
FlexOTO Custom Drivers

QUICK START GUIDE

Adding generic switch and instrument drivers to FlexOTO.

Notices

Notices

Copyright Notice

© Keysight Technologies 2023

No part of this manual may be
reproduced in any form or by any
means (including electronic
storage and retrieval or translation
into a foreign language) without
prior agreement and written
consent from Keysight
Technologies, Inc. as governed by
United States and international
copyright laws.

Manual Part Number

N1002-90004

Edition

First, April 2023

Designed in USA

Keysight Technologies, Inc.
1400 Fountaingrove Parkway
Santa Rosa, CA 95403

Warranty

The material contained in this
document is provided “as is,” and is
subject to being changed, without
notice, in future editions. Further,
to the maximum extent permitted
by applicable law, Keysight
disclaims all warranties, either
express or implied, with regard to
this manual and any information
contained herein, including but not
limited to the implied warranties of
merchantability and fitness for a
particular purpose. Keysight shall
not be liable for errors or for
incidental or consequential
damages in connection with the
furnishing, use, or performance of
this document or of any information
contained herein. Should Keysight
and the user have a separate
written agreement with warranty
terms covering the material in this
document that conflict with these
terms, the warranty terms in the
separate agreement shall control.

Technology Licenses

The hardware and/or software
described in this document are
furnished under a license and may
be used or copied only in
accordance with the terms of such
license.

Restricted Rights Legend

U.S. Government Rights. The
Software is “commercial computer
software,” as defined by Federal
Acquisition Regulation (“FAR”)
2.101. Pursuant to FAR 12.212 and
27.405-3 and Department of
Defense FAR Supplement
(“DFARS”) 227.7202, the U.S.
government acquires commercial
computer software under the same
terms by which the software is
customarily provided to the public.
Accordingly, Keysight provides the
Software to U.S. government
customers under its standard
commercial license, which is
embodied in its End User License
Agreement (EULA), a copy of which
can be found at
http://www.keysight.com/find/swe
ula. The license set forth in the
EULA represents the exclusive
authority by which the U.S.
government may use, modify,
distribute, or disclose the Software.
The EULA and the license set forth
therein, does not require or permit,
among other things, that Keysight:
(1) Furnish technical information
related to commercial computer
software or commercial computer
software documentation that is not
customarily provided to the public;
or (2) Relinquish to, or otherwise
provide, the government rights in
excess of these rights customarily
provided to the public to use,
modify, reproduce, release,
perform, display, or disclose
commercial computer software or
commercial computer software
documentation. No additional
government requirements beyond
those set forth in the EULA shall
apply, except to the extent that
those terms, rights, or licenses are

explicitly required from all providers
of commercial computer software
pursuant to the FAR and the
DFARS and are set forth specifically
in writing elsewhere in the EULA.
Keysight shall be under no
obligation to update, revise or
otherwise modify the Software.
With respect to any technical data
as defined by FAR 2.101, pursuant
to FAR 12.211 and 27.404.2 and
DFARS 227.7102, the U.S.
government acquires no greater
than Limited Rights as defined in
FAR 27.401 or DFAR 227.7103-5
(c), as applicable in any technical
data.

Safety Notices

A CAUTION notice
denotes a hazard. It

calls attention to an operating
procedure, practice, or the like that,
if not correctly performed or
adhered to, could result in damage
to the product or loss of important
data. Do not proceed beyond a
CAUTION notice until the indicated
conditions are fully understood and
met.

AWARNING denotes a
hazard. It calls

attention to an operating procedure,
practice, or the like that, if not correctly
performed or adhered to, could result in
personal injury or death. Do not proceed
beyond a WARNING notice until the
indicated conditions are fully understood
and met.

A NOTE calls the
user’s attention to an

important point or special
information in the text.

2 FlexOTO Driver Development Guide

http://www.keysight.com/find/sweula
http://www.keysight.com/find/sweula

Contents

Contents

1 Introduction 5
To run your Switch driver 10
To run your Instrument driver 11
JSON Strings 12

2 Writing a Switch Driver 17
Command Line Arguments Sent to Driver 18
get_description Command 19
set_routes Command 26
set_wavelength Command 28
exit Command 30
Example Switch Driver 31

3 Writing an Instrument Driver 38
Command Line Arguments Sent to Driver 39
get_description Command 40
measure Command 44
exit Command 47
Example Instrument Driver 48

FlexOTO Driver Development Guide 3

4 FlexOTO Driver Development Guide

1 Introduction

This document shows you how to extend the power of FlexOTO with hardware
drivers. FlexOTO supports the writing of hardware drivers for optical switches
that are not supported by FlexOTO and for measurement instruments such as a
power meter. You can install up to eight measurement instruments drivers.
These drivers can be written in Python (*.py) or any other language that can
compile to an executable file (*.exe), such as C#.

Drivers are easy to write and you'll find all the details and examples within this
document. All examples were written and tested in Python. The following figure
illustrates the relationship between FlexOTO, a driver, and a non-supported
optical switch (or measurement instrument).

All information in this document is included in FlexOTO's programmer's help.
The same example drivers include a Copy button that places the code in
Window's clipboard. No typing required! In the help's menu, click SCPI Intro >
Writing a Switch Driver orWriting a Instrument Driver.

There is a small possibility that the commands, arguments, and responses
described in this document may change. If edits are required for your scripts,
they should be minor.

Figure 1. FlexOTO, Driver Software, and Switch/Instrument

5

FlexOTO Custom Drivers

1 Introduction

Figure 2. Example Switch and Instrument Drivers Installed on Hardware
Diagram

Driver Flowchart
The following flow chart provides the general process for both types of drivers:
switch and instrument. Both drivers types have very similar structure. FlexOTO
launches your driver from a dialog in which you have entered the driver's file
name (along with path) and the COM port or VISA address of the instrument or
switch. All communication between FlexOTO and your driver will be passed
through stdin and stdout.

The driver runs in a continuous loop waiting for, and reacting to, commands
sent from FlexOTO.

6 FlexOTO Driver Development Guide

1 Introduction

Figure 3. FlexOTO Driver Flowchart

When your driver is launched, FlexOTO immediately sends the get_description
driver command to your driver. This command requests a description of your
switch or instrument. This description allows FlexOTO to create a Switch block
or Instrument block for the Hardware diagram. Your driver will return the
following information in the form of a JavaScript Object Notation (JSON) string:

n Model name of the switch or instrument. In the case of a switch, the names
of multiple internal switches can be included.

n Serial number.
n Settling time in seconds (switches only).
n List of switch ports (switches only).
n List of instrument measurement input connectors (instruments only).

In response to a FlexOTO driver command, your driver will either send
information back to FlexOTO as a JSON string, translate the command to send
to your switch or instrument, or both.

