
Keysight AE6910T/AE6920T Automotive Ethernet Compliance Solution

Compliant to IEEE & OPEN Alliance Specifications

USER GUIDE & METHODS OF IMPLEMENTATION

Notices

© Keysight Technologies 2019-2024

No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Keysight Technologies as governed by United States and international copyright laws.

Manual Part Number

AE690-9101T

Software Version

Version 1.80.0.0 or greater

Edition

February 2024

Available in electronic format only

Keysight Technologies 1900 Garden of the Gods Road Colorado Springs, CO 80907 USA

Warranty

THE MATERIAL CONTAINED IN THIS DOCUMENT IS PROVIDED "AS IS," AND IS SUBJECT TO BEING CHANGED, WITHOUT NOTICE, IN FUTURE EDITIONS. FURTHER, TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, KEYSIGHT DISCLAIMS ALL WARRANTIES, EITHER EXPRESS OR IMPLIED WITH REGARD TO THIS MANUAL AND ANY INFORMATION CONTAINED HEREIN, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. KEYSIGHT SHALL NOT BE LIABLE FOR ERRORS OR FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH THE FURNISHING, USE, OR PERFORMANCE OF THIS DOCUMENT OR ANY INFORMATION CONTAINED HEREIN. SHOULD KEYSIGHT AND THE USER HAVE A SEPARATE WRITTEN AGREEMENT WITH WARRANTY TERMS COVERING THE MATERIAL IN THIS DOCUMENT THAT CONFLICT WITH THESE

TERMS, THE WARRANTY TERMS IN THE SEPARATE AGREEMENT WILL CONTROL.

Technology Licenses

The hardware and/or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license.

U.S. Government Rights

The Software is "commercial computer software," as defined by Federal Acquisition Regulation ("FAR") 2.101. Pursuant to FAR 12.212 and 27.405-3 and Department of Defense FAR Supplement ("DFARS") 227.7202, the U.S. government acquires commercial computer software under the same terms by which the software is customarily provided to the public. Accordingly, Keysight provides the Software to U.S. government customers under its standard commercial license, which is embodied in its End User License Agreement (EULA), a copy of which can be found at http://www.keysight.com/find/sweula. The license set forth in the EULA represents the exclusive authority by which the U.S. government may use, modify, distribute, or disclose the Software. The EULA and the license set forth therein, does not require or permit, among other things, that Keysight: (1) Furnish technical information related to commercial computer software or commercial computer software documentation that is not customarily provided to the public; or (2) Relinquish to, or otherwise provide, the government rights in excess of these rights customarily provided to the public to use, modify, reproduce, release, perform, display, or disclose commercial computer software or commercial computer software documentation. No additional government requirements beyond those set forth in the EULA shall apply, except to the extent that those terms, rights, or licenses are explicitly required from all providers of commercial computer software pursuant to the FAR and the DFARS and are set forth specifically in writing elsewhere in the EULA. Keysight shall be under no obligation to update, revise or otherwise modify the Software. With respect to any technical data as defined by FAR 2.101, pursuant to FAR 12.211 and 27.404.2 and DFARS 227.7102, the U.S. government acquires no

greater than Limited Rights as defined in FAR 27.401 or DFAR 227.7103-5 (c), as applicable in any technical data.

Safety Notices

CAUTION

A CAUTION notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a CAUTION notice until the indicated conditions are fully understood and met.

WARNING

A WARNING notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met.

1 Introduction

Overview of Keysight AE6910T/AE6920T Automotive Ethernet Compliance Test Application 8 Installing the Test Application and Licenses 13

Preparing to Take Measurements 16

Starting the Automotive Ethernet Compliance Test Application 26

2 10BASE-T1S Tests and Test Report

Test Mode 1. Transmitter Output Voltage and Timing Jitter Tests38Test Mode 2. Output Droop Tests40Test Mode 3. Transmitter Power Spectral Density (PSD) Tests43MDI Return Loss Test46Viewing the Test Report48

3 100BASE-T1 Tests and Test Report

Test Mode 1. Output Droop Tests 52 **Test Mode 2. MASTER Clock Frequency and Jitter Tests** 54 Test Mode 3. SLAVE Transmit Clock Frequency and Jitter Tests 56 Test Mode 4. Transmitter Distortion Test 58 MDI Return Loss Test 65 MDI Mode Conversion Loss Test 67 Test Mode 5. Transmitter Power Spectral Density (PSD) and Transmitter Peak Differential Output Tests 69 Viewing the Test Report 71

4 1000BASE-T1 Tests and Test Report

Test Mode 1. TX_TCLK125 Frequency and Transmit Jitter Tests 74

Test Mode 2. Transmit Clock Frequency (MASTER) and MDI Output Jitter (MASTER) Tests 76

Test Mode 4. Transmitter Distortion Test 78

MDI Return Loss Test 81

MDI Mode Conversion Loss Test 83

Test Mode 5. Transmitter Power Spectral Density, Transmitter Power Level, and Transmitter Peak Differential Output Tests 85

Test Mode 6. Output Droop Tests 88

Viewing the Test Report 90

5 2.5GBASE-T1, 5GBASE-T1, and 10GBASE-T1 Tests and Test Report

Test Mode 1. Transmit Clock Frequency (MASTER) and Transmit Jitter Tests 94

Test Mode 2. MDI Output Jitter (MASTER) Tests 96

Test Mode 4. Transmitter Linearity Test 97

Test Mode 5. Transmitter Power Spectral Density, Transmitter Power Level, and Transmitter Peak Differential Output Tests 98

Test Mode 6. Output Droop Tests 101

MDI Return Loss Test 103

Viewing the Test Report 105

6 100BASE-T1 ECU Tests and Test Report

- **OABR_PMA_TX_01** 108
- **OABR_PMA_TX_02** 110
- OABR_PMA_TX_03 111
- **OABR_PMA_TX_04** 112
- OABR_PMA_TX_05 114
- **OABR_PMA_TX_06** 115
- **OABR_PMA_TX_07** 117
- **OABR_PMA_TX_08** 119
- Viewing the Test Report 122

7 1000BASE-T1 ECU Tests and Test Report

- CT_1000BASE-T1_PMA_TX_01 126
- CT_1000BASE-T1_PMA_TX_02 128
- **CT 1000BASE-T1 PMA TX 03** 129
- CT_1000BASE-T1_PMA_TX_04 130
- CT_1000BASE-T1_PMA_TX_05 131
- **CT 1000BASE-T1 PMA TX 06** 133
- CT_1000BASE-T1_PMA_TX_08 134

CT_1000BASE-T1_PMA_TX_09 136 Viewing the Test Report 137

8 Appendix

140 **Reference Documents** Keysight Connection Expert - Adding Instrument Using Remote Interface 141 Keysight Connection Expert - Adding Instrument using LAN Instrument 144 Keysight Connection Expert - Adding Instrument using HiSlip Interface 147 AE6941A Automotive Ethernet Fixture 150 153 N5395C Ethernet Transmitter Test Fixture 157 Configuring External Instruments Calibrating External Instruments 162 Calibrating the VNA 169 Code Emulator for E5071C 175 Equation Editor 176 Offline Mode 177 Using the AE6950A Frequency Divider Board 186 List of Abbreviations 192

THIS PAGE HAS BEEN INTENTIONALLY LEFT BLANK.

Keysight AE6910T/AE6920T Automotive Ethernet Compliance Solution User Guide and Methods of Implementation

1 Introduction

Overview of Keysight AE6910T/AE6920T Automotive Ethernet Compliance Test Application / 8 Installing the Test Application and Licenses / 13 Preparing to Take Measurements / 16 Starting the Automotive Ethernet Compliance Test Application / 26

Overview of Keysight AE6910T/AE6920T Automotive Ethernet Compliance Test Application

The Keysight AE6910T/AE6920T Automotive Ethernet Transmitter Test Application lets you automatically execute physical-layer (PHY) electrical tests for transmitter compliance using IEEE and/or Open Alliance (OABR) specifications. In addition to the measurement data, the report provides a margin analysis that shows how closely your device passed or failed each test.

The AE6910T/AE6920T software performs a wide range of electrical tests required to meet the current Automotive Ethernet specifications all in one installation. The application helps you execute a wide subset of the conformance tests performed with a variety of Keysight equipment.

The AE6910T/AE6920T Automotive Ethernet Transmitter Test Application allows you to select the reference specification and the test plan depending on the selected specification and currently supports the following data rates and standards:

- 10BASE-T1S, IEEE 802.3cg-2019 and OPEN Alliance TC14¹
- 100BASE-T1, IEEE 802.3bw-2015 and OPEN Alliance TC1¹
- 100BASE-T1 OPEN Alliance TC8 ECU Layer 1, ver 3.0
- 1000BASE-T1 OPEN Alliance TC8 ECU Layer 1, ver 1.0
- 1000BASE-T1, IEEE 802.3bp-2016 and OPEN Alliance TC12¹
- ·2.5/5/10GBASE-T1, IEEE 802.3ch-2020 and OPEN Alliance TC15¹
- 1 The software does not have dropdown selection for all of the OA standards. However, the cross reference is very close between IEEE and OA.

Table 1-1 10BASE-T1S Test

Test	Test Mode/Configuration	Test Classification
Transmitter Output Voltage, Timing Jitter	Test Mode 1	-
Transmitter Output Droop	Test Mode 2	-
Transmit Power Spectral Density (PSD)	Test Mode 3	-
MDI Return Loss	Slave Mode	No test mode transmitted

Table 1-2 100BASE-T1 Tests

Test	Test Mode/Configuration	Test Classification
Transmitter Output Droop	Test Mode 1	-
Clock Frequency and Jitter Tests	Test Mode 2 Master	-
Transmit Clock Frequency and Jitter Tests	Test Mode 3	-
Transmitter Distortion	Test Mode 4	-

Table 1-2 100BASE-T1 Tests

Test	Test Mode/Configuration	Test Classification
MDI Return Loss Tests	Slave Mode. No test mode transmitted	-
MDI Mode Conversion Loss Tests	Slave Mode. No test mode transmitted	-
Transmitter Power Spectral Density (PSD) and Transmitter Peak Differential Output Tests	Test Mode 5	-

Table 1-31000BASE-T1 Tests

Test	Test Mode/Configuration	Test Classification
TX_TCLK125 Frequency and Transmit Jitter Tests	Test Mode 1	-
Transmit Clock Frequency and MDI Output Jitter Tests	Test Mode 2 Master	-
Transmitter Distortion	Test Mode 4	-
MDI Return Loss Tests	Slave Mode. No test mode transmitted	-
MDI Mode Conversion Loss Tests	Slave Mode. No test mode transmitted	-
Transmitter Power Spectral Density, Power Level, and Transmitter Peak Differential Output Tests	Test Mode 5	-
Output Droop Tests	Test Mode 6	-

Table 1-4 2.5GBASE-T1, 5GBASE-T1 and 10GBASE-T1 Tests

Test	Test Mode/Configuration	Measurement
Transmitter Timing Jitter	Test Mode 1 Master / Slave in Linked Mode	TX_TCLK_175 RMS / Peak to Peak Jitter
Transmit MDI Random Jitter	Test Mode 2 Master	MDI RMS / Peak to Peak Jitter
Transmit MDI Deterministic Jitter	Test Mode 2 (Test Pattern JP03A and JP03B) Master	Peak to Peak Deterministic Jitter / Even Odd Jitter
Transmitter Linearity	Test Mode 4	SNDR (Signal-to-Noise and Distortion Ratio)
MDI Return Loss Tests	Slave Mode. No test mode transmitted	Reflections at the MDI

Test	Test Mode/Configuration	Measurement
Transmitter PSD, Power Level, and Transmitter Peak Differential Output	Test Mode 5 Normal Operation, Idle Mode	-
Transmitter Clock Frequency	Master	Clock frequency / data rate
Maximum Output Droop	Test Mode 6	Positive / Negative Droop

Table 1-4 2.5GBASE-T1, 5GBASE-T1 and 10GBASE-T1 Tests

Test	Test Mode/Configuration	Test Classification
Transmitter Output Droop	Test Mode 1	Optional ¹
Transmitter Timing Jitter	Test Mode 2 Master	Mandatory ²
Transmit Clock Frequency	Test Mode 2	Mandatory
Transmitter Power Spectral Density	Test Mode 5	Optional
MDI Return Loss	Slave Mode. No test mode transmitted	Mandatory
MDI Mode Conversion	Slave Mode. No test mode transmitted	Mandatory
MDI Common Mode Emission	Test Mode 5	Optional
Transmitter Distortion	Test Mode 4	Optional

Table 1-5TC8 100BASE-T1 ECU Tests

1 The test could be executed but is not required for an official qualification pass/fail criterion.

2 Required test which needs to be evaluated according to the specified pass/fail criterion.

Table 1-6 TC8 1000BASE-T1 ECU Tests

Test	Test Mode/Configuration	Test Classification
Transmitter Output Droop	Test Mode 1	Optional
Transmitter Output Droop	Test Mode 2 Master	Mandatory
Transmit Clock Frequency	Test Mode 2	Mandatory
Transmitter Power Spectral Density	Test Mode 5	Optional
MDI Return Loss	Slave Mode. No test mode transmitted	Mandatory
MDI Mode Conversion	Slave Mode. No test mode transmitted	Mandatory
MDI Common Mode Emission	Test Mode 5	Optional
Transmitter Distortion	Test Mode 4	Optional

Using the Keysight AE6910T/AE6920T Automotive Ethernet Compliance Test Application along with the AE6941A Automotive Ethernet Fixture or the N5395C Ethernet Test Fixture, greatly simplifies compliance testing. The software automatically configures all the necessary test equipment as well as reducing the overall test time.

The AE6910T/AE6920T Software:

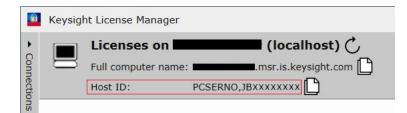
- Allows you to select individual or multiple tests to run.
- Allows you to identify the tested device and its configuration.
- · Shows you how to make oscilloscope connections to the device under test.
- Automatically checks for proper oscilloscope configuration.
- Automatically sets up the oscilloscope for each test.
- Allows you to determine the number of trials for averaging in each test.
- Provides detailed information on each test that ran, displaying the results of a maximum of 64 worst trials at any one time.
- Creates a printable HTML report of the tests that ran. This report includes pass/fail limits, margin analysis, and screen captures.

Installing the Test Application and Licenses

If you purchased the AE6910T/AE6920T Automotive Ethernet Compliance Test Application separate from your Infiniium oscilloscope, you must install the software and license key.

Installing the Test Application

- 1 Make sure you have the right version of Infiniium Oscilloscope software installed on your oscilloscope (see the AE6910T/AE6920T release notes). To ensure that you have the right version, select **Help > About Infiniium...** from the main menu.
- 2 To obtain the Automotive Ethernet Compliance Test Application, go to Keysight website:
 - www.keysight.com/find/AE6910T-SW
 - www.keysight.com/find/AE6920T-SW
- 3 In the web page's **Trials & Licenses** tab, click the **Details and Download** button to view instructions for downloading and installing the application software.


Installing the License Key

To procure a license, you require the Host ID information that is displayed in the Keysight License Manager application installed on the same machine where you wish to install the license.

Using Keysight License Manager 5

To view and copy the Host ID from Keysight License Manager 5:

- 1 Launch Keysight License Manager on your machine, where you wish to run the Test Application and its features.
- 2 Copy the Host ID that appears on the top pane of the application. Note that x indicates numeric values.

Figure 1-1 Viewing the Host ID information in Keysight License Manager 5

To install one of the procured licenses using Keysight License Manager 5 application,

- 1 Save the license files on the machine, where you wish to run the Test Application and its features.
- 2 Launch Keysight License Manager.
- 3 From the configuration menu, use one of the options to install each license file.

4	? _ 🗆 ×	
	Why do I need these tools?	
	Install License File	Ctrl+I
	Install License from Text	Ctrl+T
	View License Alerts	Ctrl+L
	Explore Transport URLs	
	About Keysight License Manager	

Figure 1-2 Configuration menu options to install licenses on Keysight License Manager 5

For more information regarding installation of procured licenses on Keysight License Manager 5, refer to Keysight License Manager 5 Supporting Documentation.

Using Keysight License Manager 6

To view and copy the Host ID from Keysight License Manager 6:

- 1 Launch Keysight License Manager 6 on your machine, where you wish to run the Test Application and its features.
- 2 Copy the Host ID, which is the first set of alphanumeric value (as highlighted in Figure 1–3) that appears in the Environment tab of the application. Note that x indicates numeric values.


Keysight License	Manager б	
Home	Licensing Version	= Keysight License Manager Ver: 6.0.3 Date: Nov 9 2018
	Copyright	= © Keysight Technologies 2000-2018
Environment	AGILEESOFD_SERVER_CONFIG	_
	AGILEESOFD_SERVER_LOGFILE	- = <u>C:\ProgramData\Keysight\Licensing\Log</u> \ server log.txt
View licenses		
	SERVER_LICENSE_FILE	= <u>C:\ProgramData\Keysight\Licensing\Licenses\Server</u>
License usage	AGILEESOFD_LICENSE_FILE	<u>C:\ProgramData\Keysight\Licensing\Licenses\Other;C:\ProgramData\Keysight</u>
	FLO_LICENSE_FILE	= <u>C:\ProgramData\Keysight\Licensing\Licenses\Other;C:\ProgramData\Keysight</u>
Borrow license	KAL_LICENSE_FILE	= C:\ProgramData\Keysight\Licensing\Licenses\Other;C:\ProgramData\Keysight
	AGILEESOFD_DEBUG_MODE	
	FLEXLM_TIMEOUT	-
	Default Hostid	= XXXXadXXXXbe XXbaXeaceXee
	Ethernet Address	= XXXXadXXXXbe XXbaXeaceXee
	UUID	=
	Physical MAC Address	= XXXXadXXXXbe PHY_ETHER=XXbaXeaceXee
	IP Address	= 127.0.0.1
	Computer/Hostname	
	Username	
	PATH	= C:\Program Files (x86)\Common Files\Intel\Shared Libraries\redist\intel6
	Compact View	
		Refresh Dose Help

Figure 1-3

Viewing the Host ID information in Keysight License Manager 6

To install one of the procured licenses using Keysight License Manager 6 application,

- 1 Save the license files on the machine, where you wish to run the Test Application and its features.
- 2 Launch Keysight License Manager 6.
- 3 From the Home tab, use one of the options to install each license file.

