard Virtual instrument (or HVI), the user application is executed by the
hardware modules independently of the computer, which stays free for other VI tasks, like
visualization.

Figure 10: Keysight native programming libraries ensure full compatibility, providing effortless and
seamless software integration and user interaction, etc. The I/O modules run in parallel, completely
synchronized, and exchange data and decisions in real-time. The result is a set of modules that
behave like a single integrated real-time instrument.

HVIs vs VIs: Virtual Instrumentation is fully supported making use
of the Keysight SD1 Programming Libraries. On the other hand,

42 Keysight M3601A HVI Design Environment User's Guide

3 Addendum: Keysight Technology and Software Overview

Keysight M3601A HVI Design Environment User's Guide 43

Keysight’s exclusive Hard Virtual Instrumentation (HVI)
technology provides the capability to create time-deterministic
execution sequences which are executed by the hardware
modules in parallel and with perfect intermodule
synchronization. HVIs provide the same programming
instructions available in the Keysight SD1 Programming Libraries.

HVIs are programmed with Keysight M3601A, an HVI design environment with a user-friendly
flowchart-style interface, compatible with all M3XXXA Keysight PXIe hardware modules.

 M3601A

Figure 11: Keysight M3601A, a user-friendly flowchart-style HVI programming environment

Keysight’s Hard Virtual Instrumentation technology provides:

Ultra-fast hard real time execution, processing and decision making: Execution
is hardware-timed and can be as fast as 1 nanosecond, matching very high-per-
formance FPGA-based systems and outperforming any real-time operating sys-
tem.

3 Addendum: Keysight Technology and Software Overview

User-friendly flowchart-style programming interface: Keysight M3601A
provides an intuitive flowchart-style programming environment that makes HVI
programming extremely fast and easy (Figure 12). Using M3601A and its set of
built-in instructions (the same instructions available for VIs), the user can pro-
gram the hardware modules without any knowledge in FPGA technology, VHDL,
etc.

Off-the-shelf intermodule synchronization and data exchange: Each HVI is
defined by a group of hardware modules which work perfectly synchronized,
without the need of any external trigger or additional external hardware (Figure
13). In addition, Keysight modules exchange data and decisions for ultra-fast
control algorithms.

Complete robustness: Execution is performed by hardware, without operating
system, and independently of the user PC.

Seamless integration with Keysight FPGA technology (see HVI Technology: Key-
sight M3601A (page 42))

Seamless integration with Keysight SD1 Programming Libraries: In a complex
control or test system, there are still some non- time-critical tasks that can only
be performed by a VI, like for example: user interaction, visualization, or pro-
cessing and decisions tasks which are too complex to be implemented by hard-
ware. Therefore, in a real application, the combination of VIs and HVIs is
required. This task can be performed seamlessly with the Keysight SD1 pro-
gramming tools, e.g. the user can have many HVIs and can control them from a
VI using instructions like start, stop, pause, etc.

New hardware functionalities without FPGA programming:
Keysight’s HVI technology is the perfect tool to create new
hardware functionalities with FPGA-like performance and
without any FPGA programming knowledge. Users can create a
repository of HVIs that can be launched from VIs using the
Keysight Programming Libraries.

44 Keysight M3601A HVI Design Environment User's Guide

3 Addendum: Keysight Technology and Software Overview

Keysight M3601A HVI Design Environment User's Guide 45

Figure 12: HVI flowchart elements. Keysight M3601A is based on flowchart programming, providing
an easy-to-use environment to develop hard real-time applications

3 Addendum: Keysight Technology and Software Overview

Figure 13: HVI example with two hardware modules. In an HVI, all Keysight modules run in parallel
and completely synchronized, executing one flowchart per module. This results in simpler systems
without the need of triggers.

 3. 1. 2. 2 FPGA Programming: Keysight M3602A

Some applications require the use of custom onboard real-time processing which might not be
covered by the comprehensive off-the- shelf functionalities of the standard hardware products. For
these applications, Keysight M3XXXA PXIe models are supplied with -FP1 option, hardware
products that provide the capability to program the onboard FPGA.