FlexOTO Driver Development Guide 7

1 Introduction

Confirm with the "DONE" string
When your driver completes its initialization or finishes responding to FlexOTO
command, which may include returning an error message or data, the driver
must afterwards send the "DONE" string. Error messages, data, and the "DONE"
string must be separately sent. The "DONE" string tells FlexOTO that the
response is complete and that the driver will wait for the next command. For
example, in response to receiving the get_description command a switch or
instrument driver would send the following:

print(error_message) # if needed
print(json_string) # return description of
switch or instrument
print("DONE")

Error Messages
Errors that occur during initializing or running a driver can result in error
messages. Driver initialization includes tasks such as FlexOTO finding and
starting your driver, the driver parsing any command line arguments, and the
driver establishing a connection to the switch or instrument. Errors are briefly
displayed along the bottom of FlexOTO and listed in the Hardware Diagram's
Message Log Viewer. To view the log, click Help > View Message Log. Error
messages can also be read remotely by sending the :SYSTem:ERRor:NEXT? SCPI
query.

The following are examples of errors that are detected by FlexOTO:

n 122, "File not found."

n 135, "Instrument Error;User driver initialization timed out"

n 136, "User driver command timed out: ""<driver-command>"""

o Example: "Instrument Error;User driver command timed out: set_routes
""1, 6"""

n 137, "Instrument Error;Unable to parse description JSON: <JSON-error>"

o Example: "Instrument Error;Unable to parse description JSON: Invalid
format"

Errors encountered in the driver itself are reported to FlexOTO by sending the
error message via stdout. If an error occurs, the driver creates the custom string
that describes the error, and sends the error message to stdout. For example,
here is the error message created for an incorrect switch or instrument COM
port:

8 FlexOTO Driver Development Guide

1 Introduction

rm = visa.ResourceManager()
ser = rm.open_resource('COM-FOUR')
id = ser.query('*IDN?')
if not id:

print("Switch COM port is not valid.") #
error message
print("DONE")

If multiple message print statements were used in the above example, the
strings would be concatenated by FlexOTO.

The following errors can be reported from drivers:

n 133, "Instrument Error;Connection failed: Invalid: stdout-string"

o Example: "Instrument Error;Connection failed Invalid: Only one com-
mand line argument allowed."

n 134, 'Instrument Error;User driver command error: "driver-command"
returned "stdout-string"'

o Example: "Instrument Error;User driver command timed out: ""set_
routes"" returned ""The switch route could not be made!"""

The maximum length for error messages is 255 characters, but it is
recommended to keep your messages short.

FlexOTO Driver Development Guide 9

1 Introduction

To run your Switch driver
After creating your switch driver, use FlexOTO's Switch Connection Setup
dialog to run your driver.

1. Open the FlexOTO application and click Setup > Switch Connection Setup.

2. In the dialog, select User Driver.

Figure 4. Switch Connection Setup dialog

3. Click Browse, search for your driver file, and click OK.

4. In the Command Line Arguments field, enter any command line arguments
that your driver expects, such as the COM or VISA address of your switch
hardware.

5. Click Run.

If, for some reason, your driver needs additional start-up information besides
the switch address, you can append additional strings to the Command Line
Arguments field and parse them within your driver.

10 FlexOTO Driver Development Guide

1 Introduction

To run your Instrument driver
After creating your instrument driver, use FlexOTO's Instrument Connection
Setup dialog to run your driver.

1. Open the FlexOTO application and click Setup > Instrument Connection
Setup.

2. In the dialog, select a tab. Each tab represents a driver that you can install.

Figure 5. Instrument Connection Setup dialog

3. Click Browse, search for your driver file, and click OK.

4. In the Command Line Arguments field, enter any command line arguments
that your driver expects, such as the COM or VISA address of your instru-
ment hardware.

5. Click Run.

If, for some reason, your driver needs additional startup information besides the
instrument address, you can append additional strings to the Command Line
Arguments field and parse them within your driver.

FlexOTO Driver Development Guide 11

1 Introduction

JSON Strings
JSON-formatted strings are used to send hardware descriptions and
measurement results from your driver to FlexOTO. If your unfamiliar with the
JSON format, you can find many tutorials on the internet.

In your driver, you can either directly create a string in JSON format or you can
convert strings, variables, and data structures to a JSON string using a
JSON library method such as json.dumps() in Python. The Python examples in
this section demonstrate both of these methods for creating the identical
JSON strings in your script. The scripts also validate the resulting JSON strings
so that you can see that they both produce valid JSON string.

In your driver, you'll probably want to query the switch or instrument's serial
number so that you can insert it into your JSON string.

In JSON strings:

n Are Unicode which is native to Python 3.0 and above (UTF-8).

n For readability, white space is legal in JSON strings as are the newline ('\n'),
the carriage return ('\r'), and Python's line continuation character '\'.

n Multiple entries for "InputPorts" names, "OutputPorts" names, or instru-
ment "Inputs" connectors names are entered as JSON arrays. If there is
only one entry, you can list the element as either a single element array
(["A"]) or as a name string ("A") without the brackets. Either method is
works.

n JSON format errors or missing elements will cause your driver to fail when
imported into FlexOTO.

Switch with Multiple Internal Switches
This section describes switch models that have multiple internal switches. In
the following two scripts, notice that the required Groups element is a list that
describes two internal switches. The Name elements provide the name of each
internal switch.

12 FlexOTO Driver Development Guide

1 Introduction

Building and Validating JSON from a String

In JSON strings, string elements must be enclosed in double quotes. Single
quoted string elements will invalidate the JSON.

Validate JSON from String

1 import json

2

3 def valid_json(jsonstr):

4 try:

5 json.loads(jsonstr)

6 except ValueError as e:

7 return False

8 return True

9

10 json_str = """

11 {

12 "ModelNumber": "My Switch",

13 "SerialNumber": "12455",

14 "SettlingTimeSeconds": "50e-3",

15 "Groups": [

16 {

17 "Name": "SW1",

18 "InputPorts": ["1", "2", "3", "4", "5", "6", "7", "8"],

19 "OutputPorts": ["IN"],

20 "Wavelengths": ["1350 nm", "1550 nm"]

21 },

22 {

23 "Name": "SW2",

24 "InputPorts": ["1", "2", "3", "4", "5", "6", "7", "8", "9"],

25 "OutputPorts": ["IN 1", "IN 2", "IN 3", "IN 4"],

26 "Wavelengths": ["1350 nm", "1550 nm"]

27 }

28]

29 } """

30

31 print(valid_json(json_str))

32

FlexOTO Driver Development Guide 13

1 Introduction

Building and Validating JSON from Data Structure

Strings, variables, and data structures in your code can use single or double
quotes as allowed by the language. In this script, the json.dumpsmethod
converts single quote characters to double quotes.