For more information regarding installation of procured licenses on Keysight License Manager 6, refer to Keysight License Manager 6 Supporting Documentation.

Preparing to Take Measurements

Before running the AE6910T/AE6920T automated compliance tests, you should calibrate the oscilloscope and probe (if applicable). After calibrating the oscilloscope and probe (if applicable), you are ready to start the Compliance Test Application and perform the measurements.

Calibrate the Oscilloscope

For information on performing the internal diagnostic and calibration cycle for your Keysight Infiniium oscilloscope, refer to the "User Calibration" topic in your oscilloscope's online help.

NOTE

If the ambient temperature changes more than 5 $^{\circ}$ C from the calibration temperature, perform the internal calibration again. The delta between the calibration temperature and the present operating temperature is as shown in the Utilities > Calibration menu.

NOTE

If you switch cables between channels or other oscilloscopes, it is necessary to perform cable and probe calibration again. Keysight recommends that, once you complete the calibration, label the cables with the calibrated channel.

Probe Calibration (if applicable)

Most of the automotive ethernet transmitter compliance test can be done by using a cabled connection. In case you are using a probe to connect the DUT to the input of the oscilloscope, we recommend that you use a differential probe, meeting the bandwidth and amplitude requirements.

These are the recommended differential probe configurations for each data rate.

- 10base-T1S -- N2790A 100MHz differential
- 100base-T1 -- N2750A 1.5 GHz differential
- 1000base-T1 -- N2751A 3.5 GHz differential
- MultiGbase-T1 -- 1168B or MX0021A 13 GHz InfiniiMax differential with SMA head (MX0105A)

Before performing the compliance test, it is highly advisable to perform the probe calibration. For more information about the probe calibration procedures for your probe, refer to the probe's user's guide on Keysight.com.

General Test Setup for 10BASE-T1S

10BASE-T1S

The AE6910T/20T supports four test cases in 10BASE-T1S transmitter compliance test utilizing three test modes -- test mode 1, test mode 2 and test mode 3. Described as follows is the test setup. Supply the Differential Signal to the Oscilloscope by using one of the following two ways:

- **Two Channels** connect the differential automotive pair to the oscilloscope using only SMA cables. Refer to "Two Channels Connection to Oscilloscope" on page 21 for more details.
- One Channel that connects the differential automotive pair to the Oscilloscope using a single differential probe. Refer to "One Channel Connection to Oscilloscope" on page 21 for more details.

The type of connection accepted can be selected in the **Set Up** tab of the test application.

Keysight does not recommend any variation from the above definition of differential signaling type.

Test Mode 3 can also use the N9010B Signal Analyzer. Refer to "Test Mode 3. Transmitter Power Spectral Density (PSD) Tests" on page 43 for specific setup details.

NOTE

For all tests, use the software supplied with your transmitter PHY to control the Device Under Test.

General Test Setup for 100BASE-T1 and ECU

100BASE-T1 and ECU

Transmitter Output Droop, Transmitter Timing Jitter, Transmit Clock Frequency, Power Spectral Density, and MDI Common Mode Emission require only the Infiniium oscilloscope and the device to be tested (Device Under Test or DUT). The following describes the test setup. The signal supplied to the oscilloscope can either be **Two Channels** or a **One Channel**.

- Two Channels connect the differential automotive pair to the oscilloscope using only SMA cables. Refer to "Two Channels Connection to Oscilloscope" on page 21 for more details.
- One Channel connects the differential automotive pair to the Oscilloscope using a single differential probe. Refer to "One Channel Connection to Oscilloscope" on page 21 for more details. The only variation would be the Power Level Test that requires a balun.

Keysight does not recommend any variation from the above definition of the signaling type. The type of connection accepted can be selected in the **Set Up** tab of the test application.

Transmitter Distortion requires the AE6941A Automotive Ethernet Fixture or the N5395C Ethernet Test Fixture and an Arbitrary Waveform Generator (AWG). Refer to "OABR_PMA_TX_08" on page 119 for specific setup details.

Test Mode 4 requires the AE6941A Automotive Ethernet Fixture or the N5395C Ethernet Test Fixture as well as an Arbitrary Waveform Generator (AWG). Refer to "Test Mode 4. Transmitter Distortion Test" on page 58 for specific setup details.

MDI Return Loss and MDI Mode Conversion require a VNA to execute. Refer to "MDI Return Loss Test" on page 65 or "MDI Mode Conversion Loss Test" on page 67. Also, the DUT has to be in the Slave mode with no transmitted test mode. Refer to "OABR_PMA_TX_05" on page 114 and "OABR_PMA_TX_06" on page 115.

You can execute the Power Spectral Density with just an oscilloscope. Alternatively, you can also use the N9010B Signal Analyzer. Refer to "Test Mode 5. Transmitter Power Spectral Density (PSD) and Transmitter Peak Differential Output Tests" on page 69 and "OABR_PMA_TX_04" on page 112.

Similarly, you can also use the N9010B Signal Analyzer for testing the MDI Common Mode Emission. Refer to "OABR_PMA_TX_07" on page 117.

General Test Setup for 1000BASE-T1 and ECU

1000BASE-T1 and ECU

Test Modes 1, 2, 5, and 6 require only the Infiniium oscilloscope and the device to be tested (Device Under Test or DUT). The described test setup is as follows. Supply the Differential Signal to the Oscilloscope by using one of the following two ways:

- **Two Channels** connect the differential automotive pair to the oscilloscope using only SMA cables. Refer to "Two Channels Connection to Oscilloscope" on page 21 for more details.
- **One Channel** connects the differential automotive pair to the Oscilloscope using a single differential probe. Refer to "One Channel Connection to Oscilloscope" on page 21 for more details. The only variation would be the Power Level Test that requires a balun.

The type of connection accepted can be selected in the **Set Up** tab of the test application.

Keysight does not recommend any variation from the above definition of differential signaling type.

Test Mode 4 requires the AE6941A Automotive Ethernet Fixture or the N5395C Ethernet Test Fixture as well as an Arbitrary Waveform Generator (AWG). Refer to "Test Mode 4. Transmitter Distortion Test" on page 78 for specific setup details.

MDI Return Loss and MDI Mode Conversion requires a VNA to execute. Also, the DUT has to be in the Slave mode with no transmitted test mode. Refer to "MDI Return Loss Test" on page 81 or "MDI Mode Conversion Loss Test" on page 83.

Test Mode 5 can also use the N9010B Signal Analyzer. Refer to "Test Mode 5. Transmitter Power Spectral Density, Transmitter Power Level, and Transmitter Peak Differential Output Tests" on page 85 for specific setup details.

General Test Setup for 1000BASE-T1, 2.5GBASE-T1, 5GBASE-T1, and 10GBASE-T1

1000BASE-T1

Test Modes 1, 2, 5, and 6 require only the Infiniium oscilloscope and the device to be tested (Device Under Test or DUT). The described test setup is as follows. Supply the Differential Signal to the Oscilloscope by using one of the following two ways:

- Two Channels connect the differential automotive pair to the oscilloscope using only SMA cables. Refer to "Two Channels Connection to Oscilloscope" on page 21 for more details.
- One Channel connects the differential automotive pair to the Oscilloscope using a single differential probe. Refer to "One Channel Connection to Oscilloscope" on page 21 for more details. The only variation would be the Power Level Test that requires a balun.

The type of connection accepted can be selected in the **Set Up** tab of the test application.

Keysight does not recommend any variation from the above definition of differential signaling type.

Test Mode 4 requires the AE6941A Automotive Ethernet Fixture or the N5395C Ethernet Test Fixture as well as an Arbitrary Waveform Generator (AWG). Refer to "Test Mode 4. Transmitter Distortion Test" on page 78 for specific setup details.

MDI Return Loss and MDI Mode Conversion requires a VNA to execute. Also, the DUT has to be in the Slave mode with no transmitted test mode. Refer to "MDI Return Loss Test" on page 81 or "MDI Mode Conversion Loss Test" on page 83.

Test Mode 5 can also use the N9010B Signal Analyzer. Refer to "Test Mode 5. Transmitter Power Spectral Density, Transmitter Power Level, and Transmitter Peak Differential Output Tests" on page 85 for specific setup details.

2.5GBASE-T1, 5GBASE-T1, and 10GBASE-T1

Test Modes 1, 2, 4, 5, and 6 require only the Infinitum oscilloscope and the device to be tested (Device Under Test or DUT). The described test setup is as follows. Supply the Differential Signal to the Oscilloscope by using one of the following two ways:

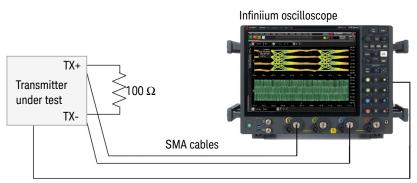
- **Two Channels** connect the differential automotive pair to the oscilloscope using only SMA cables. Refer to "Two Channels Connection to Oscilloscope" on page 21 for more details.
- **One Channel** connects the differential automotive pair to the Oscilloscope using a single differential probe. Refer to "One Channel Connection to Oscilloscope" on page 21 for more details. The only variation would be the Power Level Test that requires a balun.

The type of connection accepted can be selected in the Set Up tab of the test application.

Keysight does not recommend any variation from the above definition of differential signaling type.

Test Mode 5 can also use the N9010B Signal Analyzer. Refer to "Test Mode 5. Transmitter Power Spectral Density, Transmitter Power Level, and Transmitter Peak Differential Output Tests" on page 98 for specific setup details.

NOTE


For all tests, use the software supplied with your transmitter PHY to control the Device Under Test.

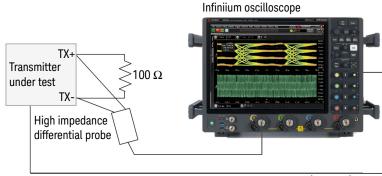
Connection Diagrams

Two Channels Connection to Oscilloscope

Two SMA cables are needed to directly connect the output of the transmitter (DUT) to the oscilloscope. The specific oscilloscope channel used can be selected in the **Configure** tab of the application.

An optional TX_TCLK may be supplied to the oscilloscope to run the tests.

Transmitter clock to oscilloscope Ref Clock In (optional)


Figure 1-5 Connection to the Oscilloscope Using a Pair of SMA Cables

One Channel Connection to Oscilloscope

Use a differential probe to connect the output of the transmitter (DUT) to the oscilloscope. The specific oscilloscope channel used can be selected in the **Configure** tab of the application.

An optional TX_TCLK may be supplied to the oscilloscope to run the tests.

To learn more about Keysight high impedance differential probes, check out: https://www.keysight.com/us/en/lib/resources/selection-guides/oscilloscope-probes.html#HVDif fActiveProbes

Transmitter clock to oscilloscope Ref Clock In (optional)

Figure 1-6 Connection to the Oscilloscope using a Differential Probe

Connection Using the Automotive Ethernet Adapters

Alternately, you can use the MDI adapter provided by Keysight, AE6942A (SMA to Mini-50), AE6943A (SMA to MATEnet), and AE6960A (SMA to H-MTD), to make connections between the DUT and the test instrument. Besides the available adapters, you can also use any similarly customized adapter.

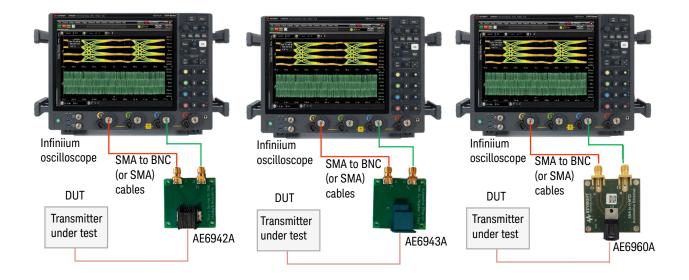
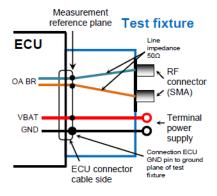


Figure 1-7 General Test Setup using the AE6942A, AE6943A, or AE6960A Automotive Ethernet adapter

NOTE


For all tests, use the software supplied with your transmitter PHY to control the Device Under Test.

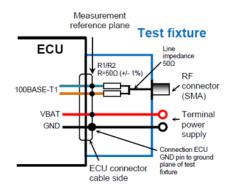
NOTE

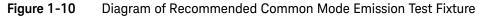
Keysight recommends this adapter for ECU test cases. If you need a similar fixture, contact your Keysight sales representative for more details.

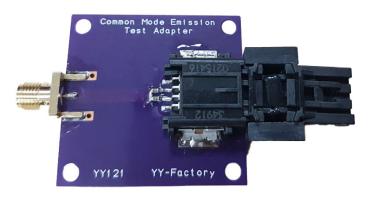
Besides the available adapters, another option would be to use the adapter shown in Figure 1-9 to make connections to the DUT.

The design of this adapter is as outlined in OPEN Alliance Automotive Ethernet Test Specification, v2.0, Section 2.2.2, Test OABR_PMA_TX_05 and OABR_PMA_TX_06. Its design is in line with the definitions of IEEE 100BASE-T1 Definitions for Communication Channel, Version 1.0.




Figure 1-9 Automotive Ethernet SMA Adapter (Molex to SMA) available as custom order through Keysight.


Connection Using the Common Mode Emission Test Adapter


NOTE

The MDI common mode emission test (test mode 5 of 100M ECU test) requires a use of special test fixture as shown below in the Figure 1-10 and Figure 1-11.

The design of the Common Mode Emission test adapter is as outlined in OPEN Alliance Automotive Ethernet ECU Test Specification, v2.0, Section 2.2.2, Test OABR_PMA_TX_07. The design of this adapter is in line with the definitions of IEEE 100BASE-T1 EMC Test Specifications for Transceivers, Appendix D, D.1 Test Conditions.

Figure 1-11 Common Mode Emission Test Adapter (Molex to SMA) available from the Third Party Vendor in the Market

Connection Using the N5395C Ethernet Transmitter Test Fixture

Besides that, you can use Section 1 of the N5395C Ethernet 10/100/1G Transmitter Electrical Test Fixture to make connections to the transmitter under test. The SMA connections shown are for wire pair A (DA+ and DA-). This connection is only valid if the DUT has an RJ45 connector. To test wire pair B, C, or D, connect the oscilloscope SMA cables to the appropriate Evaluation Board SMA connectors. See Figure 1–12. In the event the DUT does not have an RJ45 connector, you will need to replace Section 1 with an adapter that converts the differential automotive pair to SMA.

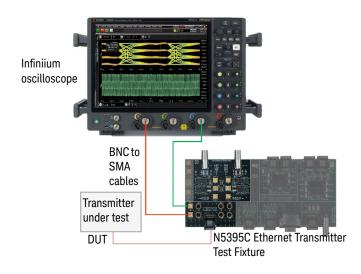


Figure 1-12 General Test Setup using the N5395C Evaluation Board

Starting the Automotive Ethernet Compliance Test Application

- 1 Ensure that the PHY transmitter (DUT) is operating and set to desired test modes.
- 2 To start the Automotive Ethernet Compliance Test Application from the Infiniium oscilloscope's main menu, select Analyze > Automated Test Apps > AE6910T/AE6920T Automotive Ethernet Test App.

Analyze Utilities Demos Help	
Gallery	
Quick Jitter 🔹 🕨	
Quick Eye Diagrams	
Histogram	
Mask Test	
Automated Test Apps	AE6910T/AE6920T Automotive Ethernet Test App
Analysis Diagram	AE6810M MOST Test App
Measurement Analysis (EZJIT)	
Jitter/Noise (EZJIT Complete)	
Real-Time Eye	
Equalization	
CrossTalk	
Phase Noise	

Figure 1-13 Launching the AE6910T/AE6920T Compliance Test Application

🔟 Automotive Ethernet Test Application New Device1	\mathbf{X}
File View Tools Help	
Set Up Select Tests Configure Connect Run Automate Results HTML Report	-
Automotive Ethernet Test Application	Â
Technology	
Specification: IEEE 🔽 Data Rate: 100M 💟 bps	
Oscilloscope Connection	
Input: 🔵 Two Channels 🔘 One Channel	
Waveform Capture	$\equiv \parallel$
Oscilloscope HDF5(*.h5) 💙 🗖 Network Analyzer CST(*.cst) 🛛 Spectrum analyzer XY Values(*.csv 💙 🚞	
Distortion Test Settings	
Vse Disturbing Signal	
Use 10MHz Ref Clock (Disabled : Uses Clock Recovery Algorithm for Synchronization)	
Disturbing Signal Source: 33250A Calibrate Sources	
Ø Signal Source: Not Connected Configure	
External Instruments —	$- \parallel$
C Vector Network Analyzer	Η
Manual Calibration Browse	
Automated Calibration	
Not Connected Configure Not Connected Configure	
Spectral Settings (Test Mode 5)	
Spectral Analysis: 🔿 Oscilloscope 🌑 Spectrum Analyzer	
Offline Mode	
Enable	
Test Report Comments (Optional)	
More	
	v
Messages	-

Figure 1-14 Automotive Ethernet Compliance Test Application Main Window

The test app consists of eight primary tabs, described as follows:

Tab	Description
Set Up	Lets you identify and set up the test environment.
Select Tests	Lets you select the tests you want to run. After running the tests, status indicators show which tests have passed, failed, or have not run.
Configure	Lets you configure test parameters (for example, oscilloscope channels used in the test, number of averages, and other configuration).
Connect	Shows you how to connect the oscilloscope to the device under test.
Run	Starts the automated tests, if the connections to the device under test need to be changed, the test pauses and shows you how to change the connection, then waits for you to confirm that you made the changes before continuing.
Automate	Lets you construct scripts of commands to drive execution of the application.
Results	Contains more detailed information about the ran tests allowing you to change the thresholds where marginal or critical warnings appear.
HTML Report	Shows a compliance test report that you can print. See "Viewing the Test Report" on page 122.