The Keysight M3100A, M3102A, M3201A, M3202A, M3300A and M3302A PXIe modular hardware
family of products offers an optional -FP1 Enabled FPGA Programming capability with -K32 or -K41
logic. This capability provides the same built-in functionalities of their standard counterparts, giving
the users more time to focus on their specific functionalities. For example, using the -FP1 enabled
FPGA Programming with -K32 or -K41 logic version of a Keysight digitizer, the user has all the off-
the-shelf functionalities of the hardware (data capture, triggering, etc.), but custom real-time FPGA
processing can be added in the data path, between the acquisition and the transmission of data to
the computer.

Keysight FPGA-programmable Hardware: Keysight FPGA
technology is available for M3XXXA hardware product with -FP1
option enabled providing the same built-in functionalities of their
standard counterparts.

Keysight FPGA programming technology is managed with Keysight M3602A [1], an intuitive
graphical FPGA programming environment.

 M3602A

46 Keysight M3601A HVI Design Environment User's Guide

3 Addendum: Keysight Technology and Software Overview

Keysight M3601A HVI Design Environment User's Guide 47

Figure 14: Keysight M3602A provides an intuitive graphical FPGA customization interface

FPGA programming made simple: Full language compatibility
(including the graphical environment MATLAB/Simulink) and an
easy-to-use FPGA graphical IDE, make Keysight FPGA
programming extremely simple.

 3. 1. 2. 3 Keysight M3602A: An FPGA Design Environment

Keysight M3602A is a complete FPGA design environment that allows the user to customize
M3XXXA PXIe hardware products. M3602A provides the necessary tools to design, compile and
program the FPGA of the module (Figure 15).

Keysight M3602A provides the following features:

User-friendly graphical FPGA programming environment:

Complete platform, from design to FPGA programming: Keysight M3602A
provides the necessary tools to design, compile and program the FPGA of the
module (Figure 15)

5x faster project development

Graphical environment without performance penalty

FPGA know-how requirement minimized: The graphical environment provides a
tool which does not require an extensive know how in FPGA technology, improv-
ing drastically the learning curve.

Streamlined design process

3 Addendum: Keysight Technology and Software Overview

Ready-to-use Keysight Block Library: M3602A provides a continuously-growing
library of blocks which reduces the need for custom FPGA-code development.

Include VHDL, Verilog, or Xilinx VIVADO/ISE projects: Experienced FPGA users
can squeeze the power of the onboard FPGA.

Include MATLAB/Simulink projects: MATLAB/Simulink in conjunction with Xilinx
System Generator for DSP provides a powerful tool to implement Digital Signal
Processing. The user can go from the design/simulation power of MATLAB/Sim-
ulink to M3602A code in just a few clicks.

Include Xilinx CORE Generator IP cores: Xilinx CORE Generator can be launched
by M3602A to create IP cores that can be seamlessly included in the design.

Add and remove built-in resources to free up space: The user can remove
unused built-in resources to free up more FPGA space.

One-click compiling and programming:

3x faster ultra-secure cloud FPGA compiling: An ultra-fast cloud compiling sys-
tem provides up to 3 times faster compiling. An ultra-secure TLS encrypted
communication protects the IP of the user.

100x faster hot programming via PCI Express without rebooting: Hardware can
be reprogrammed without external cables and without rebooting the system.

Figure 15: Keysight M3602A: a platform that provides the complete flow from design to FPGA
programming

 3. 2 Design Process: Customization vs. Complete
Design

The M3602A FPGA Design Environment simplifies the development of custom processing functions
for the following -FP1 enabled FPGA programming PXIe modules: M3100A, M3102A, M3201A,
M3202A, M3300A, M3302A. These products are delivered with all the off-the-shelf functionalities of
the standard products, and therefore the development time is dramatically reduced. The user can
focus exclusively on expanding the functionality of the standard instrument, instead of developing a
complete new one.