Validate JSON from Structure

1 import json

2

3 def valid_json(jsonstr):

4 try:

5 json.loads(jsonstr)

6 except ValueError as e:

7 return False

8 return True

9

10 sw1 = {'Name': 'SW1',

11 'InputPorts': ['1', '2', '3', '4', '5', '6', '7', '8'],

12 'OutputPorts': ['IN']}

13 sw2 = {'Name': 'SW2',

14 'InputPorts': ['1', '2', '3', '4', '5', '6', '7', '8', '9'],

15 'OutputPorts': ['IN 1', 'IN 2', 'IN 3', 'IN 4'],

16 'Wavelengths': ['1350 nm', '1550 nm']}

17 sw_list = [sw1, sw2]

18 data_structure = {'ModelNumber': 'My Switch', 'SerialNumber': '12455', 'Set-
tlingTimeSeconds': '50e-3', 'Groups': sw_list}

19 json_str = json.dumps(data_structure)

20 print(valid_json(json_str))

21

14 FlexOTO Driver Development Guide

1 Introduction

Switch with One Internal Switch
This section describes a switch model that has only one internal switch. In the
following two scripts, notice that the Groups element is required even though
this switch model only has one internal switch. In this case, Groups is a list that
contains a single item. Even though the internal switch does not have a name,
the Name element is still required but is an empty string.

Building and Validating JSON from a String

Validate JSON from String

1 import json

2

3 def valid_json(jsonstr):

4 try:

5 json.loads(jsonstr)

6 except ValueError as e:

7 return False

8 return True

9

10 json_str = """

11 {

12 "ModelNumber": "My Switch",

13 "SerialNumber": "12455",

14 "SettlingTimeSeconds": "50e-3",

15 "Groups": [

16 {

17 "Name": "",

18 "InputPorts": ["1", "2", "3", "4", "5", "6", "7", "8"],

19 "OutputPorts": ["IN"],

20 "Wavelengths": ["1350 nm", "1550 nm"]

21 }

22]

23 } """

24

25 print(valid_json(json_str))

26

FlexOTO Driver Development Guide 15

1 Introduction

In JSON strings, string elements must be enclosed in double quotes. Single
quoted string elements will invalidate the JSON.

Building and Validating JSON from Data Structure

Strings, variables, and data structures in your code can use single or double
quotes as allowed by the language. In this script, the json.dumpsmethod
converts single quote characters to double quotes.

Validate JSON from Structure

1 import json

2

3 def valid_json(jsonstr):

4 try:

5 json.loads(jsonstr)

6 except ValueError as e:

7 return False

8 return True

9

10 switch = {'Name': '',

11 'InputPorts': ['1', '2', '3', '4', '5', '6', '7', '8'],

12 'OutputPorts': ['IN'],

13 'Wavelengths': ['1350 nm', '1550 nm']}

14

15 sw_list = [switch]

16 data_structure = {'ModelNumber': 'My Switch', 'SerialNumber': '12455', 'Set-
tlingTimeSeconds': '50e-3', 'Groups': sw_list}

17 json_str = json.dumps(data_structure)

18 print(valid_json(json_str))

19

16 FlexOTO Driver Development Guide

2 Writing a Switch Driver

Your switch driver must respond to the following argument and four commands
from FlexOTO:

n Command Line Arguments Sent to Driver on page 18
n get_description Command on page 19
n set_routes Command on page 26
n set_wavelength Command on page 28
n exit Command on page 30
n Example Switch Driver on page 31

All messages are read by the driver using stdin. For example, in Python you
would use the input() statement. All messages are sent by the driver to
FlexOTO using stdout. For example, in Python you would use the print()
statement.

17

FlexOTO Custom Drivers

2 Writing a Switch Driver

Command Line Arguments Sent to Driver
When FlexOTO runs the switch driver, FlexOTO sends any command line
arguments to the driver. What arguments are expected depends on the driver.
Usually command line arguments are used to pass the switch's COM or VISA
address, but they can contain other configuration information as well. The
arguments are sent from FlexOTO when the user clicks Run in the Switch
Connection Setup dialog or sends the :SWITch:RDRiver command to FlexOTO.
Your switch driver must parse any arguments, establish the connection with the
switch, and send a response to FlexOTO.

Figure 6. Interaction when Switch Driver is Started

Returned Response to FlexOTO
The response should always return the "DONE" string. If the switch responds with
an error, the error should be returned before the "DONE" string.

print(error-messages) # if needed
print("DONE")

t

18 FlexOTO Driver Development Guide

2 Writing a Switch Driver

get_description Command
This command returns a description of the switch hardware in JSON format to
FlexOTO. The following figure show the actions that occur with this command.

Figure 7. Interaction when the get_description query is sent to the switch
driver

The returned JSON string provides the following information about the switch.
FlexOTO uses this information when drawing one or more Switch blocks on
FlexOTO's Hardware Diagram and to use the proper names when sending the
set_routes command to the switch driver.

n Switch model number. (shown on switch block)

n Switch serial number. (shown on switch block)

n Switch settling time in seconds.

n For each of the switch's internal switches (there may be only one):

o Name of internal switch. If the switch model only has a single internal
switch, the name should be an empty string. (shown on switch block)

o SupportsDisconnected (optional)

o Names of input ports. (shown on switch block)

o Names of output ports. (shown on switch block)

o Wavelengths (optional)

FlexOTO Driver Development Guide 19

2 Writing a Switch Driver

Command from FlexOTO
get_description

Returned Response to FlexOTO
A JSON string describing the switch, followed by DONE, on separate lines.

print(error_messages) # if needed
print(json_string)
print("DONE")

The following example JSON string creates two switch blocks (SW1 and SW2)
that will be available for placing on FlexOTO's Hardware Diagram.

Example of returning a JSON string

1 json_string = """

2 {

3 "ModelNumber": "CUSTOM SWITCH",

4 "SerialNumber": "A12345",

5 "SettlingTimeSeconds": 50e-3,

6 "Groups": [

7 {

8 "Name": "SW1",

9 "InputPorts": ["1","2","3","4","5","6","7","8"],

10 "OutputPorts": ["OUT"]

11 },

12 {

13 "Name": "SW2",

14 "InOutPorts": ["1","2","3","4","5","6","7","8","9","10"],

15 "Wavelengths": ["1350 nm", "1550 nm"]

16 }

17]

18 } """

19 print(json_string)

20 print("DONE")

21

20 FlexOTO Driver Development Guide

2 Writing a Switch Driver

The two switch blocks that this JSON string creates are shown placed on the
Hardware Diagram in the following figure. The model number, group name, and
port labels appear on the block. Also notice in the switch Setup dialogs show
the switch's serial number and that switch SW1's wavelength selection is
grayed out while switch SW2's wavelength selection is available.