The **Set Up** tab consists of 9 sections.

File View Tools Help Set Up Select Tests Configure Connect Run Automate Results HTML Report Automative Ethernet Test Application Technology Specification: IEEE Data Rate: 100M bps Oscilloscope Connection Input: Waveform Capture Oscilloscope HDF5(*.h5) Ise Disturbing Signal Use Disturbing Signal Source: Not Connected Configure Signal Source: Not Connected Configure Spectrul Analyzer Vector Network Analyzer Oscilloscope Manual Calibration Automated Calibration Automated Calibration Automated Calibration Not Connected Configure Spectral Analyzer Orffigure Mode Enable Test Report Comments (Optional)	🔟 Automotive Ethernet Test Application New De	vice1					
Automotive Ethernet Test Application Technology Specification: EEE Data Rate: 100M Specification: EEE Data Rate: 100M Specification: EEE Distribution Oscilloscope Obscilloscope HOFS(*.h5) Network Analyzer Cstress Oscilloscope Distribution Signal Source: Not Connected Configure Distribution	File View Tools Help						
Technology Specification: IEEE Totar Rate: 10M Discilloscope Connection Input: Two Channels Oscilloscope HDF5(*.h5) Network Analyzer Cstiftrate Sources Distortion Test Settings Use Disturbing Signal Use 10HHz Ref Clock (Disabled : Uses Clock Recovery Algorithm for Synchronization) Distortion Test Settings Use Disturbing Signal Source: 3250A Calibrate Sources Signal Source: Not Connected Configure Automated Calibration Not Connected Configure Spectral Analysis: Oscilloscope Spectral Settings (Test Mode 5) Spectral Analysis: Oscilloscope Spectral Comments (Optional)	Set Up Select Tests Configure Connect Run Automate Results HTML Report						
Specification: EEE Deta Rate: 100M Specification: Oscilloscope Connection Input: Two Channels Vaveform Capture Oscilloscope HDP5(*,h5) Oscilloscope HDP5(*,h5) Oscilloscope HDP5(*,h5) Network Analyzer Oscilloscope (Blabled : Uses Clock Recovery Algorithm for Synchronization) Distortion Test Settings Distortion Test Settings Oscilloscope (Spectrum Analyzer Other and Instruments Vector Network Analyzer Offigure Not Connected Configure Spectral Analysis: Oscilloscope (Spectrum Analyzer Offline Mode Enable Test Report Comments (Optional)		Automotive Ethernet Test Application					
Oscilloscope Connection Input: Two Channels O one Channel Waveform Capture O Scilloscope HDF5(*.h5) Isturbing Signal Use Disturbing Signal Use Disturbing Signal Source: 33250A Calibrate Sources Signal Source: Not Connected Configure Spectral Analysis: Oscilloscope (Test Mode 5) Spectral Settings (Test Mode 5) Spectral Settings (Test Mode 5) Spectral Analysis: Offline Mode Enable Test Report Comments (Optional)	-Technology						
Input: Two Channels One Channel Vaveform Capture Oscilloscope HDF5(*.h5) Network Analyzer CST(*.cst) Spectrum analyzer XY Values(*.csv) Distortion Test Settings Use Disturbing Signal Use Disturbing Signal Source: 33250A Calibrate Sources Signal Source: Not Connected Configure Spectrum Analyzer Network Analyzer Spectrum Analyzer Network Analyzer Spectral Settings (Test Mode 5) Spectral Analysis: Oscilloscope Spectrum Analyzer Coffline Mode Enable Test Report Comments (Optional) More	Specification: IEEE Da	ta Rate: 100M 🔽 bps					
Waveform Capture Oscilloscope HDF5(*.h5) Distortion Test Settings ✓ Use Disturbing Signal Use 10MHz Ref Clock (Disabled : Uses Clock Recovery Algorithm for Synchronization) Disturbing Signal Source: 33250A ✓ Calibrate Sources Signal Source: Not Connected Configure Not Connected Configure Not Connected Configure Not Connected Configure Spectral Analysis: O scilloscope Spectral Analysis: Offline Mode Enable Test Report Comments (Optional)	Oscilloscope Connection						
Oscilloscope HDF5(*.h5) Network Analyzer CST(*.cst) Spectrum analyzer XV Values(*.csv) Image: Spectrum analyzer Distortion Test Settings Use Disturbing Signal Use Disturbing Signal Use 10MHz Ref Clock (Disabled : Uses Clock Recovery Algorithm for Synchronization) Disturbing Signal Source: 33250A Image: Spectrum analyzer Signal Source: Not Connected Configure Signal Source: Not Connected Configure Spectrum Analyzer Image: Spectrum Analyzer Image: Spectrum Analyzer Manual Calibration Automated Calibration Image: Spectrum Analyzer Image: Spectrum Analyzer Image: Spectrum Analyzer Spectral Settings (Test Mode 5) Spectral Analysis: O scilloscope Spectrum Analyzer Offline Mode Image: Spectrum Analyzer Image: Spectrum Analyzer Image: Spectrum Analyzer Offline Mode Image: Spectrum Analyzer Image: Spectrum Analyzer Image: Spectrum Analyzer Offline Mode Image: Spectrum Analyzer Image: Spectrum Analyzer Image: Spectrum Analyzer Offline Mode Image: Spectrum Analyzer Image: Spectrum Analyzer Image: Spectrum Analyzer Image: Spectrum Analyzer Image: Spectrum Analyzer <t< td=""><td>Input: 🔵 Two Channels 🔘 One Channel</td><td></td></t<>	Input: 🔵 Two Channels 🔘 One Channel						
Oscilloscope HDF5(*.h5) Network Analyzer CST(*.cst) Spectrum analyzer Y Values(*.csv) Spectrum analyzer Distortion Test Settings Use Disturbing Signal Use Disturbing Signal Use 10MHz Ref Clock (Disabled : Uses Clock Recovery Algorithm for Synchronization) Disturbing Signal Source: 33250A Calibrate Sources Signal Source: Not Connected Signal Source: Not Connected Configure Spectrum Analyzer Manual Calibration Automated Calibration Apply SA Correction Browse Automated Calibration Not Connected Configure Not Connected Configure Spectral Settings (Test Mode 5) Spectral Analysis: O scilloscope Spectrum Analyzer Offline Mode Enable Test Report Comments (Optional) More More	Waveform Capture						
Vuse Disturbing Signal Use 10MHz Ref Clock (Disabled : Uses Clock Recovery Algorithm for Synchronization) Disturbing Signal Source: 33250A Signal Source: Not Connected Configure Signal Source: External Instruments Apply SA Correction Vector Network Analyzer Spectrum Analyzer Manual Calibration Apply SA Correction Not Connected Configure Spectral Settings (Test Mode 5) Spectrum Analyzer Offline Mode Enable Test Report Comments (Optional) More		ork Analyzer CST(*.cst) 🛛 🖉 Spectrum analyzer XY Values(*.csv 💟 🚞					
Disturbing Signal Source: 33250A Calibrate Sources Signal Source: Not Connected Configure External Instruments Vector Network Analyzer Manual Calibration Automated Calibration Not Connected Configure Spectral Settings (Test Mode 5) Spectral Analysis: O Oscilloscope Spectrum Analyzer Offline Mode Enable Test Report Comments (Optional) More	✓ Use Disturbing Signal						
Signal Source: Not Connected Configure External Instruments Vector Network Analyzer Manual Calibration Automated Calibration Not Connected Configure Not Connected Configure Spectral Settings (Test Mode 5) Spectral Analysis: O Oscilloscope Spectrum Analyzer Offline Mode Enable Test Report Comments (Optional) More							
External Instruments Vector Network Analyzer Manual Calibration Automated Calibration Not Connected Configure Spectral Settings (Test Mode 5) Spectral Analysis: O Oscilloscope Spectrum Analyzer Offiline Mode Enable Test Report Comments (Optional) More		Calibrate Sources					
Vector Network Analyzer Manual Calibration Automated Calibration Not Connected Configure Spectral Settings (Test Mode 5) Spectral Analysis: O Oscilloscope Spectrum Analyzer Offline Mode Enable Test Report Comments (Optional) More	Signal Source: Not Connected	Configure					
Automated Calibration Automated Calibration Configure Spectral Settings (Test Mode 5) Spectral Analysis: O Oscilloscope O Spectrum Analyzer Offline Mode Enable Test Report Comments (Optional) More	External Instruments						
Automated Calibration Automated Calibration Not Connected Configure Spectral Settings (Test Mode 5) Spectral Analysis: Oscilloscope Spectrum Analyzer Offline Mode Enable Test Report Comments (Optional) More	Vector Network Analyzer	Spectrum Analyzer					
Not Connected Configure Spectral Settings (Test Mode 5) Spectral Analysis: O oscilloscope Spectrum Analyzer Offline Mode Enable Test Report Comments (Optional)	O Manual Calibration	Apply SA Correction Browse					
Spectral Settings (Test Mode 5) Spectral Analysis: O Oscilloscope Spectrum Analyzer Offline Mode Enable Test Report Comments (Optional) More	Automated Calibration						
Spectral Analysis: O Oscilloscope Spectrum Analyzer Offline Mode Enable Test Report Comments (Optional) More	Not Connected Configure	Not Connected Configure					
Offline Mode Enable Test Report Comments (Optional) More	Spectral Settings (Test Mode 5)	Spectral Settings (Test Mode 5)					
Enable Test Report Comments (Optional) More	Spectral Analysis: 🔿 Oscilloscope 🌑 Spectrum Analyzer						
Test Report Comments (Optional)	Offline Mode						
More	Enable						
	Test Report Comments (Optional)						
		More					
Wessales -	Messages						

Figure 1-15 Set Up tab sections

Technology

This section allows you to select the technology standard you wish to test on the DUT.

For different specifications, the Compliance Application automatically defines certain data rates.

Select the **IEEE** option from the **Specification:** drop-down menu, if the DUT is designed based on the IEEE standard for either 10BASE-T1S, 100BASE-T1, 1000BASE-T1, 2.5GBASE-T1, 5GBASE-T1 or 10GBASE-T1. It supports Data Rate of 10Mbps, 100Mbps, 1000Mbps, 2.5Gbps, 5Gbps, or 10Gbps. Selected by default is the 100Mbps.

Technology						
Specification: IEEE	$\mathbf{\mathbf{v}}$	Data Rate:	1000M	V	ops	
			10M			
Oscilloscope Connection			100M			
Input: 🔵 Two Channels 🔘 One Channel			1000M			
Waveform Capture			2.5G			
Oscilloscope HDF5(*	h5)	Network Analyzer	5G		Spectrum analyzer XY Values(*.csv 💙 🚞	
			10G			

Figure 1-16 Technology section for IEEE specification

Select the **Open Alliance** option from the **Specification:** drop-down menu if the DUT is designed based on the Open Alliance standard for TC8 ECU. It only supports the **Data Rate** of 100Mbps.



Figure 1-17 Technology section for Open Alliance specification

NOTE

Oscilloscope Connection

This section allows you to select how to connect the automotive ethernet differential signal pair to the Oscilloscope. You have the following selections:

- Two Channels: Supports two coax cable connection.
- **One Channel**: Supports one differential probe or one coax cable connection.

The application will permit a specific **Data Rate**(2.5G,5G&10G) for the configuration of the Signal Differential Probe. Remaining Data Rate must be explicitly configured in scope.

Figure 1-18 Connection section

Refer to "Two Channels Connection to Oscilloscope" on page 21 and "One Channel Connection to Oscilloscope" on page 21.

Infiniium Probe Configuration

Click **Configure...** button. When the probe is not connected, an error message stating **No Probe Connected** will appear.

Figure 1-19 No Probe Connected - Error Message

• Upon clicking the **Configure...** button, with a mismatched probe amp attached to the scope, an error message stating **The probe is unsupported** will appear.

Figure 1-20 The probe is unsupported - Error Message

• The Probe Amp to Probe Head match should be done as shown in Table 1-7.

Probe Amp	Probe Head
1130A/B	
1131A/B	
1132A/B	
1134A/B	
1168A/B	
1169A/B	N5380A/B or MX0105A
MX0020A	
MX0021A	
MX0022A	
MX0023A	
MX0024A	
MX0025A	

Table 1-7Probe Amp and Probe Head Match

• Clicking the **Configure...** button in the **Setup** tab, opens the **Probe Configuration** window after connecting the probe amp and the head attached to the scope.

Figure 1-21 Probe Configuration Window

• The **Show Details** button will provide more details about the Probe Amp.

Figure 1-22 Probe Detail Window

• Select the indicated probe in the Probe Head. Click **Done** after selecting the connected head model for the scope as shown in Figure 1-21. InfiniiMax probe provides S-parameter correction for probe amp and probe head. Selecting correct probe model numbers will ensure flat frequency response and more accurate measurement result with the probe.

Waveform Capture

	aveform Capture Scilloscope (HDF5(*.h5) V Network Analyzer (CST(*.cst) V Spectrum analyzer (XY Values(*.csv V))
•	Depending on the option enabled and the format chosen, it enables the waveform to be captured and saved for Oscilloscope, Network Analyzer, and Spectrum Analyzer.

Table 1-6	Types for waveform capture format
Туреѕ	Waveform Capture Format
Oscilloscope	HDF5(*.h5), Internal(*.wfm), XY Values(*.csv)
Network Analyser	XY Values(*.csv), CST(*.cst)
Spectrum Analyzer	XY Values(*.csv), State(*.state)

Table 1-8 Types for waveform capture format

Distortion Test Settings

NOTE

Distortion Test Settings are available for the **IEEE** specifications for the **Data Rate** of 100Mbps or 1000Mbps only. However, this option is not available for 2.5Gbps, 5Gbps, 10Gbps

The Distortion Test Settings section allows you to select and configure a Disturbing Signal for testing. Use a disturbing signal to emulate a remote transmitter. Its definition is a sine wave that emulates the potential disturbing effect of another transmitter.

- Use Disturbing Signal Select this checkbox to add a disturbing signal (noise) to the primary signal when running the transmitter distortion test. By default, this option is enabled.
- Use 10MHz Ref Clock When disabled, a clock recovery algorithm is used for synchronization when running the distortion test. When enabled, an exposed TX_TCLK reference clock and the Keysight Frequency Divider Board are required for synchronization. By default, this option is disabled.
- Disturbing Signal Source Allows you to select the source used to add a disturbing signal to the Test Mode 4 signal. Available sources for selection differ based on the selections made in the Technology section.
- Calibrate Sources If you have configured the selected Disturbing Signal Source, this button is
 enabled to start the calibration process. Else, the selected Disturbing Signal Source is not
 configured, and the button is not enabled.
- Configure Allows you to configure the selected Disturbing Signal Source. Refer to "Configuring External Instruments" on page 135.

f Distortion Test Settings (Test Mode 4)	
🖌 Use Disturbing Signal	
Use 10MHz Ref Clock (Disabled : Uses Clock Recovery Algo	rithm for Synchronization)
Disturbing Signal Source: 33250A	Calibrate Sources
Signal Source: Not Connected	Configure

Figure 1-23 Distortion Test Settings (Test Mode 4) section

External Instruments

NOTE

External Instruments available for the **IEEE** and **Open Alliance** specifications for the **Data Rate** of 100Mbps, 1000Mbps, 2.5Gbps, 5Gbps, or 10Gbps only.

Use the External Instruments section to configure the Vector Network Analyzer and Spectrum Analyzer.

Refer to "Configuring External Instruments" on page 135.

External Instruments	
Vector Network Analyzer	Spectrum Analyzer
O Manual Calibration	Apply SA Correction Browse
Automated Calibration	
Not Connected Configure	Not Connected Configure

Figure 1-24 External Instruments section

Spectral Settings

It allows you to select either an Oscilloscope or a Spectrum Analyzer to perform spectral analysis of the DUT.

- Click the **Use Oscilloscope** if you wish to use the Keysight Infiniium Oscilloscope to perform spectral analysis. By default, this option is selected.
- Click the Use Spectrum Analyzer if you wish to connect an external spectrum analyzer to perform spectral analysis on the DUT.

Spectral Settings (Test Mode 5)						
Spectral Analysis: 🔘 Os	cilloscope 🔵 Spectrum Analyzer					

Figure 1-25 Spectral Settings section

Offline Mode

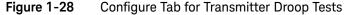
Enable offline mode to configure waveform files and run tests for various transmitter tests when offline, that is, when the DUT is not connected to a live (or online) oscilloscope. The available tests differ based on the selection made in the Technology section. By default, offline mode is not enabled. Refer to "Offline Mode" on page 156 for more details.