48 Keysight M3601A HVI Design Environment User's Guide

3 Addendum: Keysight Technology and Software Overview

Keysight M3601A HVI Design Environment User's Guide 49

In Keysight M3602A, FPGA code is represented as boxes (called blocks) with IO ports. An empty
project contains the ”Default Product Blocks” (off-the-shelf functionalities), and the ”Design IO
Blocks” that provide the outer interface of the design. The user can then add/remove blocks from
the Keysight Block Library, External Blocks or Xilinx IP cores

 3. 3 Application Software

 3. 3. 1 Keysight SD1 SFP

All Keysight modules can be operated as classical workbench instruments using Keysight SD1 SFP
[3], a ready-to-use software front panels for live operation. When SD1 SFP opens, it identifies all
Keysight hardware connected to the computer, opening the corresponding front panels.

 SD1 SFP

Figure 16: Keysight SD1 SFP provides software front panels, a fast and intuitive way of operating any
Keysight hardware

50 Keysight M3601A HVI Design Environment User's Guide

	 1 Keysight HVI Design Environment
	 1. 1 Introduction: the HVI Design Environment
	 1. 2 M3601A HVI Design Environment Basics
	 1. 2. 1 Main Window
	 1. 2. 2 Creating an HVI Project
	 1. 2. 3 Creating HVI Instructions
	 1. 2. 4 HVI Compilation and Execution
	 1. 2. 5 Hardware Module Options
	 1. 2. 6 HVI Registers

	 1. 3 HVI Flowcharts
	 1. 3. 1 Timing Arrows
	 1. 3. 2 Synchronized Flow-Control Statements
	 1. 3. 2. 1 Start
	 1. 3. 2. 2 End
	 1. 3. 2. 3 Synchronized Junction
	 1. 3. 2. 4 Synchronized Conditional
	 1. 3. 2. 5 Local Flow-control Statements
	 1. 3. 2. 6 If Block
	 1. 3. 2. 7 For Block
	 1. 3. 2. 8 While Block
	 1. 3. 2. 9 Wait

	 1. 3. 3 Instruction Statements
	 1. 3. 3. 1 Built-in Instructions
	 1. 3. 3. 2 External Variable Access

	 2 Software Programming Guide: HVI-VI Interaction
	 2. 1 Programming Functions
	 2. 1. 1 SW Programming Overview Programming Libraries
	 2. 1. 2 SD_HVI Functions
	 2. 1. 2. 1 open
	 2. 1. 2. 2 close
	 2. 1. 2. 3 start
	 2. 1. 2. 4 pause
	 2. 1. 2. 5 resume
	 2. 1. 2. 6 stop
	 2. 1. 2. 7 reset
	 2. 1. 2. 8 compile
	 2. 1. 2. 9 compilationErrorMessage
	 2. 1. 2. 10 load
	 2. 1. 2. 11 assignHardware
	 2. 1. 2. 12 getNumberOfModules
	 2. 1. 2. 13 getModuleName
	 2. 1. 2. 14 getModuleIndex
	 2. 1. 2. 15 getModule
	 2. 1. 2. 16 writeConstant
	 2. 1. 2. 17 readConstant

	 2. 1. 3 SD Module Functions (HVI-related)
	 2. 1. 3. 1 writeRegister
	 2. 1. 3. 2 readRegister

	 2. 1. 4 Error Codes

	 3 Addendum: Keysight Technology and Software Overview
	 3. 1 Programming Tools
	 3. 1. 1 SW Programming
	 3. 1. 1. 1 Keysight SD1 Programming Libraries

	 3. 1. 2 HW Programming
	 3. 1. 2. 1 HVI Technology: Keysight M3601A
	 3. 1. 2. 2 FPGA Programming: Keysight M3602A
	 3. 1. 2. 3 Keysight M3602A: An FPGA Design Environment

	 3. 2 Design Process: Customization vs. Complete Design
	 3. 3 Application Software
	 3. 3. 1 Keysight SD1 SFP

	Bookmarks
	Figure_1
	Figure_2
	Timing
	Synchronized_Flow-Control_Statements
	Synchronized_Junction
	Figure_3
	Figure_4:
	Synchronized_Conditional
	Figure_5:
	Figure_10:
	External
	Error_Codes
	Figure_9:
	HVI
	Figure_12
	Figure_13
	Figure_15