Figure 8. CUSTOM SWITCH Blocks on Hardware Diagram

FlexOTO Driver Development Guide 21

2 Writing a Switch Driver

JSON Elements Returned to FlexOTO
FlexOTO expects to find the following elements in the imported JSON string.
See the above example.

ModelNumber Element
The ModelNumber element is a string that names the optical switch on FlexOTO's
Hardware Diagram. The name that you give is entirely up to you and need not
be related to the actual switch's model number.

"ModelNumber": "CUSTOM SWITCH",

SerialNumber Element
The SerialNumber element is a string that is the optical switch's serial number.
You can query this value from the switch and then insert the name into the
JSON string.

"SerialNumber": "A1234",

SettlingTimeSeconds Element
The value of the SettlingTimeSeconds element is a real number that represents
the time in seconds that the switch requires to stabilize after a switch route has
been selected. For example, 0.05 for 50 ms. When setting the switch route,
FlexOTO will wait for this time to pass before acquiring or analyzing data
through the route.

"SettlingTimeSeconds": 50e-3,

If you don't know your switch's settling time, you can enter zero or any other
time delay that you want.

"SettlingTimeSeconds": 0.0,

22 FlexOTO Driver Development Guide

2 Writing a Switch Driver

Groups Element
The Groups element is a list of one or more internal switch modules using the
following elements. For each switch group, include the following elements:

n Name
n SupportsDisconnected
n InputPorts
n OutputPorts
n InOutPorts

n Wavelengths (optional)

FlexOTO displays the switch name, input ports, and output ports. Each group
will be displayed on the resulting switch block that can be installed on
FlexOTO's Hardware Diagram.

"Groups": []

Name Element
The Name element labels the switch group on FlexOTO's Hardware Diagram
and should match the switch's front panel. If the switch model does not
include multiple internal switches, Name should be assigned an empty
string. When requesting that a switch route be created, FlexOTO sends the
switch group name with the
set_routes command to the driver. Refer to set_routes Command on
page 26. Your driver will need to translate these strings to the correct
strings for the switch. Consult the switch manual to find the exact strings
to use.

"Name": "SW1",

SupportsDisconnected Element (optional)
This optional element indicates if the optical switch allows the output state
to be disconnected. The value of this element can be set to true or false. A
true setting indicates that all output ports can be disconnected from the
input ports. FlexOTO's Instrument AutoCal is disabled when this element is
false, because the calibration requires that DCA-M modules be
disconnected from all input signals.

"SupportsDisconnected": true,

FlexOTO Driver Development Guide 23

2 Writing a Switch Driver

If the switch does not allow the output ports to be disconnected from the
input ports, set SupportsDisconnected to false. You cannot run FlexOTO's
Instrument AutoCal. You can, however, disconnect the fiber-optic cables
from the DCA-M module's inputs and perform a module calibration from
FlexDCA.

InputPorts Element
Identifies and labels switch input ports. When requesting that a switch
route be created, FlexOTO sends the switch port names with the set_
routes command to the driver. The element requires the associated
OutputPorts element. For any-to-any switches, use the InOutPorts instead.

"InputPorts": ["1","2","3","4"],

OutputPorts Element
Identifies and labels switch output ports. When requesting that a switch
route be created, FlexOTO sends the switch port names with the set_
routes command to the driver. The element requires the associated
InputPorts and OutputPorts elements. For any-to-any switches, use the
InOutPorts instead.

"OutputPorts": ["OUT A","OUT B"],

InOutPorts Element
This element describes an any-to-any switch matrix and is used in place of
the InputPorts and OutputPorts element. Any port can be an input or an
output port. When requesting that a switch route be created, FlexOTO
sends the switch port names with the set_routes command to the driver.

"InOutPorts": ["1","2","3","4","5","6","7","8"]

Wavelengths Element (optional)
Use this optional element to indicate all possible switch wavelength
settings. Not all optical switches support this setting. If your switch does
not support the wavelengths settings, your driver must still process the
set_wavelength driver command but the response should do nothing
except to return the "DONE" string). Refer to set_wavelength Command on
page 28.

"Wavelengths": ["1330 nm","1550 nm"]

24 FlexOTO Driver Development Guide

2 Writing a Switch Driver

In FlexOTO's GUI, the switch wavelength setting is located by clicking on
the Switch block on the Hardware Diagram. Don't confuse this wavelength
setting with the setting that is used to change a DCA-M modules
wavelength setting. The location of the DCA-M setting is found by clicking
the Stations Setup button which is located above the FlexOTO's Hardware
Diagram.

You can enter any wavelength values that you want. In fact there are no
rules on the strings except that their length is limited. FlexOTO uses these
strings to populate the wavelength selections in the Switch Setup dialog
that appears when you click on a Switch block. When you make a selection
in this dialog, FlexOTO simply returns the wavelength string back to your
driver as an argument to the set_wavelength command.

FlexOTO Driver Development Guide 25

2 Writing a Switch Driver

set_routes Command
This command instructs the switch driver to create one or more routes in the
switch hardware. A single route description is formed by the following three
comma-separated values enclosed in double quote characters: group name,
input port name, and output port name.

The two ports must belong to the same group. If multiple routes are described,
each route description must be separated by a space character as shown in the
example below.

Figure 9. Interaction when the set_routes command is sent to the switch
driver

Command from FlexOTO
set_routes "<group-name>, <input-port-name>, <output-port-name>" "<group-
name>, <input-port-name>, <output-port-name>" ...

Examples
This example creates two switch routes in a switch model that has multiple
internal switches. Notice that the string delimiter between routes is a space ("
") character. The delimiter between a route's arguments is the comma
character.

set_routes "SW1, 4, Out" "SW2, 2, 6"

26 FlexOTO Driver Development Guide

2 Writing a Switch Driver

Two switch routes in a switch module that has a single internal switch. Notice
that because there is only one internal switch, the <group-name> is not
included:

set_routes ", 4, Out" ", 2, 6"

Returned Response to FlexOTO
This command should always return a value of DONE. If the switch responds with
an error, the error should be returned before the DONE value.

print('error_message') # if any
print("DONE")

FlexOTO Driver Development Guide 27

2 Writing a Switch Driver

set_wavelength Command
This command instructs the driver to set the wavelength setting of a given
group. The <group-name> argument should be whatever the writer specified in
the get_description JSON and it is possible to be an empty string. This
command is sent after the user makes a wavelength selection in FlexOTO's
Switch Setup dialog. The wavelength-setting string will match one of the
strings provided in the wavelength JSON element sent in response to the get_
description driver command.