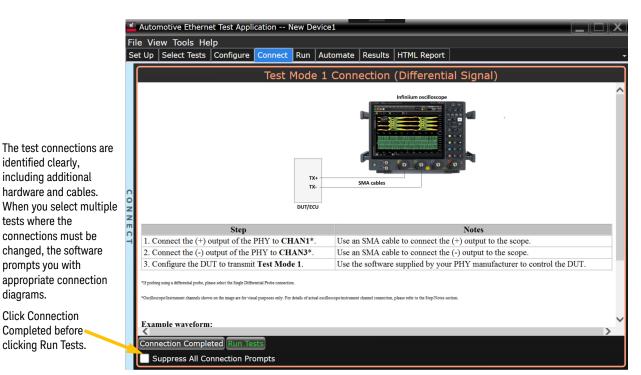
Offline Mode

Figure 1-26 Offline Mode section

Test Report Comments (Optional)

This section allows you to add comments, which would appear in the HTML report generated after test runs. It is optional but recommended.


Figure 1-27 Test Report Comments (Optional) section


The Configure Tab allows you to select different oscilloscope channels and measurement attributes.

For example, you can change the signal input from a differential probe to two SMA cables.

diagrams.

Automotive Ethernet Test Application New Device1										
	Fi	e Vi	ew Tools He	elp						
1	S.	i Up	Select Test	Configure	Connect	Run	Automate	Results	HTML Report	t
- F	CONFIGU		Select Test O Complian tomotive Ethe DUT Channel DUT D+ (Char DUT D- (Char Scope Offline 100Base-T1 T Iterations (> Test Mode > Test Mode > Test Mode > Test Mode > MDI Returr > MDI Mode	ce Debu rnet Tests (Channel 1) nnel 1) Capture Typ ests 1) 1 Tests 3/TX_TCLK 1 2/3 Tests 1 Loss	g e (Legacy) Fests		Automate	Results	HTML Report	t
	RE		Test Mode	5 Tests						

1 Introduction

THIS PAGE HAS BEEN INTENTIONALLY LEFT BLANK.

Keysight AE6910T/AE6920T Automotive Ethernet Compliance Solution User Guide and Methods of Implementation

2

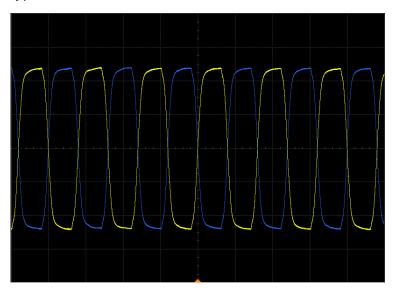
10BASE-T1S Tests and Test Report

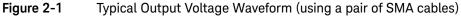
Test Mode 1. Transmitter Output Voltage and Timing Jitter Tests / 38 Test Mode 2. Output Droop Tests / 40 Test Mode 3. Transmitter Power Spectral Density (PSD) Tests / 43 MDI Return Loss Test / 46 Viewing the Test Report / 48

Test Mode 1. Transmitter Output Voltage and Timing Jitter Tests

Test Setup

You can run this test using either **Two Channels** or a **One Channel** from the transmitter (MDI). Refer to "General Test Setup for 10BASE-T1S" on page 17 for connection details.


NOTE Use the software supplied with your transmitter PHY to control the Device Under Test.


Specification References

- [1] 10BASE-T1S, IEEE Std 802.3cgTM 2019, Section 147.5.4.1.
- [2] 10BASE-T1S, IEEE Std 802.3cgTM 2019, Section 147.5.4.3.

Transmitter Output Voltage Test Information

Transmitter Timing Jitter Test Information

Reference "[2]" specifies that with the transmitter in Test Mode 1, the maximum jitter at the transmitter side shall be less than 5 ns symbol-to-symbol.

This test measures the data time interval error of the Test Mode 1 signal at the MDI. The ideal reference data rate is selected automatically by the oscilloscope and compared to the original signal to determine the data time interval error.

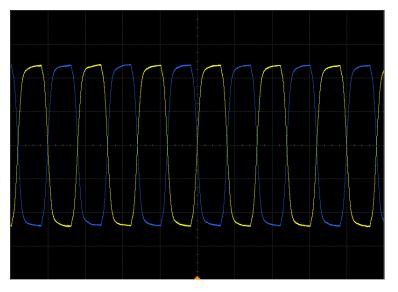


Figure 2-2 Typical Timing Jitter Test Waveform (using a pair of SMA cables)

Test Mode 2. Output Droop Tests

Test Setup

You can run this test using either **Two Channels** or a **One Channel** from the transmitter (MDI). Refer to "General Test Setup for 10BASE-T1S" on page 17 for connection details.

NOTE Use the software supplied with your transmitter PHY to control the Device Under Test.

Specification References

[1] 10BASE-T1S, IEEE Std 802.3cgTM - 2019, Section 147.5.4.2

Transmitter Output Droop Positive Test Information

This test measures the positive output droop of the transmitter.

Reference "[1]" specifies the positive output droop of a compliant PHY. The positive droop measured with the initial peak value after the zero-crossing and the value 800 ns after the initial peak, shall be less than 30%.

The application triggers the Test Mode 2 signal on the rising edge and determines the time the positive peak occurred and the voltage at that specific instance. This application then measures the voltage 800 ns after the peak; with the Droop calculated as follows:

Droop = 100 × (Vd/Vpk)%

Where:

- Vd is the magnitude of the droop.
- **Vpk** is the initial peak after the zero-crossing.

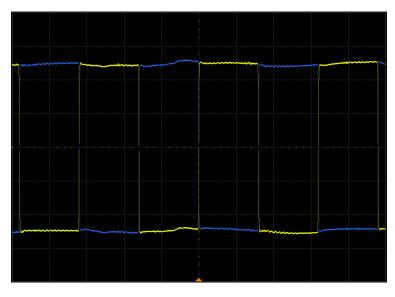
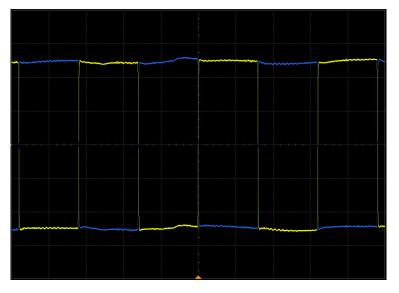


Figure 2-3 Typical Positive Droop Test Waveform (using a pair of SMA cables)

Transmitter Output Droop Negative Test Information

This test measures the negative output droop of the transmitter.

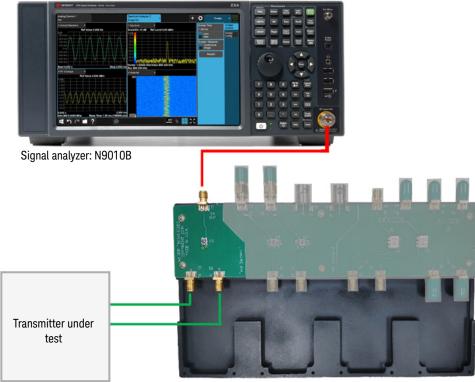

Reference "[1]" specifies the negative output droop of a compliant PHY. The negative droop measured with the initial peak value after the zero-crossing and the value 800 ns after the initial peak, shall be less than 30%.

The application triggers the Test Mode 2 signal on the falling edge and determines the time the negative peak occurred and the voltage at that specific instance. This application then measures the voltage 800 ns after the peak; with the Droop calculated as follows:

Droop = 100 × (Vd/Vpk)%

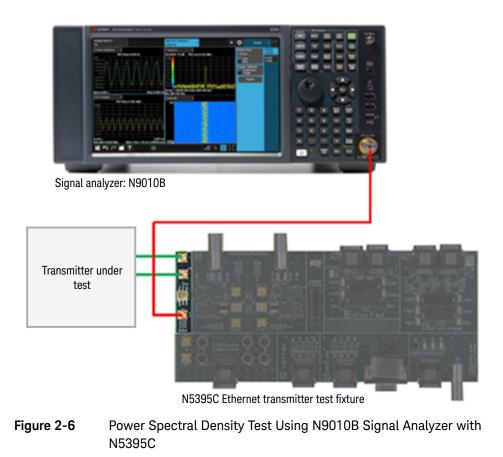
Where:

- Vd is the magnitude of the droop.
- Vpk is the initial peak after the zero-crossing.



Test Mode 3. Transmitter Power Spectral Density (PSD) Tests

Test Setup


The Power Spectral Density (PSD) Test can run using either a spectrum analyzer or an oscilloscope. When using the Oscilloscope to run, refer to "General Test Setup for 10BASE-T1S" on page 17 for testing using the oscilloscope.

If you use the N9010B Signal Analyzer, convert the differential output to a single-ended output using a balun. Use the balun on either the AE6941A Automotive Ethernet Fixture, as shown in Figure 2-5 on page 43 or the N5395C Ethernet Test Fixture, as shown in Figure 2-6 on page 44.

AE6941A Automotive Ethernet fixture

Figure 2-5 Power Spectral Density Test Using N9010B Signal Analyzer with AE6941A

NOTE Use the software supplied with your transmitter PHY to control the Device Under Test.

Specification References

[1] 10BASE-T1S, IEEE Std 802.3cg[™] - 2019, Section 147.5.4.2.

PSD Test Information

Reference "[1]" specifies that in Test Mode 3, the power spectral density (PSD) of the transmitter shall be between the upper and lower bounds specified in the following tables.

Table 2-1PSD Upper Bounds

Frequency	PSD Upper Bound (dBm/Hz) ¹
@0.3 MHz	-64
@15 MHz	-64
@25 MHz	-78
25 MHz-40 MHz	-78

1 Settings: RBW=10 kHz, VBW=30 kHz, sweep time >1 min, RMS detector.

Table 2-2PSD Lower Bounds

Frequency	PSD Lower Bound (dBm/Hz) ¹
@5 MHz	-80
@10 MHz	-70
@15 MHz	-80

1 Settings: RBW=10 kHz, VBW=30 kHz, sweep time >1 min, RMS detector.

The upper and lower limits are piece-wise linear masks connecting points given in Table 2-1 on page 45 and Table 2-2 on page 45. Provided is a lower PSD mask to ensure tolerances.

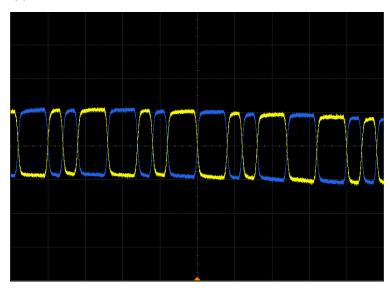


Figure 2-7 Typical Power Spectral Density Test Waveform

MDI Return Loss Test

Test Setup

Run this test with the E5080B Vector Network Analyzer. However, you can use a VNA exported data file in the Touchstone or CITI format in place of the external vector network analyzer. Refer to Figure 3-14 for the connection diagram.

Specification Reference

- [1] 10BASE-T1, IEEE Std 802.2cg 2019, Section 147.7.2
- [2] Open Alliance TC14 Physical Media Attachment Test Suite, Ver 1.2, Section 5.3.1

MDI Return Loss Test Information

Reference "[1]" specifies that the differential impedance at the MDI for each transmit/receive channel shall be such that any attenuated reflection is relative to the incident signal as per the following equation. This reflection must be due to differential signals incident upon the MDI with a test port having a differential impedance of 100 Ω . For MDI return loss test limit in point-to-point mode, we follow the reference "[2]".

$$ReturnLoss(f) \ge \begin{bmatrix} 25 & 0.3 \le f < 6\\ 25 - 20\left(\log_{10}\frac{f}{6}\right) & 6 \le f < 40 \end{bmatrix}$$

Where f is the frequency in MHz.

In other words, the return loss shall meet or exceed the equation shown for all frequencies ranging from 0.3 MHz to 40 MHz (with 100 Ω differential impedance) at all times when the PHY is transmitting data or control symbols.

NOTE

The DUT must be set to SLAVE Mode of operation and not transmit any test symbols.

NOTE

Calibrate the VNA before running the tests. Set the VNA as follows:

- Measurement: Return Loss S_{dd11}
- Start Frequency: 0.3 MHz
- Stop Frequency: 40 MHz
- Sweep Type: Logarithmic
- Sweep Points: 1600
- Output Power: minimum -10 dBm
- Measurement Bandwidth: 100 Hz
- Logic Port Impedance Differential Mode: 100 Ω
- Logic Port Impedance Common Mode: 25 Ω
- Smoothing function is deactivated

Refer to "Calibrating the VNA" on page 147.

Reference "[1]" specifies that the MDI Return Loss shall meet or exceed the following equation for all frequencies ranging from 0.3 MHz to 40 MHz (with 50 Ω reference impedance) at all times when PHY is transmitting data or control symbols.

Table 2-3Frequency and Return Loss

Frequency	Return Loss (dB)
0.3 - 6 MHz	25
6 - 40 MHz	25 - 20*log(f/6)

Viewing the Test Report

After running any or all of the Compliance tests, the **Results** tab will show the passed tests and details about the individual tests. For test result details, select any one of the tests from the top pane with the test details shown as follows. In Figure 2-8, selected is the Transmitter Power Spectral Density test, and the test results, with waveform, are shown as follows.

File View Tools Help					
Set Up Select Tests Configure Con	nect Run Aut	omate Re	esults HTML Report	-	
Test Name	Actual Value	Margin %	Pass Limits	# Trials	
🚽 Transmitter +Vout Droop	280 m%	99.1	VALUE < 30.00 %	1	
Transmitter -Vout Droop	390 m%	98.7	VALUE < 30.00 %	1	
Transmitter Output Voltage	970 mV	42.5	800 mV <= VALUE <= 1.200 V	1	
Transmitter Timing Jitter	60.728 ps	98.8	VALUE < 5.000000 ns	1	
Transmitter Power Spectral Densit			Overall = Pass	1	
MDI Return Loss	-24.84 dB	-248.400	VALUE > 0.00 dB	1	
Parameter	Value	Power	Spectral Density	<u>^</u>	
Power Spectral Density (10Base-T1S)	1.241 dBm/Hz	(n -60	Power Spectral Density		
Additional Info					
Additional Info Power Spectral Density (See image) Measurement Device Oscilloscope					
Measurement Device	Measurement Device Oscilloscope				
		to dg -110			
		-120 d	t V	-	
		-130	0 0.5 1 1.5 2 2.5 3	3.5 4 ¥	
Messages				•	
Summaries (click for details)		Details			
2020-05-18 10:14:10:447 AM Ready	0 2020-05-18 10:14:10:447 AM Ready				
2020-05-18 10:14:44:437 AM Open	ng project		<pre>\utomotiveEthernetTest\10BaseT eT1s.proi</pre>	1s	
□ 2020-05-18 10:14:46:322 AM Project opened					
	<u> </u>			×	
1 Test					

Figure 2-8 Typical Results tab

The following Figure 2-9 shows a portion of a typical **HTML Report** with waveforms and more test data below this segment.

KEYSIGHT TECHNOLOGIES

Test Report

Summary of Results

Test Statist	ICS
Failed	1
Passed	5
Total	6

Margin ThresholdsWarning< 5 %</td>Critical< 0 %</td>

Pass	# Failed	# Trials	Test Name	Actual Value	Margin	Pass Limits
1	0	1	Transmitter +Vout Droop	280 m%	99.1 %	VALUE < 30.00 %
 Image: A second s	0	1	Transmitter -Vout Droop	390 m%	98.7 %	VALUE < 30.00 %
1	0	1	Transmitter Output Voltage	970 mV	42.5 %	800 mV <= VALUE <= 1.200 V
1	0	1	Transmitter Timing Jitter	60.728 ps	98.8 %	VALUE < 5.000000 ns
1	0	1	Transmitter Power Spectral Density	1.241 dBm/Hz	12.4 %	Overall = Pass
×	1	1	MDI Return Loss	-24.84 dB	-248.4%	VALUE > 0.00 dB

Report Detail

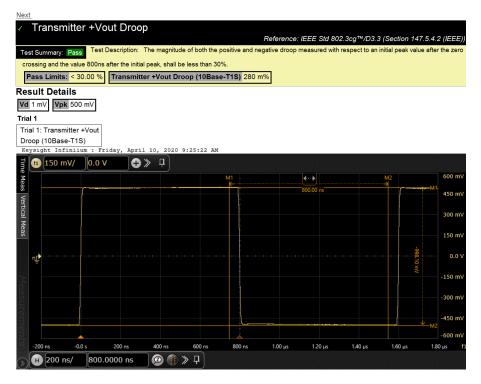


Figure 2-9 Top portion of a typical HTML report

2 10BASE-T1S Tests and Test Report

THIS PAGE HAS BEEN INTENTIONALLY LEFT BLANK.

Keysight AE6910T/AE6920T Automotive Ethernet Compliance Solution User Guide and Methods of Implementation

3

100BASE-T1 Tests and Test Report

Test Mode 1. Output Droop Tests / 52 Test Mode 2. MASTER Clock Frequency and Jitter Tests / 54 Test Mode 3. SLAVE Transmit Clock Frequency and Jitter Tests / 56 Test Mode 4. Transmitter Distortion Test / 58 MDI Return Loss Test / 65 MDI Mode Conversion Loss Test / 67 Test Mode 5. Transmitter Power Spectral Density (PSD) and Transmitter Peak Differential Output Tests / 69 Viewing the Test Report / 71

Test Mode 1. Output Droop Tests

Test Setup

You can run this test using either **Two Channels** or a **One Channel** from the transmitter (MDI). Refer to "General Test Setup for 100BASE-T1 and ECU" on page 18 for connection details.

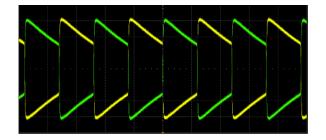
NOTE Use the software supplied with your transmitter PHY to control the Device Under Test.

Specification References

[1] 100BASE-T1, IEEE Std 802.3bwTM – 2015, Section 96.5.4.1

Transmitter Output Droop Positive Test Information

This test measures the positive output droop of the transmitter.


Reference "[1]" specifies the positive output droop of a compliant PHY. The positive droop measured with the initial peak value after the zero-crossing and the value 500 ns after the initial peak, shall be less than 45%.

The application triggers the Test Mode 1 signal on the rising edge and determines the time the positive peak occurred and the voltage at that specific instance. This application then measures the voltage 500 ns after the peak; with the Droop calculated as follows:

Droop = 100 × (Vd/Vpk)%

Where:

- Vd is the magnitude of the droop.
- **Vpk** is the initial peak after the zero-crossing.

Transmitter Output Droop Negative Test Information

This test measures the negative output droop of the transmitter.

Reference "[1]" specifies the negative output droop of a compliant PHY. The negative droop measured with the initial peak value after the zero-crossing and the value 500 ns after the initial peak, shall be less than 45%.

The application triggers the Test Mode 1 signal on the falling edge and determines the time the negative peak occurred and the voltage at that specific instance. This application then measures the voltage 500 ns after the peak; with the Droop calculated as follows:

Droop = 100 × (Vd/Vpk)%

Where:

- Vd is the magnitude of the droop.
- Vpk is the initial peak after the zero-crossing.

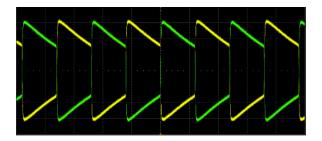


Figure 3-2 Typical Negative Droop Test Waveform (using a pair of SMA cables)

Test Mode 2. MASTER Clock Frequency and Jitter Tests

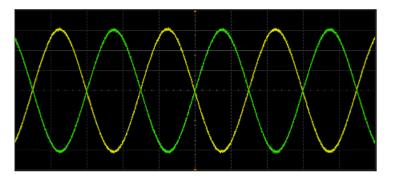
Test Setup

NOTE

You can run this test using either **Two Channels** or a **One Channel** from the transmitter (MDI). Refer to "General Test Setup for 100BASE-T1 and ECU" on page 18 for connection details.

Use the software supplied with your transmitter PHY to control the Device Under Test.

Specification References


- [1] 100BASE-T1, IEEE Std 802.3bwTM 2015, Section 96.5.4.5.
- [2] 100BASE-T1, IEEE Std 802.3bwTM 2015, Section 96.5.2.
- [3] 100BASE-T1, IEEE Std 802.3bw[™] − 2015 Section 96.5.4.3.

Transmit Clock Frequency (MASTER) Test Information

This test measures the frequency of the transmitter clock when the PHY is operating in MASTER mode.

Reference "[1]" specifies the symbol transmission rate of a compliant PHY. The symbol transmission rate of the MASTER PHY shall be within the range if 66 2/3 MHz ±100 ppm.

Reference "[2]" specifies that Test Mode 2 shall transmit the data symbol sequence {+1,- 1} repeatedly on the channel. The transmitter shall time the transmitted symbols from a symbol rate clock in the MASTER timing mode. The measured data rate of the Test Mode 2 signal is thus equal to the MASTER Transmit Clock Frequency of the PHY.

MASTER TxOut Jitter Test Information

Reference "[3]" specifies that when in Test Mode 2, the RMS (Root Mean Square) value of the MDI output jitter, JTXOUT, relative to an unjittered reference shall be less than 50 ps.

This test measures the data time interval error of the Test Mode 2 signal at the MDI. The ideal reference data rate is selected automatically by the oscilloscope and compared to the original signal to determine the data time interval error.

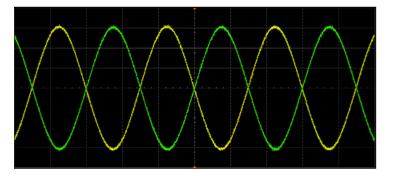


Figure 3-4 Typical MASTER TX Out Test Waveform (using a pair of SMA cables)

Test Mode 3. SLAVE Transmit Clock Frequency and Jitter Tests

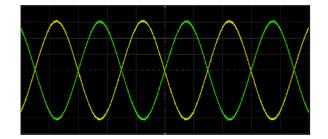
Test Setup

You can run this test using either **Two Channels** or a **One Channel** from the transmitter (MDI). Alternatively, you can also run this test using the TX_TCLK. Refer to "General Test Setup for 100BASE-T1 and ECU" on page 18 for connection details.

NOTE Use the software supplied with your transmitter PHY to control the Device Under Test.

Specification References

- [1] 100BASE-T1, IEEE Std 802.3bwTM 2015, Section 96.5.4.5.
- [2] 100BASE-T1, IEEE Std 802.3bwTM 2015, Section 96.5.2.
- [3] 100BASE-T1, IEEE Std 802.3bwTM 2015, Section 96.5.4.3.


Transmit Clock Frequency (SLAVE) Test Information

Reference "[1]" specifies the symbol transmission rate of a compliant PHY. The symbol transmission rate of the MASTER PHY shall be within the range if 66 2/3 MHz ± 100 ppm.

The specification does not specify the conformance limit for a PHY that is operating in SLAVE mode, but the SLAVE is supposed to have a symbol clock rate that is equal to the MASTER PHY.

Reference "[2]" specifies that Test Mode 3 shall transmit the data symbol sequence {+1,-1} repeatedly on the channel. The transmitter shall time the transmitted symbols from a symbol rate clock in the SLAVE timing mode.

Alternatively, an external TX_TCLK could be used to measure the frequency.

Figure 3-5 Typical TX Test Waveform (using a pair of SMA cables)

Slave TX_TCLK Jitter Test Information

Reference "[3]" specifies that the RMS value of the SLAVE TX_TCLK jitter relative to an unjittered reference shall be less than 0.01 UI (Unit Interval) after the receiver is properly receiving the data. This test measures the data time interval error at the MDI. The ideal reference data rate is selected automatically by the oscilloscope and compared to the original signal to determine the data time interval error.

Alternatively, an external TX_TCLK could be used to measure the jitter.

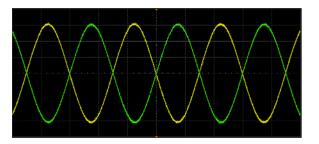
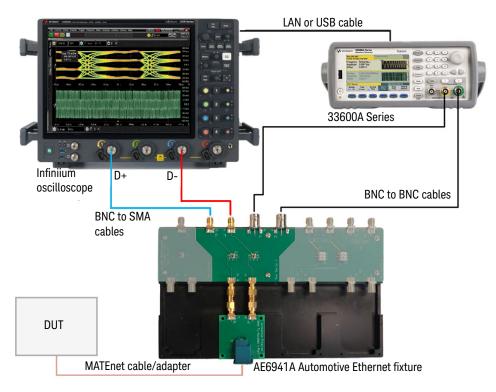


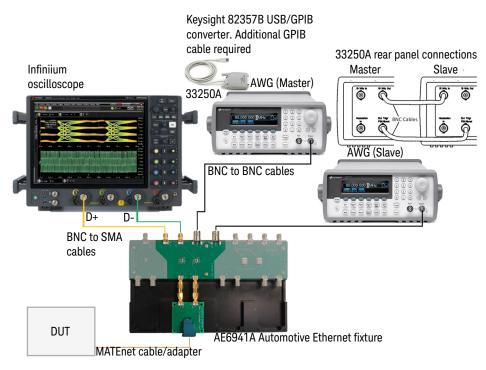
Figure 3-6 Typical TX-TCLK Test Waveform (using a pair of SMA cables)

Test Mode 4. Transmitter Distortion Test

Test Setup


You have the option to use either Section 2 of the AE6941A Automotive Ethernet Fixture or Sections 1 and 11 of the N5395C Ethernet Test Fixture in this test.

A disturbing signal source is required to test for compliance. There is an option to test without a disturbing signal source, but the test result is not applicable for compliance. The test accepts only a differential signal.


When using a supported function generator, there is an automatic calibration process to calibrate the function generators. If you use an unsupported model, you will have to calibrate the function generators manually. Refer to the individual user manuals to determine calibration steps as well as the respective standard specification for calibration settings.

Supported Function Generators	Number Required	Notes	Connection diagram with AE6941A	Connection diagram with N5395C
Keysight 33250A	2	Keysight 82357B USB/GPIB interface and one additional GPIB cable required.	Figure 3-8	Figure 3-11
Keysight 33622A	1	LAN/ USB Cable required.	Figure 3-7	Figure 3-10
Keysight 81150A/81160A	1	LAN/ USB Cable required.	Figure 3-9	Figure 3-12

Table 3-1 List of supported function generators

Figure 3-7 Connection for Transmitter Distortion Test Using Keysight 33622A Function Generator with AE6941A

Figure 3-8 Transmitter Distortion Test Connection Using two Keysight 33250A Function Generators with AE6941A

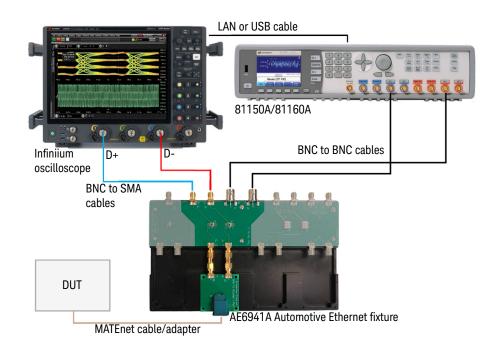


Figure 3-9Connection for Transmitter Distortion Test Using Keysight
81150A/81160A Function Generator with AE6941A

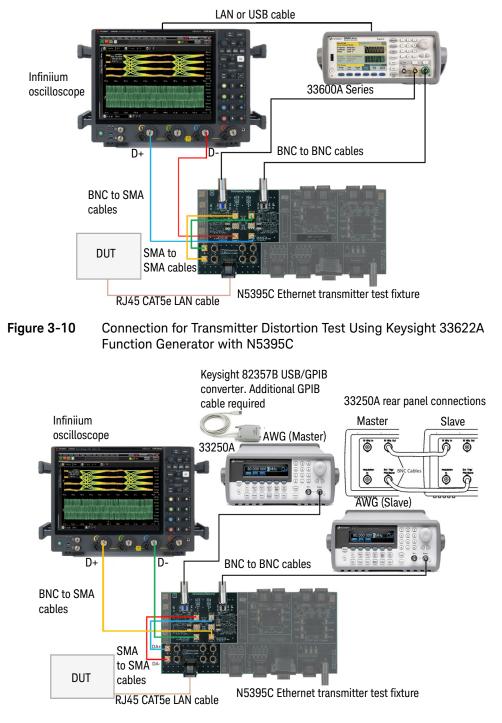


Figure 3-11 Transmitter Distortion Test Connection Using two Keysight 33250A Function Generators with N5395C

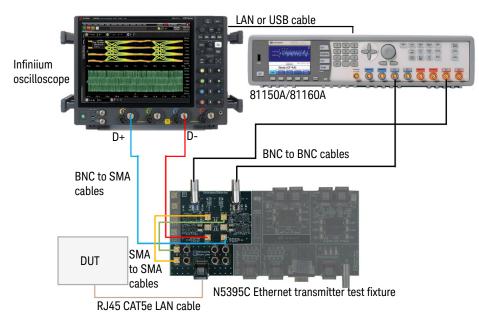


Figure 3-12Connection for Transmitter Distortion Test Using Keysight
81150A/81160A Function Generator with N5395C

Using the Optional AE6950A Frequency Divider Board

If you want to use the optional AE6950A Frequency Divider Board to provide a stable 10 MHz reference clock, refer to "Using the AE6950A Frequency Divider Board" on page 165 for detailed information.

Specification References

[1] 100BASE-T1, IEEE Std 802.3bwTM – 2015, Section 96.5.4.2.

Transmitter Distortion Tests Information

When operating in Test Mode 4 and capturing the waveform using the recommended fixture, the peak distortion values, measured at a minimum of 10 equally-spaced phases of a single symbol period, shall be less than 15 mV.

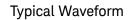
If using the Frequency Divider, connect the 10 MHz output(s) of the divider to the 10 MHz Ref In Input of the oscilloscope and function generator for clock synchronization.

Reference "[1]" specifies that the peak distortion is determined by sampling the differential signal output with the symbol rate clock at an arbitrary phase and processing a block of any 2047 consecutive samples with MATLAB code in reference "[1]".

Apply a software high pass filter to the sampled signal before post-processing.

Alternatively, you can also run this test without the disturbing signal, but you cannot use the result to determine compliance.

Transmitter Distortion Enhance Clock Recovery Algorithm


Keysight employs an enhanced clock recovery algorithm when the TX_TCLK is not available. The algorithm conditions the signal to the nominal bitrate. It is enabled by default when the **Use 10MHz Ref Clock** checkbox is disabled.

When the **Use 10MHz Ref Clock** checkbox is enabled, the AE6950A Frequency Divider board, and access to TX_TCLK, is required for synchronization.

NOTE

NOTE

You can only run this test using a differential output (Two Channels option) from the transmitter (MDI). Refer to "General Test Setup for 100BASE-T1 and ECU" on page 18 for connection details. Do not use a differential probe for this test.

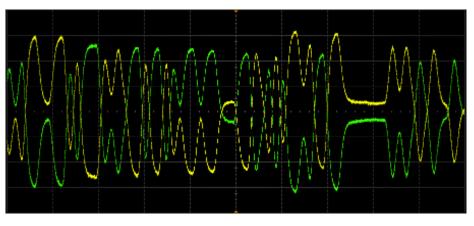
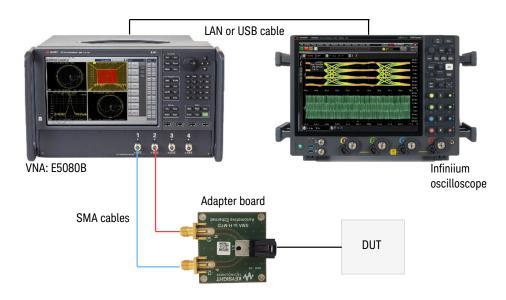



Figure 3-13 Typical Distortion Test Waveform (using a pair of SMA cables)

MDI Return Loss Test

Test Setup

Run the Management Data Input (MDI) Return Loss test with the E5080B Vector Network Analyzer connected externally to the oscilloscope.

Specification Reference

[1] 100BASE-T1, IEEE Std 802.3bwTM – 2015, Section 96.8.2.1.

MDI Return Loss Test Information

This test can run with an external vector network analyzer. However, you can also use a VNA exported data file in the Touchstone or CITI format in place of the external vector network analyzer.

NOTE The DUT must be set to SLAVE Mode of operation and not transmitting any test symbols.

NOTE

- Calibrate the VNA before running the tests. Set the VNA as follows:
- Measurement: Return Loss S_{dd11}
- Start Frequency: 1 MHz
- Stop Frequency: 66 MHz
- Sweep Type: Logarithmic
- Sweep Points: 1600
- Output Power: minimum -10 dBm
- Measurement Bandwidth: 100 Hz
- Logic Port Impedance Differential Mode: 100 Ω
- Logic Port Impedance Common Mode: 25 Ω
- Smoothing function is deactivated

Refer to "Calibrating the VNA" on page 147.

Reference "[1]" specifies that the MDI return loss shall meet or exceed the following equation for all frequencies ranging from 1 MHz to 66 MHz (with 100 Ω reference impedance) at all times when the PHY is transmitting data or control symbols.

Table 3-2Frequency and Return Loss

Frequency	Return Loss (dB)
1 - 30 MHz	20
30 - 66 MHz	20 - 20*log(f/30)

MDI Mode Conversion Loss Test

Test Setup

Run the Management Data Input (MDI) Mode Conversion Loss test with the E5080B Vector Network Analyzer connected externally to the oscilloscope. Refer to Figure 3-14 for the connection diagram.

Specification Reference

[1] 100BASE-T1, IEEE Std 802.3bwTM – 2015, Section 96.8.2.2.

MDI Mode Conversion Loss Test Information

This test can run with an external vector network analyzer. However, you can also use a VNA exported data file in the Touchstone or CITI format in place of the external vector network analyzer.

NOTE The DUT must be set to SLAVE Mode of operation and not transmitting any test symbols.

NOTE

Calibrate the VNA before running the tests. Set the VNA as follows:

- Measurement: Return Loss S_{dc11}
- Start Frequency: 1 MHz
- Stop Frequency: 200 MHz
- Sweep Type: Logarithmic
- Sweep Points: 1600
- Output Power: minimum -10 dBm
- Measurement Bandwidth: 100 Hz
- Logic Port Impedance Differential Mode: 100 Ω
- Logic Port Impedance Common Mode: 25 Ω
- Smoothing function is deactivated

Refer to "Calibrating the VNA" on page 147.

Reference "[1]" specifies that the MDI mode conversion loss shall meet or exceed the following equation for all frequencies ranging from 1 MHz to 200 MHz (with 100 Ω reference impedance) at all times when the PHY is transmitting data or control symbols.

NOTE

MDI mode conversion loss test is very sensitive to the test configuration. It is very important that you maintain the same cable layout used for the VNA calibration to make the measurement. No bending or twisting of the cable from the calibration to measurement. Also, use a quality SMA or 2.92mm coaxial cable for testing.

Frequency	Mode Conversion Loss (dB)
@1 MHz	-60
@22 MHz	-60
@100 MHz	-47
@200 MHz	-37

 Table 3-3
 100base-T1 Mode Conversion Loss Limit

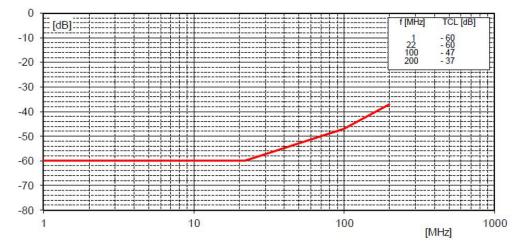


Figure 3-15 100base-T1 Mode Conversion Loss Limit

Test Mode 5. Transmitter Power Spectral Density (PSD) and Transmitter Peak Differential Output Tests

Test Setup

You can run the Power Spectral Density (PSD) Test using either a spectrum analyzer or an oscilloscope. When using the Oscilloscope, refer to "General Test Setup for 100BASE-T1 and ECU" on page 18 for connection details.