Figure 10. Wavelength Setting in FlexOTO's Switch Setup dialog

Figure 11. Interaction when the set_wavelength command is sent to the
switch driver

28 FlexOTO Driver Development Guide

2 Writing a Switch Driver

Command from FlexOTO
set_wavelength "<group-name>" "<wavelength-setting>"

Examples
This example enters a wavelength setting in a switch model that has multiple
internal switches. Notice that the string delimiter between <group-name> and
<wavelength-setting> is a space (" ") character.

set_wavelength "SW1" "1330 nm"

The <group-name> argument should be whatever the writer specified in the
get_description JSON and it is possible to be an empty string:

set_wavelength "" "1330 nm"

Returned Response to FlexOTO
This command should always return the "DONE" string. If the switch responds
with an error, the error should be returned before the "DONE" string.

print('error_message') # if any
print("DONE")

FlexOTO Driver Development Guide 29

2 Writing a Switch Driver

exit Command
This command instructs the switch driver to disconnect from the switch
hardware and end the driver process. The command is sent from FlexOTO when
the user clicks Exit in the Switch Connection Setup dialog or the
:SWITch:DISConnect command is sent to FlexOTO. This command does not
expect a return value.

Figure 12. Interaction when the exit command is sent to the Switch
Driver

Command
exit

Returned Response to FlexOTO
This command does not provide a return value.

30 FlexOTO Driver Development Guide

2 Writing a Switch Driver

Example Switch Driver
This is an example of a switch driver written in Python. This example driver
allows FlexOTO to use a DiCon GP600 which FlexOTO already supports! But,
writing a driver for a supported switch that you might be familiar with is good
technique for learning how to create and test your script. This driver connects
the switch using the PC's RS-232 port (USB) port, so you would pass the COM
port to the driver as explained in Switch Connection Setup dialog. Refer to To
run your Switch driver on page 10. For example, COM4.

Custom GP600 as Generic Switch

1 #**

2 # MIT License

3 # Copyright(c) 2023 Keysight Technologies

4 # Permission is hereby granted, free of charge, to any person obtaining a copy

5 # of this software and associated documentation files (the "Software"), to deal

6 # in the Software without restriction, including without limitation the rights

7 # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

8 # copies of the Software, and to permit persons to whom the Software is

9 # furnished to do so, subject to the following conditions:

10 # The above copyright notice and this permission notice shall be included in all

11 # copies or substantial portions of the Software.

12 # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

13 # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

14 # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

15 # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

16 # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

17 # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE

18 # SOFTWARE.

19 #**

20

21 import pyvisa as visa

22 import pyvisa.constants

23 DONE = 'DONE'

24

25

26 def get_command_line_argument():

FlexOTO Driver Development Guide 31

2 Writing a Switch Driver

27 """ Reads command-line argument COM port for serial connection sent from
FlexOTO's Switch Connection Setup dialog.

28 argv[0] will be this script's name. Subsequent argv values will be the command
line arguments from FlexOTO.

29

30 Returns

31 sys.argv[1]: str

32 """

33 import sys

34 if len(sys.argv) != 2:

35 print('Invalid: Only one command line argument allowed, for example
"COM4".')

36 print(DONE)

37 return None

38 if 'com' not in sys.argv[1].lower():

39 print('Invalid: argument must be a COM port, for example "COM4".')

40 print(DONE)

41 return None

42 return sys.argv[1]

43

44

45 def connect_to_switch(comport):

46 """ Opens a connection to the optical switch.

47

48 Args

49 comport: str

50 Returns

51 ser: visa.ResourceManager object of switch

52 """

53 visa_library = r'C:\WINDOWS\system32\visa64.dll'

54 com_address = {'COM1': 'ASRL1::INSTR',

55 'COM2': 'ASRL2::INSTR',

56 'COM3': 'ASRL3::INSTR',

57 'COM4': 'ASRL4::INSTR',

58 'COM5': 'ASRL5::INSTR',

59 'COM6': 'ASRL6::INSTR',

60 'COM7': 'ASRL7::INSTR',

32 FlexOTO Driver Development Guide

2 Writing a Switch Driver

61 'COM8': 'ASRL8::INSTR',

62 }

63 try:

64 rm = visa.ResourceManager()

65 ser = rm.open_resource(com_address[comport])

66 ser.timeout = 1000 # (seconds)

67 ser.read_termination = '\r'

68 ser.write_termination = '\r'

69 ser.set_visa_attribute(visa.constants.VI_ATTR_ASRL_BAUD, 115200)

70 ser.set_visa_attribute(visa.constants.VI_ATTR_ASRL_DATA_BITS, 8)

71 ser.set_visa_attribute(visa.constants.VI_ATTR_ASRL_STOP_BITS, visa.-
constants.VI_ASRL_STOP_ONE)

72 ser.set_visa_attribute(visa.constants.VI_ATTR_ASRL_PARITY, visa.-
constants.VI_ASRL_PAR_NONE)

73 except:

74 print('Unable to open port: ' + comport)

75 print(DONE)

76 return None

77 # Do a query to make sure the connection is set up correctly.

78 sw_name = ser.query('*IDN?')

79 if not sw_name:

80 print("Couldn't connect to switch.")

81 print(DONE)

82 return None

83 # Successfully connected

84 print(DONE)

85 return ser

86

87

88 def get_description(oswitch):

89 """ Responds to FlexOTO get_description query by returning a JSON formatted
string that describes the switch.

90 Groups represent one or more internal switch modules.

91 Args

92 oswitch: visa.ResourceManager object of switch

93 stdout

94 description: JSON str

FlexOTO Driver Development Guide 33

2 Writing a Switch Driver

95 DONE: str

96 Returns

97 None

98 """

99

100 s = oswitch.query('*IDN?')

101 id = s.split(',')

102 serial_number = id[2].strip()

103 description = """

104 {

105 "ModelNumber": "DiCon GP600",

106 "SerialNumber": "%s",

107 "SettlingTimeSeconds": 50e-3,

108 "Groups": [

109 {

110 "Name": "M1",

111 "InputPorts": ["1","2","3","4","5","6","7","8"],

112 "OutputPorts": ["IN"]

113 },

114 {

115 "Name": "X1",

116 "InputPorts":
["1","2","3","4","5","6","7","8","9","10","11","12","13","14","15","16","17","18","1-
9",

117 "20","21","22","23","24","25","26","27","28","29","30","-
31","32"],

118 "OutputPorts": ["IN 1","IN 2","IN 3","IN 4","IN 5","IN 6","IN 7","IN 8"]

119 }

120]

121 } """ % serial_number # Insert the queried serial number

122 print(description)

123 print(DONE)

124

125

126 def convert_port_names_to_arguments(route):

127 """ The set routes commands uses the name of the ports as configured in the get_
description JSON string.