If you use the N9010B Signal Analyzer, convert the differential output to a single-ended output using a balun. Use the balun on either the AE6941A Automotive Ethernet Fixture, as shown in Figure 2-5 on page 43 or the N5395C Ethernet Test Fixture, as shown in Figure 2-6 on page 44

NOTE Use the software supplied with your transmitter PHY to control the Device Under Test.

Specification References

- [1] 100BASE-T1, IEEE Std 802.3bwTM 2015, Section 96.5.4.4.
- [2] 100BASE-T1, IEEE Std 802.3bw[™] − 2015, Section 96.5.6.

PSD Test Information

Reference "[1]" specifies that in Test Mode 5, the power spectral density (PSD) of the transmitter shall be between the upper and lower bounds specified in the following table.

Table 3-4PSD Upper and Lower Bounds

Frequency	PSD Upper Bound (dBm/Hz) ¹	PSD Lower Bound (dBm/Hz) ¹
@1 MHz	-63.3	-70.9
@20 MHz	-64.8	-75.8
@40 MHz	-68.5	-89.2
57 MHz-200 MHz	-76.5	-

1 Settings: RBW=10 kHz, VBW=30 kHz, sweep time >1 min, RMS detector.

The upper and lower limits are piece-wise linear masks connecting points given in Table 3-4 on page 70. Provided is a lower PSD mask to ensure tolerances.

Typical Waveform

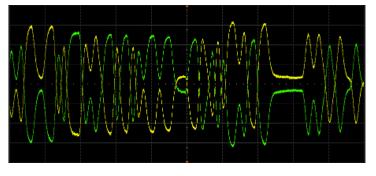


Figure 3-16 Typical Spectral Density Loss Test Waveform

Transmitter Peak Differential Output

Reference "[2]" specifies that in Test Mode 5, when measured with 100 Ω termination, the transmit differential signal at MDI shall be less than 2.2 Volt peak-to-peak.

Viewing the Test Report

After running any or all of the Compliance tests, the **Results** tab will show the passed tests and details about the individual tests. For test result details, select any one of the tests from the top pane with the test details shown as follows. In Figure 3-17, selected is the Transmitter +Vout Droop test, and the test results, with waveform, are shown as follows.

File View Tools Help Set Up Select Tests Configure Connect	Run	Automate Res	sults HTI	ML Report	-
Test Name		Actual Value	Margin %	Pass Limits	# Trials
🖌 Transmitter +Vout Droop		6.00 %	86.7	VALUE < 45.00 %	1
Transmitter -Vout Droop		6.05 %	86.6	VALUE < 45.00 %	1
Transmit Clock Frequency (Master)		66.670660 MHz	20.0	66.660000 MHz <= VALUE <= 66.673333 MHz	1
MDI Output Jitter, JTXOUT (Master)		17.968 ps	64.1	VALUE < 50.000 ps	1
Transmitter Distortion(w/o Disturbing S	ignal)	5.523 mV	63.2	VALUE <= 15.000 mV	1
Transmitter Power Spectral Density		275 mdBm	275.0	Overall = Pass	2
🗷 🥑 Transmitter Peak Differential Output		1.701 V	22.7	VALUE < 2.200 V	1
🕜 🚺 Transmitter Distortion(w/ Disturbing Sig	gnal)	6.847 mV	54.4	VALUE <= 15.000 mV	3 🗸
Additional Info Vd	6.00 9 50 m\ 837 m	/	re Music Ventical Messe	349 mW 1 2 V	95 mm - 95 mm
Messages			Dete		
Messages Summaries (click for details) 2019-05-08 02:29:38:142 PM Opening pr 2019-05-08 02:29:39:374 PM Project ope 2019-05-08 02:29:46:629 PM Refreshing 2019-05-08 02:29:46:629 PM Refreshing 2019-05-08 02:29:46:593 PM HTML Repo	ened HTML	Contraction and Contraction of Contr	Deta The tab.	HTML report now reflects the results shown on t	the Results

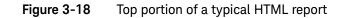
Figure 3-17 Typical Results tab

Figure 3-18 shows a portion of a typical **HTML Report**. Below this segment are waveforms and more test data.

Test Report

Pass

Test Configuration Details		
Application		
Name	AE6910T/AE6920T Automotive Ethernet Test Application	
Version	1.30.0000.0	
Device Description		
Technology Spec	IEEE	
StandardType	100M	
Spectral Measurement Device	Oscilloscope	
Bandpass Filter	No	
DisturbingSignalSource	81150A/60A	
VNA Calibration Type	Manual Calibration	
SA Compensation Used	No	
Offline Mode Used	No	
	Test Session Details	
Infiniium SW Version	06.60.00403	
Infiniium Model Number	DSAV164A	
Infiniium Serial Number	MY58120112	
Debug Mode Used	No	
Compliance Limits	IEEE 802.3bw-2015 (official)	
Last Test Date	2021-03-24 09:49:34 UTC +08:00	


Summary of Results

Pass	# Failed	# Trials	Test Name (click to jump)	Actual Value	Margin	Pass Limits
0	0	1	Transmitter +Vout Droop	6.34 %	85.9 %	VALUE < 45.00 %
I	0	1	Transmitter -Vout Droop	6.43 %	85.7 %	VALUE < 45.00 %
S	0	1	Transmit Clock Frequency (Master)	66.668159 MHz	38.8 %	66.660000 MHz <= VALUE <= 66.673333 MHz
0	0	1	MDI Output Jitter, JTXOUT (Master)	25.380 ps	49.2 %	VALUE < 50.000 ps
	0	1	TX_TCLK Frequency (Slave)	66.668024 MHz	100.0 %	Information Only
O	0	1	Slave TX_TCLK jitter (w/o TX_TCLK)	1.686 mUI	83.1 %	VALUE < 10.000 mUI
I	0	1	Transmitter Distortion(w/o Disturbing Signal)	4.287 mV	71.4 %	VALUE <= 15.000 mV
S	0	1	Transmitter Power Spectral Density	2.453 dBm/Hz	24.5 %	Overall = Pass
S	0	1	Transmitter Peak Differential Output	1.698 V	22.8 %	VALUE < 2.200 V
0	0	1	Transmitter Distortion(w/ Disturbing Signal)	6.420 mV	57.2 %	VALUE <= 15.000 mV

Report Detail

Transmitter +Vo	ut Droop			IEEE Std 802.3bw™-2015 (Section 96.	5.4.1
5%. ctual ∀alue Measurement I	Name: Transmitter +∨out		eak value after the zero crossing	and the value 500ns after the initial peak, shall b	e less
ass Limits: VALUE < 45.00					
tual Value Margin	Vd Vpk 53 mV 838 mV				
Insmitter +Vout Droop (100					
eysight Infiniium : W	·	2021 9:07:06 bM			
1 255 mV/ 0.0 V	⊕ ≫ □				
	M1 k		M2	1.02 V	
	- minun	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	m	766 mV	
				511 mV	
				255 mV	
nīt				0.0 V	
				-255 mV	
				-511 mV	
······	w		~	-766 mV	
				-1.02 V	
-200 ns -100 ns	-0.0 s 100 ns	200 ns 300 ns 400	ns 500 ns 600 ns	700 ns 800 ns 🚯	
H 100 ns/ 300.00	000 ns 🔞 🌗 🔉 🛛				

Keysight AE6910T/AE6920T Automotive Ethernet Compliance Solution User Guide and Methods of Implementation

1000BASE-T1 Tests and Test Report

Test Mode 1. TX_TCLK125 Frequency and Transmit Jitter Tests / 74 Test Mode 2. Transmit Clock Frequency (MASTER) and MDI Output Jitter (MASTER) Tests / 76 Test Mode 4. Transmitter Distortion Test / 78 MDI Return Loss Test / 81 MDI Mode Conversion Loss Test / 83 Test Mode 5. Transmitter Power Spectral Density, Transmitter Power Level, and Transmitter Peak Differential Output Tests / 85 Test Mode 6. Output Droop Tests / 88 Viewing the Test Report / 90

4

Test Mode 1. TX_TCLK125 Frequency and Transmit Jitter Tests

Test Setup

You can run this test using either **Two Channels** or a **One Channel** from the transmitter (MDI). Refer to "General Test Setup for 1000BASE-T1, 2.5GBASE-T1, 5GBASE-T1, and 10GBASE-T1" on page 20 for connection details.

Use the software supplied with your transmitter PHY to control the Device Under Test.

Specification References

- [1] 1000BASE-T1 IEEE Std 802.3bpTM 2016, Section 97.5.3.6.
- [2] 1000BASE-T1 IEEE Std 802.3bpTM 2016, Section 97.5.2.
- [3] 1000BASE-T1 IEEE Std 802.3bpTM 2016, Section 97.5.3.3.

TX_TCLK125 Frequency Test

This test measures the frequency of the TX_TCLK125 clock.

Reference "[1]" specifies the symbol transmission rate of a compliant PHY. The symbol transmission rate of the MASTER PHY shall be within the range of 750 MHz \pm 100 ppm.

Reference "[2]" specifies that Test Mode 1 shall provide access to a frequency reduced version of the transmit symbol clock or TX_TCLK125. This 125 MHz test clock is a one-sixth frequency divided version of the TX_TCLK that times the transmitted symbols.

The measured frequency of TX_TCLK125 should fall within 125 MHz ±100 ppm.

Transmit Clock Jitter (MASTER/SLAVE)

Test Mode 1 enables testing of timing jitter on MASTER and SLAVE transmitters. Connect MASTER and SLAVE transmitters over a link segment. The transmitter timing jitter is measured by capturing the TX_TCLK125 waveforms in both MASTER and SLAVE configurations.

Reference "[3]" specifies that when in Test Mode 1, and the link is up with the two PHYs having an established link, the RMS (Root Mean Square) value of the MASTER TX_TCLK125 jitter relative to an unjittered reference shall be less than 5 ps. The peak-to-peak value of the MASTER TX_TCLK125 jitter relative to an unjittered reference shall be less than 50 ps.

Reference "[3]" specifies that when in Test Mode 1, and the link is up with the two PHYs having an established link, the RMS (Root Mean Square) value of the SLAVE TX_TCLK125 jitter relative to an unjittered reference shall be less than 10 ps. The peak-to-peak value of the SLAVE TX_TCLK125 jitter relative to an unjittered reference shall be less than 100 ps.

This test measures the clock time interval error of the TX_TCLK125 signal at the MDI. The ideal reference clock is selected automatically by the oscilloscope and compared to the original signal to determine the clock time interval error.

Typical Waveform

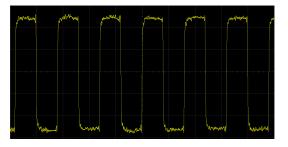


Figure 4-1 Typical TX_TCLK Test Waveform (using a pair of SMA cables)

Test Mode 2. Transmit Clock Frequency (MASTER) and MDI Output Jitter (MASTER) Tests

Test Setup

NOTE

You can run this test using either **Two Channels** or a **One Channel** from the transmitter (MDI). Refer to "General Test Setup for 1000BASE-T1, 2.5GBASE-T1, 5GBASE-T1, and 10GBASE-T1" on page 20 for connection details.

Use the software supplied with your transmitter PHY to control the Device Under Test.

Specification References

- [1] 1000BASE-T1 IEEE Std 802.3bpTM 2016, Section 97.5.3.6.
- [2] 1000BASE-T1 IEEE Std 802.3bpTM 2016, Section 97.5.2.
- [3] 1000BASE-T1 IEEE Std 802.3bpTM 2016, Section 97.5.3.3.

Transmit Clock Frequency

Reference "[1]" specifies the symbol transmission rate of a compliant PHY. The symbol transmission rate of the MASTER PHY shall be within the range of 750 MHz ±100 ppm.

Reference "[2]" specifies that in Test Mode 2, the PHY shall transmit a continuous pattern of three $\{+1\}$ symbols followed by three $\{-1\}$ symbols, with the transmitted symbols timed from its local clock source of 750 MHz. The transmitter output is a 125 MHz signal. Hence the accuracy of the transmit clock frequency is also 125 MHz ±100 ppm.

MDI Output Jitter (MASTER)

Reference "[3]" specifies that when in Test Mode 2, the RMS (Root Mean Square) value of the MDI output jitter, relative to an unjittered reference, shall be less than 5 ps.

Reference "[3]" specifies that when in Test Mode 2, the peak-to-peak value of the MDI output jitter, relative to an unjittered reference, shall be less than 50 ps.

This test measures the data time interval error of the Test Mode 2 signal at the MDI. The ideal reference data rate is selected automatically by the oscilloscope and compared to the original signal to determine the data time interval error.

Typical Waveform

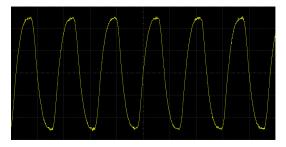


Figure 4-2 Typical Test Mode 2 Waveform (using a pair of SMA cables)

Test Mode 4. Transmitter Distortion Test

Test Setup

You have the option to use either Section 2 of the AE6941A Automotive Ethernet Fixture or Sections 1 and 11 of the N5395C Ethernet Test Fixture in this test.

A disturbing signal source is required to test for compliance. There is an option to test without a disturbing signal source, but the test result is not applicable for compliance. The test accepts only a differential signal.

When using a supported function generator, there is an automatic calibration process to calibrate the function generators. If you use an unsupported model, you will have to calibrate the function generators manually. Refer to the individual user manuals to determine calibration steps as well as the respective standard specification for calibration settings.

Table 4-1	List of supported	function generators
-----------	-------------------	---------------------

Supported Function Generators	Number Required	Notes	Connection diagram with AE6941A	Connection diagram with N5395C
Keysight 33622A	1	LAN/ USB Cable required.	Figure 3-7	Figure 3-10
Keysight 81150A/ 81160A	1	LAN/ USB Cable required.	Figure 3-9	Figure 3-12

Using the Optional AE6950A Frequency Divider Board

If you want to use the optional AE6950A Frequency Divider Board to provide a stable 10 MHz reference clock, refer to Appendix "Using the AE6950A Frequency Divider Board" on page 165 for detailed information.

Specification References

NOTE

[1] 1000BASE-T1 IEEE Std 802.3bpTM - 2016, Section 97.5.3.2.

Transmitter Distortion Tests Information

When operating in Test Mode 4 and capturing the waveform using the recommended fixture, the peak distortion values, measured at a minimum of 10 equally-spaced phases of a single symbol period, shall be less than 15 mV.

If using the Frequency Divider, connect the 10 MHz output(s) of the divider to the 10 MHz Ref In Input of the oscilloscope and function generator for clock synchronization.

Reference "[1]" specifies that the peak distortion is determined by sampling the differential signal output with the symbol rate clock at an arbitrary phase and processing a block of any 2047 consecutive samples with MATLAB code in Reference "[1]".

Alternatively, you can run this test without the disturbing signal, but you cannot use the result to determine compliance.

Transmitter Distortion Enhance Clock Recovery Algorithm

Keysight employs an enhanced clock recovery algorithm when the TX_TCLK is not available. The algorithm conditions the signal to the nominal bitrate. It is enabled by default when the **Use 10MHz Ref Clock** checkbox is disabled.

When the **Use 10MHz Ref Clock** checkbox is enabled, the AE6950A Frequency Divider board and access to TX_TCLK are required for synchronization.

NOTE You can only run this test using a differential output (two channels option) from the transmitter (MDI). Refer to "General Test Setup for 1000BASE-T1, 2.5GBASE-T1, 5GBASE-T1, and 10GBASE-T1" on page 20 for connection details. You cannot use a differential probe for this test.

Typical Waveform

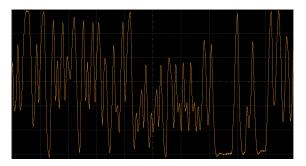


Figure 4-3 Typical Test Mode 4 Waveform (using a pair of SMA cables)

MDI Return Loss Test

Test Setup

Run this test with the E5080B Vector Network Analyzer. However, you can use a VNA exported data file in the Touchstone or CITI format in place of the external vector network analyzer. Refer to Figure 3-14 for the connection diagram.

Specification Reference

[1] 1000BASE-T1 IEEE Std 802.3bpTM - 2016, Section 97.7.2.1.

MDI Return Loss Test Information

Reference "[1]" specifies that the differential impedance at the MDI for each transmit/receive channel shall be such that any attenuated reflection is relative to the incident signal as per the following equation. This reflection must be due to differential signals incident upon the MDI with a test port having a differential impedance of 100Ω .

$$ReturnLoss(f) \ge \begin{vmatrix} 18 - 18(\log_{10})\frac{20}{f} & 2 \le f < 20\\ 18 & 20 \le f < 100\\ 18 - 16.7(\log_{10})\frac{f}{100} & 100 \le f \le 600 \end{vmatrix}$$

Where f is the frequency in MHz.

In other words, the return loss shall meet or exceed the equation shown for all frequencies ranging from 2 MHz to 600 MHz (with 100 Ω differential impedance) at all times when the PHY is transmitting data or control symbols.

NOTE

The DUT must be set to SLAVE Mode of operation and not transmit any test symbols.

NOTE

Calibrate the VNA before running the tests. Set the VNA as follows:

- Measurement: Return Loss S_{dd11}
- Start Frequency: 2 MHz
- Stop Frequency: 600 MHz
- Sweep Type: Logarithmic
- Sweep Points: 1600
- Output Power: minimum -10 dBm
- Measurement Bandwidth: 100 Hz
- Logic Port Impedance Differential Mode: 100 Ω
- Logic Port Impedance Common Mode: 25 Ω
- Smoothing function is deactivated

Refer to "Calibrating the VNA" on page 147.

MDI Mode Conversion Loss Test

Test Setup

Run the Management Data Input (MDI) Mode Conversion Loss test with a vector network analyzer connected externally to the oscilloscope. Refer to Figure 3-14 for the connection diagram.

Specification Reference

- [1] 1000BASE-T1 IEEE Std 802.3bpTM 2016, Section 97.7.2.2.
- [2] Open Alliance TC9 MultiGBASE-T1 channel and components STP, v1.0.

NOTE

MDI mode conversion loss test is very sensitive to the test configuration. It is very important that you maintain the same cable layout used for the VNA calibration to make the measurement. No bending or twisting of the cable from the calibration to measurement. Also, use a quality SMA or 2.92mm coaxial cable for testing.

MDI Mode Conversion Loss Test Information

This test can run with an external vector network analyzer. However, a VNA exported data file in the Touchstone or CITI format can also be used in place of the external vector network analyzer.

The DUT must be set to SLAVE Mode of operation and not transmit any test symbols.

NOTE

NOTE

Calibrate the VNA before running the tests. Set the VNA as follows:

- Measurement: Mode Conversion S_{dc11}
- Start Frequency: 10 MHz
- Stop Frequency: 600 MHz
- Sweep Type: Logarithmic
- Sweep Points: 1600
- Output Power: minimum -10 dBm
- Measurement Bandwidth: 100 Hz
- Logic Port Impedance Differential Mode: 100 Ω
- Logic Port Impedance Common Mode: 25 Ω
- Smoothing function is deactivated

Refer to "Calibrating the VNA" on page 147.

Reference "[1]" and "[2]" specify that the MDI Mode Conversion Loss shall meet or exceed the following equation for all frequencies ranging from 10 MHz to 600 MHz at all times.

Table 5 [1]

Frequency	Mode Conversion Loss (dB)
10 – 80 MHz	55
80 – 600 MHz	77 – 11.51*log(<i>f</i>)

Table 6 [2]

Frequency	Mode Conversion Loss (dB)
10 – 50 MHz	56
50 – 600 MHz	81.2 – 14.83 $\log_{10}(f)$ where frequency, (f) is in MHz

Test Mode 5. Transmitter Power Spectral Density, Transmitter Power Level, and Transmitter Peak Differential Output Tests

Test Setup

You can run the Power Spectral Density (PSD) Test using either a spectrum analyzer or an oscilloscope. When using the oscilloscope, refer to "General Test Setup for 1000BASE-T1, 2.5GBASE-T1, 5GBASE-T1, and 10GBASE-T1" on page 20 for connection details.

If you use the N9010B Signal Analyzer, convert the differential output to a single-ended output using a balun. Use the balun on the AE6941A Automotive Ethernet Fixture, as shown in Figure 2-5 or the N5395C Ethernet Test Fixture, as shown in Figure 2-6.

You can run the Power Level Test using either the spectrum analyzer or an oscilloscope. For this particular test, irrespective of equipment used, convert the differential output to a single-ended output using a balun. Use the balun on the AE6941A Automotive Ethernet Fixture, as shown in Figure 2-5 or the N5395C Ethernet Test Fixture, as shown in Figure 2-6.

Use the software supplied with your transmitter PHY to control the Device Under Test.

NOTE

Keysight AE6910T/AE6920T Automotive Ethernet Compliance Solution User Guide and Methods of Implementation

Specification References

- [1] 1000BASE-T1 IEEE Std 802.3bpTM 2016, Section 97.5.3.4.
- [2] 1000BASE-T1 IEEE Std 802.3bpTM 2016, Section 97.5.3.5.

Transmitter Power Spectral Density (PSD)

Reference "[1]" specifies that in Test Mode 5, the power spectral density (PSD) of the transmitter shall be between the specified upper and lower masks of the following equations.

$$UpperPSD(f) = \begin{bmatrix} -80 & \frac{dBm}{Hz} & 0 < f \le 100 \\ -76 - \frac{f}{25} & \frac{dBm}{Hz} & 100 < f \le 400 \\ -85.6 - \frac{f}{62.5} & \frac{dBm}{Hz} & 400 < f \le 600 \end{bmatrix}$$
$$LowerPSD(f) = \begin{bmatrix} -86 & \frac{dBm}{Hz} & 40 < f \le 100 \\ -82 - \frac{f}{25} & \frac{dBm}{Hz} & 100 < f \le 400 \end{bmatrix}$$

Where f is the frequency in MHz.

Consider the resolution bandwidth of 100 kHz and sweep time of larger than 1 second in PSD measurements.

You can run this test using an external spectrum analyzer or the oscilloscope.

Transmitter Power Level

Reference "[1]" specifies that in Test Mode 5, the transmit power shall be less than 5 dBm.

Transmitter Peak Differential Output

Reference "[2]" specifies that in Test Mode 5, when measured with 100 Ω termination, the transmit differential signal at MDI shall be less than 1.30 Volt peak-to-peak.

Typical Waveform

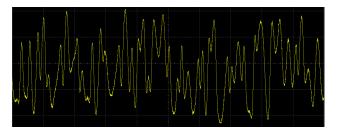


Figure 4-4 Typical Test Mode 5 Waveform (using a pair of SMA cables)

Test Mode 6. Output Droop Tests

Test Setup

NOTE

You can run this test using either **Two Channels** or a **One Channel** from the transmitter (MDI). Refer to "General Test Setup for 1000BASE-T1, 2.5GBASE-T1, 5GBASE-T1, and 10GBASE-T1" on page 20 for connection details.

Use the software supplied with your transmitter PHY to control the Device Under Test.

Specification References

[1] 1000BASE-T1 IEEE Std 802.3bpTM - 2016, Section 97.5.3.1.

Transmitter Output Droop Positive Test Information

This test measures the positive output droop of the transmitter.

Reference "[1]" specifies the positive output droop of a compliant PHY. The positive droop measured with an initial value at 4 ns after the zero-crossing and a final value of 16 ns after the zero-crossing, shall be less than 10%.

The application triggers the Test Mode 6 signal on the rising edge and determines the time the positive peak occurred at 4 ns after the zero-crossing. This application then measures the voltage 12 ns after the initial peak crossing; with the Droop calculated as follows:

Droop = 100 × (Vd/Vpk)%

Where:

- Vd is the magnitude of the droop.
- Vpk is the initial peak after the zero-crossing.

Typical Waveform

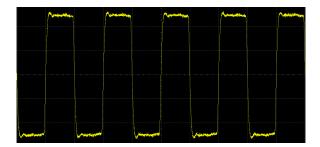


Figure 4-5 Typical Positive Droop Test Waveform (using a pair of SMA cables)

Transmitter Output Droop Negative Test Information

This test measures the negative output droop of the transmitter.

Reference "[1]" specifies the negative output droop of a compliant PHY. The negative droop measured with an initial value at 4 ns after the zero-crossing and a final value of 16 ns after the zero-crossing, shall be less than 10%.

The application triggers the Test Mode 6 signal on the falling edge and determines the time the negative peak occurred at 4 ns after the zero-crossing. This application then measures the voltage 12 ns after the initial peak crossing; with the Droop calculated as follows:

Droop = 100 × (Vd/Vpk)%

Where:

- Vd is the magnitude of the droop.
- Vpk is the initial peak after the zero-crossing.

Typical Waveform

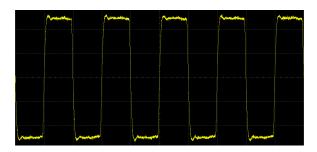


Figure 4-6 Typical Negative Droop Test Waveform (using a pair of SMA cables)

Viewing the Test Report

After running any or all of the Compliance tests, the **Results** tab will show the passed tests and details about the individual tests. For test result details, select any one of the tests from the top pane with the test details shown as follows. In Figure 4-7 selected is the Transmitter +Vout Droop test, and the test results, with waveform, are shown as follows.

_	Jp Select		conngui				utomate		_		L Repo	-								_	
_	Test Name						tual Valu			<u> </u>	Pass I									#	Tria
	Transmitte						35 mdBm			5.0	Overa									1	
	Transmitte			al Output		-	I5 mV		27.		VALU									1	
\checkmark	Transmitte	er +Vou	t Droop			-1	.41 %		11	4.1	VALU	E <	10.00	%						1	
	Transmitte	er -Vout	Droop			-1	.10 %		11	1.0	VALU	E <	10.00	%						1	
<u> /</u> •	Transmit (Clock Fr	equency (Master)		12	25.00130	0 MHz	44	.8	124.9	87	500 M	−lz <	= VAI	_UE <	= 12	5.012	500 M	Hz 1	
\checkmark	MDI Outpu	ut Jitter	. RMS (Ma	ster)		2.	888 ps		42.	.2	VALU	E <	5.000	ps						1	
\checkmark	MDI Outpu	ut Jitter	Peak-to-	Peak (Ma	ster)	26	5.953 ps		46	.1	VALU	E <	50.00	0 ps						1	
	Trancmitte	er Disto	rtion(w/o	Disturbin	g Sigi	nal) 8.	363 mV		44.	.2	VALU	E <	= 15.0)00 r	nV					2	
\mathbf{v}	mansmitte																				
	Transmitte		· · ·		Signa	al) 6.	869 mV		54.	.2	VALU	E <	= 15.0)00 r	nV					1	
	Transmitte		· · ·				869 mV		54							Base	-T1)			1	
Par	Transmitte	er Disto	rtion(w/ E	isturbing	Val	ue	869 mV	_	54	Trans	mitter	+V	Dut Dr	oop	(1000	Base	-T1)			1	
Par	Transmitte ameter nsmitter +	er Disto +Vout D	rtion(w/ E	isturbing	Val	ue	869 mV		54.	Trans	mitter	+V	Dut Dr	oop	(1000	Base-	-T1)			1	
Par Tra	Transmitte	er Disto +Vout D	rtion(w/ E	isturbing	Val 1) -1.4	ue 41 %	869 mV	_	54.	Trans	mitter	+V	Dut Dr	oop	(1000	Base	-T1)			1	
Par Tra) Vd	Transmitte ameter nsmitter + Additional	er Disto +Vout D	rtion(w/ E	isturbing	Val L) -1.4	ue 41 % mV	869 mV		54.	Trans	mitter	+V	Dut Dr	oop	(1000	Base-	-T1)			1	
Par Tra	Transmitte ameter nsmitter + Additional	er Disto +Vout D	rtion(w/ E	isturbing	Val L) -1.4	ue 41 %	869 mV		54.	Trans	mitter	+V	Dut Dr	oop	(1000	Base-	-T1)				

Figure 4-7 Typical Results Tab

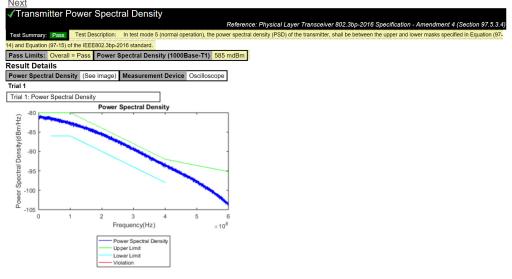
Figure 4-8 shows a portion of a typical **HTML Report**. Below this segment are waveforms and more test data.

KEYSIGHT

Test Report

Pass

Test Configuration Details					
	Application				
Name	AE6910T/AE6920T Automotive Ethernet Test Application				
Version	1.30.0000.0				
Device Description					
Technology Spec	IEEE				
StandardType	1000M				
Spectral Measurement Device	Oscilloscope				
Bandpass Filter	No				
DisturbingSignalSource	81150A/60A				
VNA Calibration Type	Manual Calibration				
SA Compensation Used	No				
Offline Mode Used	No				
	Test Session Details				
Infiniium SW Version	06.60.00403				
Infiniium Model Number	DSAV164A				
Infiniium Serial Number	MY58120112				
Debug Mode Used	No				
Compliance Limits	802.3bp 2016 Specification - Amendment 4 (official)				
Last Test Date	2019-04-10 09:48:05 UTC +08:00				


Summary of Results

Pass	# Failed	# Trials	Test Name	Worst Actual	Worst Margin	Pass Limits
1	0	1	Transmitter Power Spectral Density	585 mdBm	585.0 %	Overall = Pass
\checkmark	0	1	Transmitter Peak Differential Output	945 mV	27.3 %	VALUE < 1.300 V
\checkmark	0	1	Transmitter +Vout Droop	-1.41 %	114.1 %	VALUE < 10.00 %
\checkmark	0	1	Transmitter -Vout Droop	-1.10 %	111.0 %	VALUE < 10.00 %
\checkmark	0	1	Transmit Clock Frequency (Master)	125.001300 MHz	44.8 %	124.987500 MHz <= VALUE <= 125.012500 MHz
\checkmark	0	1	MDI Output Jitter, RMS (Master)	2.888 ps	42.2 %	VALUE < 5.000 ps
1	0	1	MDI Output Jitter, Peak-to-Peak (Master)	26.953 ps	46.1 %	VALUE < 50.000 ps
\checkmark	0	2	Transmitter Distortion(w/o Disturbing Signal)	8.363 mV	44.2 %	VALUE <= 15.000 mV
1	0	1	Transmitter Distortion(w/ Disturbing Signal)	6.869 mV	54.2 %	VALUE <= 15.000 mV

Report Detail

Top Portion of a Typical HTML Report

4 1000BASE-T1 Tests and Test Report

THIS PAGE HAS BEEN INTENTIONALLY LEFT BLANK.

Keysight AE6910T/AE6920T Automotive Ethernet Compliance Solution User Guide and Methods of Implementation

5

2.5GBASE-T1, 5GBASE-T1, and 10GBASE-T1 Tests and Test Report

Test Mode 1. Transmit Clock Frequency (MASTER) and Transmit Jitter Tests / 94 Test Mode 2. MDI Output Jitter (MASTER) Tests / 96 Test Mode 4. Transmitter Linearity Test / 97 Test Mode 5. Transmitter Power Spectral Density, Transmitter Power Level, and Transmitter Peak Differential Output Tests / 98 Test Mode 6. Output Droop Tests / 101 MDI Return Loss Test / 103 Viewing the Test Report / 105

Test Mode 1. Transmit Clock Frequency (MASTER) and Transmit Jitter Tests

Test Setup

You can run this test using either **Two Channels** or a **One Channel** from the transmitter (MDI). Refer to "General Test Setup for 1000BASE-T1, 2.5GBASE-T1, 5GBASE-T1, and 10GBASE-T1" on page 20 for connection details.

Use the software supplied with your transmitter PHY to control the Device Under Test.

Specification References

- [1] IEEE Std 802.3chTM 2020, Section 149.5.2.6.
- [2] IEEE Std 802.3chTM 2020, Section 149.5.1.
- [3] IEEE Std 802.3chTM 2020, Section 149.5.2.3.

Transmit Clock Frequency (MASTER) Test

This test measures the frequency of the TX_TCLK175 clock.

Reference "[1]" specifies the symbol transmission rate of a compliant PHY. The symbol transmission rate of the MASTER PHY shall be within the range of $5625 \times S$ MHz ± 50 ppm. Refer to Table 5-1 for the definition of S.

Reference "[2]" specifies that Test Mode 1 shall provide access to a frequency reduced version of the transmit symbol clock or TX_TCLK175. This 175.78125 MHz test clock is a frequency reduced version of the TX_TCLK that times the transmitted symbols.

The measured frequency of TX_TCLK175 should fall within 175.78125 MHz ±50 ppm.

Transmit Clock Jitter (MASTER/SLAVE)

Test Mode 1 enables testing of timing jitter on MASTER and SLAVE transmitters. Connect MASTER and SLAVE transmitters over a link segment. The transmitter timing jitter is measured by capturing the TX_TCLK175 waveforms in both MASTER and SLAVE configurations.

Reference "[3]" specifies that when in Test Mode 1, and the link is up with the two PHYs having an established link, the RMS (Root Mean Square) value of the MASTER TX_TCLK175 jitter relative to an unjittered reference shall be less than 1/S ps. The peak-to-peak value of the MASTER TX_TCLK175 jitter relative to an unjittered reference shall be less than 10/S ps.

Reference "[3]" specifies that when in Test Mode 1, and the link is up with the two PHYs having an established link, the RMS (Root Mean Square) value of the SLAVE TX_TCLK175 jitter relative to an unjittered reference shall be less than 2/S ps. The peak-to-peak value of the SLAVE TX_TCLK175 jitter relative to an unjittered reference shall be less than 20/S ps.

РНҮ Туре	S
2.5GBASE-T1	0.25
5GBASE-T1	0.5
10GBASE-T1	1

Table 5-1Scaling Parameter

This test measures the clock time interval error of the TX_TCLK175 signal at the MDI. The ideal reference clock is selected automatically by the oscilloscope and compared to the original signal to determine the clock time interval error.

Test Mode 2. MDI Output Jitter (MASTER) Tests

Test Setup

NOTE

You can run this test using either **Two Channels** or a **One Channel** from the transmitter (MDI). Refer to "General Test Setup for 1000BASE-T1, 2.5GBASE-T1, 5GBASE-T1, and 10GBASE-T1" on page 20 for connection details.

Use the software supplied with your transmitter PHY to control the Device Under Test.

Specification References

- [1] IEEE Std 802.3chTM 2020, Section 149.5.2.3.1.
- [2] IEEE Std 802.3chTM 2020, Section 149.5.2.3.2.

MDI Output Jitter (MASTER)

Reference "[1]" specifies that when in Test Mode 2, and the PHY transmitting the TX_TCLK175 Square Wave test pattern, the RMS (Root Mean Square) value of the MDI output jitter, relative to an unjittered reference, shall be less than 1/S ps. Refer to Table 5-1 for the definition of S.