128 However, the arguments sent to the hardware switch have different order and

34 FlexOTO Driver Development Guide

2 Writing a Switch Driver

strings. In FlexOTO, the

129 GP600 input ports are used as output and the GP600 output ports are used as
inputs.

130 Args:

131 route: str (comma delimited)

132 Returns

133 cmd_parts: str

134 """

135 s = route.replace('"', '')

136 cmd_parts = s.split(', ')

137 group = cmd_parts[0]

138 flexoto_in_port = cmd_parts[1]

139 flexoto_out_port = cmd_parts[2]

140 if 'X1' in group:

141 gp600_in_port = flexoto_out_port.replace('IN ', '')

142 elif 'M1' in cmd_parts[0]:

143 gp600_in_port = flexoto_out_port.replace('IN', '1')

144 else:

145 print('Unknown group name: ' + group)

146 return

147 gp600_out_port = flexoto_in_port

148 cmd_parts[1] = gp600_in_port

149 cmd_parts[2] = gp600_out_port

150 return cmd_parts

151

152

153 def set_routes(oswitch, args):

154 """ While the Test Plans are running, FlexOTO's Sessions configure one or more
switch routes (paths) through

155 the optical switch FlexOTO with this command. Each route is defined by the fol-
lowing three fields:

156 name, switch block input port, and switch block output port.

157 Example of a routes string for GP600:

158 "X1, 4, IN 1" "X1, 5, IN 2"

159 resulting in these commands to switch hardware:

160 oswitch.write('X1 CH 1 4')

161 oswitch.write('X1 CH 2 5')

FlexOTO Driver Development Guide 35

2 Writing a Switch Driver

162

163 Args

164 oswitch: visa.ResourceManager object of switch

165 args: str (comma delimited)

166 stdout

167 DONE: str

168 Returns

169 None

170 """

171 routes = args.split('" "')

172 for route in routes:

173 cmd_parts = convert_port_names_to_arguments(route)

174 group = cmd_parts[0]

175 gp600_in_port = cmd_parts[1]

176 gp600_out_port = cmd_parts[2]

177 cmd = group + ' CH ' + gp600_in_port + ', ' + gp600_out_port

178 oswitch.write(cmd)

179 errcode = oswitch.query("SYST:ERR?")

180 if '+0' in errcode:

181 continue

182 else:

183 print('Error code: {} ("{}")'.format(errcode, cmd))

184 print(DONE)

185

186

187 def set_wavelength(oswitch, grp_and_wavelength):

188 """ Specifies the wavelength setting for a switch group. If switch does not sup-
port wavelength settings

189 do nothing and still send DONE to stdout.

190 Args

191 oswitch: visa.ResourceManager object of switch

192 grp_and_wavelength: str (comma delimited)

193 stdout

194 DONE: str

195 Returns

196 None

36 FlexOTO Driver Development Guide

2 Writing a Switch Driver

197 """

198 # Does nothing.

199 print(DONE)

200

201

202 # Main loop

203

204 com_port = get_command_line_argument()

205 switch = connect_to_switch(com_port)

206 switch.write('*RST')

207 if switch:

208 while True:

209 # Loop until FlexOTO sends 'exit'.

210 fromFlexOTO = input() # stdin from FlexOTO

211 if 'get_description' in fromFlexOTO:

212 get_description(switch)

213 elif 'set_routes' in fromFlexOTO:

214 set_routes(switch, fromFlexOTO.replace('set_routes ', ''))

215 elif 'set_wavelength' in fromFlexOTO:

216 set_wavelength(switch, fromFlexOTO.replace('set_wavelength ', ''))

217 elif 'exit' in fromFlexOTO:

218 break

219

FlexOTO Driver Development Guide 37

3 Writing an Instrument Driver

Your instrument driver must respond to the following argument and three driver
commands from FlexOTO:

n Command Line Arguments Sent to Driver on page 39
n get_description Command on page 40
n measure Command on page 44
n exit Command on page 47
n Example Instrument Driver on page 48

All messages are read by the driver using stdin. For example, in Python you
would use the input() statement. All messages are sent by the driver to
FlexOTO using stdout. For example, in Python you would use the print()
statement.

FlexOTO sends the get_description driver command and the driver returns the
instrument's model and serial numbers along with front panel input connectors.

FlexOTO sends the measure driver command with a list of Instrument input
connectors on which to perform measurements. One or more available
measurements are defined in the driver. All measurements are performed on
each specified input connector. The names of the measurements are returned
to FlexOTO along with the measurement results.

38

FlexOTO Custom Drivers

3 Writing an Instrument Driver

Command Line Arguments Sent to Driver
When FlexOTO runs the instrument driver, FlexOTO sends any command line
arguments to the driver. What arguments are expected depends on the driver.
Usually command line arguments are used to pass the instrument's COM or
VISA address, but they can contain other configuration information as well. The
command line arguments are sent from FlexOTO when the user clicks Run in
the Instrument Connection Setup dialog or sends the :INSTrument:RDRiver
command to FlexOTO. Your instrument driver must parse any arguments,
establish the connection with the instrument, and send a response to FlexOTO.

Figure 13. Interaction when Instrument Driver is Started

Returned Response to FlexOTO
The response should always return the "DONE" string. If the instrument responds
with an error, the error should be returned before the "DONE" string.

print(error-messages) # if needed
print("DONE")

39 FlexOTO Driver Development Guide

3 Writing an Instrument Driver

get_description Command
This command returns a description of the instrument hardware in JSON format
to FlexOTO. The following figure show the actions that occur with this
command.

Figure 14. Interaction when the get_description query is sent to the
Instrument Driver

The returned JSON string provides the following information about the
instrument. FlexOTO uses this information when drawing one or more
Instrument blocks on FlexOTO's Hardware Diagram. FlexOTO also passes input
connector names as arguments to the measure command. The instrument
performs all of its assigned measurements to each listed connector. Refer to
measure Command on page 44.

n Instrument's model number. (shown on switch block)

n Instrument's serial number. (shown on switch block)

n List of the names of the instrument's measurement input connectors.
(shown on switch block)

Command from FlexOTO
get_description

FlexOTO Driver Development Guide 40

3 Writing an Instrument Driver

Returned Response to FlexOTO
Returns a JSON string that describes the Instrument, followed by "DONE", on
separate lines.

print(error_messages) # if needed
print(json_string)
print("DONE")

The following example JSON string creates an Instrument block (My Instrument
SN12345) that will be available for placing on FlexOTO's Hardware Diagram.

Returning a JSON string

1 json_string = """

2 {

3 "ModelNumber": "My Instrument",

4 "SerialNumber": "SN12345",

5 "Inputs": ["IN A", "IN B"]

6 } """

7

8 print(json_string)

9 print("DONE")

10

Or, you could make Python variables and a list and convert them to JSON using
json.dumpsmethod:

Returning a JSON string from Conversion

1 mn = 'My Instrument'

2 sn = 'SN12345'

3 InputNames = ['IN A', 'IN B']

4 description = json.dumps({'ModelNumber':mn, 'SerialNumber':sn, 'Inputs':InputNames})

5 print(description)

6 print("DONE")

7

41 FlexOTO Driver Development Guide

3 Writing an Instrument Driver

The instrument block that this JSON string creates is shown placed on the
Hardware Diagram in the following figure. The model number, serial number,
and port labels appear on the block.

Figure 15. Instrument Switch Block on the Hardware Diagram

FlexOTO Driver Development Guide 42

3 Writing an Instrument Driver

JSON Elements Returned to FlexOTO
FlexOTO expects to find the following elements in the imported JSON string.
See the above JSON example.

ModelNumber Element
The ModelNumber element is a string that names the instrument on FlexOTO's
Hardware Diagram. The name that you give is entirely up to you and need not
be related to the actual instrument.

"ModelNumber": "My Instrument",

SerialNumber Element
The SerialNumber element is a string that is the instrument 's serial number. You
can query this value from the instrument and then insert the name into the
JSON string.

"SerialNumber": "Z1234",

Inputs Element
The Inputs element lists the names of the instrument's input connectors on
which measurements will be performed. These strings label Instrument block
connectors on FlexOTO's Hardware Diagram. While not required, the labels
specified should match those on the instrument's front panel. FlexOTO sends
these input connector names as arguments to the driver's measure command.
Refer tomeasure Command on page 44. Your driver will need to translate these
strings to the correct SCPI strings for the instrument. Consult the instrument's
manual to find the exact strings to use.

"Inputs": ["IN A", "IN B"]

43 FlexOTO Driver Development Guide

3 Writing an Instrument Driver

measure Command
This command passes to the driver the names of instrument input connectors
on which to perform measurements. The driver performs all measurement on
each input and returns a JSON results string for all inputs listed.

The list of measurements to be performed is specified within your driver. The
driver should translate from the input connector name to the instrument's
SCPI commands that are required to select the instrument's input connector
and perform the measurements.

Figure 16. Interaction when the measure command is sent to the Instru-
ment Driver

Command from FlexOTO
measure "input connector" "input connector" ...

Command Example
This is an example of a typical argument string:

'measure "IN A" "IN B"'

Your driver will need to strip "measure " from the string, and create list of
connectors without the double quote characters ("). For example:

['IN A','IN B']

FlexOTO Driver Development Guide 44

3 Writing an Instrument Driver

Returned Response to FlexOTO
Returns a JSON string with a list of measurement results. The JSON string is
followed by "DONE", on separate lines.

JSON Measure String Returned to FlexOTO

Example JSON Measure String in Python

1 measurements = """

2 [

3 {

4 "Name": "User Meas1",

5 "Input": "IN A",

6 "Result": 0.000001234,

7 "FormattedResult": "1.23 uW"

8 },

9 {

10 "Name": "User Meas2",

11 "Input": "IN B",

12 "Result": 0.000001526,

13 "FormattedResult": "1.53 uW"

14 }

15] """

16

17 print(error_messages) # if any

18 print(measurements)

19 print("DONE")

20

JSON Elements Returned to FlexOTO
For each measurement, FlexOTO expects to find the following elements
returned in the imported JSON string.

Name Element
The value of the Name element is a string that names the measurement. The
name will be displayed on FlexOTO's Job Results panel.

"Name": "User Meas1",

45 FlexOTO Driver Development Guide

3 Writing an Instrument Driver

Input Element
The value of the Input element is a string that names the instrument's
measurement input connector.

"Input": "IN A",

Result Element
The Result element returns the measurement result (floating-point number).
The measurement will be displayed on FlexOTO's Job Results panel.

"Result": 0.000001234,

FormattedResult Element
The FormattedResult element returns the measurement result with the value
formatted to include units of measure. The measurement (formatted) will be
displayed on FlexOTO's Job Results panel. The formatting should be performed
by the driver.

"FormattedResult": '{0:.2f} uW'.format(0.000001234)

FlexOTO Driver Development Guide 46

3 Writing an Instrument Driver

exit Command
This command instructs the instrument driver to disconnect from the
instrument hardware and end the driver process. The command is sent from
FlexOTO when the user clicks Exit in the Instrument Connection Setup dialog or
the :INSTrument:DISConnect command is sent to FlexOTO. This command does
not expect a return value.

Figure 17. Interaction when the exit command is sent to the Instrument
Driver

Command from FlexOTO
exit

Returned Response to FlexOTO
This command does not provide a return value.

47 FlexOTO Driver Development Guide

3 Writing an Instrument Driver

Example Instrument Driver
This is an example of a instrument driver written in Python. The driver connects
to a Keysight 8163/4/6-series mainframe that has an 81634A optical power
meter module installed. The driver connects to the instrument using the LAN
port with a VISA address. The VISA address must be passed to the driver by
entering the address using the Instrument Connection Setup dialog. Refer to To
run your Instrument driver on page 11. For example,
'TCPIP0::MYINST::inst2::INSTR'.

DriverInstrument.py

1 #**

2 # MIT License

3 # Copyright(c) 2023 Keysight Technologies

4 # Permission is hereby granted, free of charge, to any person obtaining a copy

5 # of this software and associated documentation files (the "Software"), to deal

6 # in the Software without restriction, including without limitation the rights

7 # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

8 # copies of the Software, and to permit persons to whom the Software is

9 # furnished to do so, subject to the following conditions:

10 # The above copyright notice and this permission notice shall be included in all

11 # copies or substantial portions of the Software.

12 # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

13 # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

14 # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

15 # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

16 # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

17 # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE

18 # SOFTWARE.

19 #**

20

21 import sys

22 import json

23 import pyvisa

24

25 DONE = 'DONE'

26 InputNames = ['In']

FlexOTO Driver Development Guide 48

3 Writing an Instrument Driver

27 Model = 'UNKNOWN'

28 Serial = 'UNKNOWN'

29

30 # FlexOTO is listening to the standard output

31 def send_to_FlexOTO(message: str):

32 print(message)

33

34

35 # Check the error queue

36 def check_error(inst: pyvisa.Resource) -> tuple[int, str]:

37 error = inst.query('SYST:ERR?').strip()

38 sections = error.split(',', 1)

39 return (int(sections[0]), sections[1].strip('"'))

40

41

42 # Open connection to instrument

43 def connect(visaAddress: str) -> pyvisa.Resource:

44 try:

45 rm = pyvisa.ResourceManager()

46 return rm.open_resource(visaAddress)

47 except:

48 send_to_FlexOTO(f'Failed to connect to "{visaAddress}"')

49 return None

50

51

52 # Check if this is a supported instrument.

53 def validate(inst: pyvisa.Resource) -> bool:

54

55 if inst is None: return False

56

57 # Make sure we are connected to a supported Lightwave Mainframe.

58 mainframeIdn = inst.query('*IDN?')

59 sections = mainframeIdn.split(',')

60 if len(sections) < 3:

61 send_to_FlexOTO('Please connect to a 816x mainframe with a power meter in Slot
1.')

49 FlexOTO Driver Development Guide

3 Writing an Instrument Driver

62 return False

63

64 mfManufacturer = sections[0].upper().strip()

65 if not (mfManufacturer.startswith('KEYSIGHT') or

66 mfManufacturer.startswith('AGILENT') or

67 mfManufacturer.startswith('HEWLETT') or

68 mfManufacturer.startswith('HP')):

69 send_to_FlexOTO('Please connect to a 816x mainframe with a power meter in Slot
1.')

70 return False

71

72 mfModel = sections[1].strip()

73 if not mfModel.startswith('816'):

74 send_to_FlexOTO('Please connect to a 816x mainframe with a power meter in Slot
1.')

75 return False

76

77 # Found an 816x mainframe (e.g. 8163B)

78 # Make sure a supported power meter is in Slot 1.

79 moduleIdn = inst.query('SLOT1:IDN?')

80 sections = moduleIdn.split(',')

81 if len(sections) < 3:

82 send_to_FlexOTO('Please install the power meter module in Slot 1')

83 return False

84

85 manufacturer = sections[0].upper().strip()

86 if manufacturer.startswith('KEYSIGHT'):

87 manufacturer = 'Keysight'

88 elif manufacturer.startswith('AGILENT'):

89 manufacturer = 'Agilent'

90 elif manufacturer.startswith('HEWLETT') or manufacturer.startswith('HP'):

91 manufacturer = 'HP'

92 else:

93 send_to_FlexOTO('Unsupported manufacturer: ' + manufacturer)

94 return False

95

96 model = sections[1].strip()

FlexOTO Driver Development Guide 50

3 Writing an Instrument Driver

97 if not model.startswith('8163'):

98 send_to_FlexOTO('Unrecognized power meter model: ' + model)

99 return False

100

101 # Found an 8163x power meter (e.g. 81634A)

102 # Save the model and serial numbers for later.

103 global Model, Serial

104 Model = manufacturer + " " + model

105 Serial = sections[2].strip()[-5:] # Get last 5 of serial number

106 return True

107

108

109 # Do the initial setup of the instrument

110 def initialize(inst: pyvisa.Resource):

111

112 # Set timeout to 10 sec. This should work for all commands except zeroing.

113 inst.timeout = 10000

114

115 # Make sure that the reference is not used.

116 inst.write('SENS1:CHAN1:POW:REF:STATE 0')

117

118 # Turn auto range on.

119 inst.write('SENS1:CHAN1:POW:RANGE:AUTO 1')

120

121 # Change the power unit to Watt.

122 inst.write('SENS1:CHAN1:POW:UNIT W')

123

124 # Set the averaging time for measuring to 0.5s.

125 inst.write('SENS1:CHAN1:POW:ATIME 0.5')

126

127 # Turn continuous measuring off.

128 inst.write('INIT1:CHAN1:CONT 0')

129

130

131 # Blocks until a command comes in from FlexOTO,

51 FlexOTO Driver Development Guide

3 Writing an Instrument Driver

132 # and then extracts the command and arguments strings.

133 def wait_for_input() -> tuple[str, list[str]]:

134

135 # Commands come from the standard input.

136 rawInput = input()

137 sections = rawInput.split('"')

138

139 items = []

140 for s in sections:

141 s = s.strip()

142 if s: items.append(s)

143

144 command = items.pop(0)

145 args = items

146

147 return (command, args)

148

149

150 # Sends the JSON description of the instrument to FlexOTO.

151 def get_description():

152

153 # Use the model and serial numbers determined earlier

154 desc = json.dumps({ 'ModelNumber': Model,

155 'SerialNumber': Serial,

156 'Inputs': InputNames,

157 'MeasurementTimeoutSeconds': 10 })

158

159 send_to_FlexOTO(desc)

160 send_to_FlexOTO(DONE)

161

162

163 # Measure the active inputs and send the results to FlexOTO.

164 def measure(inst: pyvisa.Resource, activeInputs: list[str]):

165

166 # Clear error queue

167 inst.write('*CLS')

FlexOTO Driver Development Guide 52

3 Writing an Instrument Driver

168

169 measList = []

170 for inputName in activeInputs:

171 inputNum = InputNames.index(inputName) + 1

172

173 # Make an average power measurement on this channel.

174 avgPower = float(inst.query('READ1:CHAN{0}:POW?'.format(inputNum)))

175

176 # Start a dictionary to describe a measurement of Average Power on this input.

177 measurement = { 'Name': 'Average Power', 'Input': inputName }

178

179 (errorCode, errorMsg) = check_error(inst)

180

181 if errorCode == 0:

182 measurement['Result'] = avgPower

183 measurement['FormattedResult'] = '{0:.2f} \u03BCW'.format(avgPower * 1e6) #
Format in uW

184 else:

185 # Report the error

186 measurement['Result'] = float("NaN") # NaN ("not a number") indicates an
invalid result

187 measurement['FormattedResult'] = errorMsg

188

189 # Add the result to the measurements list.

190 measList.append(measurement)

191

192 measJson = json.dumps({'Measurements': measList}, allow_nan=True)

193

194 send_to_FlexOTO(measJson)

195 send_to_FlexOTO(DONE)

196

197

198

199 # Program begins here

200 if len(sys.argv) < 2:

201 send_to_FlexOTO("Please provide the instrument's VISA address
(TCPIP0::HOSTNAME::inst0::INSTR) in the Command Line Arguments.")

53 FlexOTO Driver Development Guide

3 Writing an Instrument Driver

202 else:

203

204 # Get the instrument's VISA address from the command line args.

205 visaAddress = sys.argv[1]

206 inst = connect(visaAddress)

207

208 # Check if this is a valid instrument.

209 if validate(inst):

210

211 # Do initial configuration of instrument setup.

212 initialize(inst)

213

214 # Connection and initial setup is done.

215 send_to_FlexOTO(DONE)

216

217 ########## Main loop ##########

218

219 # Loop until FlexOTO sends us 'exit'.

220 exit = False

221 while not exit:

222 (command, args) = wait_for_input()

223

224 if command == 'exit':

225 exit = True

226

227 elif command == 'get_description':

228 get_description()

229

230 elif command == 'measure':

231 measure(inst, args)

232

233

234 # Exiting...

235

FlexOTO Driver Development Guide 54

	1 Introduction
	To run your Switch driver
	To run your Instrument driver
	JSON Strings

	2 Writing a Switch Driver
	Command Line Arguments Sent to Driver
	get_description Command
	set_routes Command
	set_wavelength Command
	exit Command
	Example Switch Driver

	3 Writing an Instrument Driver
	Command Line Arguments Sent to Driver
	get_description Command
	measure Command
	exit Command
	Example Instrument Driver