Reference "[1]" specifies that when in Test Mode 2, the peak-to-peak value of the MDI output jitter, relative to an unjittered reference, shall be less than 10/S ps. Refer to Table 5-1 for the definition of S.

This test measures the data time interval error of the Test Mode 2 signal at the MDI. The ideal reference data rate is selected automatically by the oscilloscope and compared to the original signal to determine the data time interval error.

MDI Deterministic Jitter (MASTER)

Reference "[2]" specifies that when in Test Mode 2, and the PHY transmitting test pattern JP03A timed from the local clock source, the peak-to-peak deterministic jitter shall be less than 9/S ps. Refer to Table 5-1 for the definition of S.

This test measures the DJ_{pk-pk} of the Test Mode 2, JP03A test pattern at the MDI. The ideal reference data rate is selected automatically by the oscilloscope. EZJIT Jitter separation tool is used to measure the peak-to-peak Deterministic Jitter value.

MDI Even-Odd Jitter (MASTER)

Reference "[2]" specifies that when in Test Mode 2, and the PHY transmitting test pattern JP03B timed from the local clock source, the peak-to-peak Even-Odd jitter shall be less than 4/S ps. Refer to Table 5-1 for the definition of S.

This test measures the EOJ_{pk-pk} of the Test Mode 2, JP03B test pattern at the MDI. The ideal reference data rate is selected automatically by the oscilloscope. EZJIT Jitter separation tool is used to measure the peak-to-peak Even-Odd Jitter value.

Test Mode 4. Transmitter Linearity Test

Test Setup

NOTE

You can run this test using either **Two Channels** or a **One Channel** from the transmitter (MDI). Refer to "General Test Setup for 1000BASE-T1, 2.5GBASE-T1, 5GBASE-T1, and 10GBASE-T1" on page 20 for connection details.

Use the software supplied with your transmitter PHY to control the Device Under Test.

Specification References

[1] IEEE Std 802.3chTM - 2020, Section 149.5.2.2.

Transmitter Linearity Test Information

When operating in Test Mode 4 and capturing the waveform using the recommended fixture, the test defined in section 120D.3.1.2. of the IEEE spec shall be performed. The ideal PAM4 level of 1/3 should be used for effective symbol levels of ES1 and ES2.

Reference "[1]" specifies that the transmitter SNDR as specified in section 120D.3.1.6 of the IEEE Spec, shall exceed 38 dB in 10GBASE-T1, 36 dB in 5GBASE-T1 and 35 dB in 2.5GBASE-T1 modes.

PRBS13Q test pattern would need to be used for the Linearity test. The linearity test measures the Eye voltage levels as well as the Linear Fit Pulse error. Resultant SNDR is calculated and compared against specified standards.

Test Mode 5. Transmitter Power Spectral Density, Transmitter Power Level, and Transmitter Peak Differential Output Tests

Test Setup

You can run the Power Spectral Density (PSD) Test using either a spectrum analyzer or an oscilloscope. When using the oscilloscope, refer to "General Test Setup for 1000BASE-T1, 2.5GBASE-T1, 5GBASE-T1, and 10GBASE-T1" on page 20 for connection details.

If you use the N9010B Signal Analyzer, convert the differential output to a single-ended output using a balun. Use the balun on the AE6941A Automotive Ethernet Fixture, as shown in Figure 2-5 or the N5395C Ethernet Test Fixture, as shown in Figure 2-6.

NOTE

Use the software supplied with your transmitter PHY to control the Device Under Test.

-

Specification References

- IEEE Std 802.3chTM 2020, Section 149.5.2.4. [1]
- IEEE Std 802.3chTM 2020, Section 149.5.2.5. [2]

Transmitter Power Spectral Density (PSD)

Reference "[1]" specifies that in Test Mode 5, the power spectral density (PSD) of the transmitter shall be between the specified upper and lower masks of the following equations.

$$UpperPSD(f) = \begin{bmatrix} -90 - K & \frac{dBm}{Hz} & 0 < f \le 600 \times S \\ -89 - K - \frac{f}{600 \times S} & \frac{dBm}{Hz} & 600 \times S < f \le 3000 \times S \\ -82 - K - \frac{f}{250 \times S} & \frac{dBm}{Hz} & 3000 \times S < f \le 5500 \times S \end{bmatrix}$$

$$LowerPSD(f) = \begin{bmatrix} -96 - K & \frac{dBm}{Hz} & 5 < f \le 400 \times S \\ -95 - K - \frac{f}{400 \times S} & \frac{dBm}{Hz} & 400 \times S < f \le 2000 \times S \\ -90 - K - \frac{f}{200 \times S} & \frac{dBm}{Hz} & 2000 \times S < f \le 3000 \times S \end{bmatrix}$$

Where:

• f is the frequency in MHz

• K equals to 10log₁₀(S)

Refer to Table 5-1 for the definition of S.



Figure 5-1 shows the graphical representation of the specifications above.

Figure 5-1 PSD Specifications

Transmitter Power Level

Reference "[1]" specifies that in Test Mode 5 (normal operation), the transmit power shall be in the range of -1 dBm to 2 dBm.

Transmitter Peak Differential Output

Reference "[2]" specifies that in Test Mode 5, when measured with 100 Ω termination, the transmit differential signal at MDI shall be less than 1.30 Volt peak-to-peak.

Test Mode 6. Output Droop Tests

Test Setup

NOTE

You can run this test using either **Two Channels** or a **One Channel** from the transmitter (MDI). Refer to "General Test Setup for 1000BASE-T1, 2.5GBASE-T1, 5GBASE-T1, and 10GBASE-T1" on page 20 for connection details.

Use the software supplied with your transmitter PHY to control the Device Under Test.

Specification References

[1] IEEE Std 802.3chTM - 2020, Section 149.5.2.1.

Transmitter Output Droop Positive Test Information

This test measures the positive output droop of the transmitter.

Reference "[1]" specifies the positive output droop of a compliant PHY. The positive droop measured with an initial value at 4 ns after the zero-crossing and a final value of 16 ns after the zero-crossing, shall be less than 15%.

The application triggers the Test Mode 6 signal on the rising edge and determines the time the positive peak occurred at 4 ns after the zero-crossing. This application then measures the voltage 12 ns after the initial peak crossing; with the Droop calculated as follows:

Droop = 100 × (Vd/Vpk)%

Where:

- Vd is the magnitude of the droop.
- Vpk is the initial peak after the zero-crossing.

Transmitter Output Droop Negative Test Information

This test measures the negative output droop of the transmitter.

Reference "[1]" specifies the negative output droop of a compliant PHY. The negative droop measured with an initial value at 4 ns after the zero-crossing and a final value of 16 ns after the zero-crossing, shall be less than 15%.

The application triggers the Test Mode 6 signal on the falling edge and determines the time the negative peak occurred at 4 ns after the zero-crossing. This application then measures the voltage 12 ns after the initial peak crossing; with the Droop calculated as follows:

Droop = 100 × (Vd/Vpk)%

Where:

- Vd is the magnitude of the droop.
- Vpk is the initial peak after the zero-crossing.

MDI Return Loss Test

Test Setup

Run this test with the E5080B Vector Network Analyzer. However, you can use a VNA exported data file in the Touchstone or CITI format in place of the external vector network analyzer. Refer to Figure 3-14 for the connection diagram.

Specification Reference

[1] IEEE Std 802.3chTM - 2020, Section 149.8.2.1.

MDI Return Loss Test Information

Reference "[1]" specifies that the differential impedance at the MDI for each transmit/receive channel shall be such that any reflection (due to differential signals incident upon the MDI with the test port having a differential impedance of 100Ω) is attenuated relative to the incident signal as per the following equation.

$$MDI_Return_Loss(f) \leq \begin{cases} 20 - 20\left(\log_{10}\frac{10}{f}\right) & 1 \leq f < 10 \\ 20 & 10 \leq f < 280S \\ 20 - 10\log_{10}(f/(280S)) & 280S \leq f \leq 2800S \\ 10 - 16\log_{10}(f/(2800S)) & 2800S \leq f \leq F_{MAX} \end{cases}$$
(dB)

Where f is the frequency in MHz.

For 2.5GBASE-T1, 5GBASE-T1, and 10 GBASE-T1, the maximum applicable frequency for the MDI return loss is $4000 \times S$ MHz. See Table 5-1 for the definition of S.

In other words, the return loss shall meet or exceed the equation shown for all frequencies ranging from 1 MHz to 4000 × S MHz (with 100 Ω differential impedance) at all times when the PHY is transmitting data or control symbols.

NOTE

The DUT must be set to SLAVE Mode of operation and not transmit any test symbols.

NOTE

Calibrate the VNA before running the tests. Set the VNA as follows:

- Measurement: Return Loss S_{dd11}
- Start Frequency: 1 MHz
- Stop Frequency: 4000 × S MHz (Refer to Table 5-1 for the definition of S)
- Sweep Type: Linear
- Sweep Points: 1600
- Output Power: minimum -10 dBm
- Measurement Bandwidth: ≤ 3 kHz
- Logic Port Impedance Differential Mode: 100 Ω
- Logic Port Impedance Common Mode: 25 Ω
- Smoothing function is deactivated

Refer to "Calibrating the VNA" on page 147.

Viewing the Test Report

After running any or all of the Compliance tests, the Results tab will show the passed tests and details about the individual tests. For test result details, select any one of the tests from the top pane with the test details shown as follows. In Figure 5-2 selected is the Transmitter Linearity test, and the test results, with waveform, are shown as follows.

Automotive Ethernet Test Application Linearity10G	
File View Tools Help Set Up Select Tests Configure Connect Run Autor	nate Results HTML Report
Test Name Actual Value Margin % Pass Lir	
Parameter Value Transmitter Linearity 10GBase-T1 38.331 dB	Transmitter Linearity 10GBase-T1
Messages	()@####################################
Summaries (click for details)	Details
0 2021-03-18 02:32:44:868 PM Refreshed HTML Report 0 2021-03-18 02:32:45:380 PM Opened Project 0	
1 Test	

Figure 5-2 Typical Results Tab

Figure 5-3 shows a portion of a typical **HTML Report**. Below this segment are waveforms and more test data.

Test Report

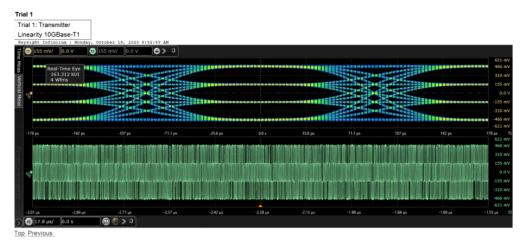
Pass

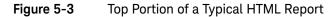
Test Configuration Details						
	Application					
Name	AE6910T/AE6920T Automotive Ethernet Test Application					
Version	1.30.0000.0					
Device Description						
Technology Spec	IEEE					
StandardType	106					
Spectral Measurement Device	Oscilloscope					
Bandpass Filter	Yes					
DisturbingSignalSource	33250A					
VNA Calibration Type	Manual Calibration					
SA Compensation Used	No					
Offline Mode Used	No					
	Test Session Details					
Infiniium SW Version	06.60.00403					
Infiniium Model Number	DSAV164A					
Infiniium Serial Number	MY58120112					
Debug Mode Used	No					
Compliance Limits	10G IEEE P802.3ch (official)					
Last Test Date	2020-10-19 08:52:43 UTC +08:00					

Summary of Results

Failed	0
Passed	1
Total	1

Margin Thresholds Warning < 5 % Critical < 0 %


 Pass # Failed # Trials Test Name
 Actual Value Margin Pass Limits


 ✓
 0
 1
 Transmitter Linearity
 38.331 dB
 0.9 %
 VALUE >= 38.000 dB

Report Detail

Next
 Transmitter Linearity
Reference: IEEE Std P802.3ch™/D3.0 (Section 149.5.2.2)
Test Summary Pass Test Description: The transmitter SNDR distortion, shall exceed 38dB.
Pass Limits: >= 38.000 dB Transmitter Linearity 10GBase-T1 38.331 dB

Result Details

Keysight AE6910T/AE6920T Automotive Ethernet Compliance Solution User Guide and Methods of Implementation

6

100BASE-T1 ECU Tests and Test Report

OABR_PMA_TX_01 / 108 OABR_PMA_TX_02 / 110 OABR_PMA_TX_03 / 111 OABR_PMA_TX_03 / 112 OABR_PMA_TX_04 / 112 OABR_PMA_TX_05 / 114 OABR_PMA_TX_06 / 115 OABR_PMA_TX_07 / 117 OABR_PMA_TX_08 / 119 Viewing the Test Report / 122

OABR_PMA_TX_01

Test Setup

You can run this test using either **Two Channels** or a **One Channel** from the transmitter (MDI). Refer to "General Test Setup for 100BASE-T1 and ECU" on page 18 for connection details.

NOTE Use the software supplied with your transmitter PHY to control the Device Under Test. This test requires Test Mode 1 enabled. The default iteration of test is 10, as per specification.

Specification References

[1] OPEN Alliance Automotive Ethernet ECU Test Specification, v3.0, Section 5.2.2.1.1, Test OABR_PMA_TX_01

[2] 100BASE-T1, IEEE Std 802.3bwTM – 2015, Section 96.5.4.1

Check the Transmitter Output Droop (Positive) Test Information

This test measures the positive output droop of the transmitter.

Reference "[1]" specifies the positive output droop of a compliant PHY. The positive droop measured with the initial peak value after the zero-crossing and the value 500 ns after the initial peak, shall be less than 45%.

The application triggers the Test Mode 1 signal on the rising edge and determines the time the positive peak occurred and the voltage at that specific instance. This application then measures the voltage 500 ns after the peak; with the Droop calculated as follows:

Droop = 100 × (Vd/Vpk)%

Where:

- Vd is the magnitude of the droop.
- Vpk is the initial peak after the zero-crossing.

Typical Waveform

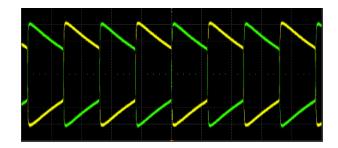
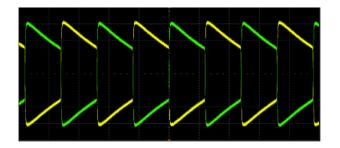
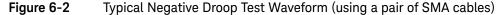


Figure 6-1 Typical Positive Droop Test Waveform (using a pair of SMA cables)

Check the Transmitter Output Droop (Negative) Test Information

This test measures the negative output droop of the transmitter.


Reference "[1]" specifies the negative output droop of a compliant PHY. The negative droop measured with the initial peak value after the zero-crossing and the value 500 ns after the initial peak, shall be less than 45%.


The application triggers the Test Mode 1 signal on the falling edge and determines the time the negative peak occurred and the voltage at that specific instance. This application then measures the voltage 500 ns after the peak; with the Droop calculated as follows:

Droop = 100 × (Vd/Vpk)%

Where:

- Vd is the magnitude of the droop.
- Vpk is the initial peak after the zero-crossing.

Test Setup

You can run this test using either **Two Channels** or a **One Channel** from the transmitter (MDI). Refer to "General Test Setup for 100BASE-T1 and ECU" on page 18 for connection details.

NOTE Use the software supplied with your transmitter PHY to control the Device Under Test. This test requires Test Mode 2 enabled. The default iteration of test is 10, as per specification.

Specification References

[1] OPEN Alliance Automotive Ethernet ECU Test Specification, v3.0, Section 5.2.2.1.2, Test OABR_PMA_TX_02.

[2] 100BASE-T1, IEEE Std 802.3bwTM – 2015, Section 96.5.4.3

Check the Transmitter Timing Jitter in MASTER Mode Test Information

This test measures the data time interval error of the Test Mode 2 signal at the MDI. The ideal reference data rate is selected automatically by the oscilloscope and compared to the original signal to determine the data time interval error.

Reference "[1]" and "[2]" specifies that when in test mode 2, the RMS (Root Mean Square) TIE value of the MDI output jitter, JTXOUT, relative to an unjittered reference shall be less than 50 ps.

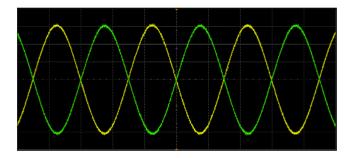


Figure 6-3 Typical MASTER TX Out Test Waveform (using a pair of SMA cables)

Test Setup

You can run this test using either **Two Channels** or a **One Channel** from the transmitter (MDI). Alternatively, you can also run this test using the TX_TCLK. Refer to "General Test Setup for 100BASE-T1 and ECU" on page 18 for connection details.

NOTE Use the software supplied with your transmitter PHY to control the Device Under Test. This test requires Test Mode 2 enabled. The default iteration of test is 10, as per specification.

Specification References

[1] OPEN Alliance Automotive Ethernet ECU Test Specification, v3.0, Section 5.2.2.1.3, Test OABR_PMA_TX_03

[2] 100BASE-T1, IEEE Std 802.3bwTM – 2015, Section 96.5.4.5

Check the Transmit Clock Frequency Test Information

This test measures the frequency of the transmitter clock when the PHY is operating in MASTER mode.

Reference "[1]" and "[2]" specifies the symbol transmission rate of a compliant PHY. The symbol transmission rate of the MASTER PHY shall be within the range of 66 2/3 MHz ±100 ppm.

The Reference "[1]" and "[2]" specifies that Test Mode 2 shall transmit the data symbol sequence {+1, -1} repeatedly on the channel. The transmitter shall time the transmitted symbols from a symbol rate clock in the MASTER timing mode. The measured data rate of the Test Mode 2 signal is thus equal to the MASTER Transmit Clock Frequency of the PHY.

Typical Waveform

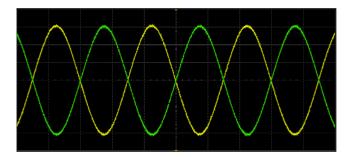


Figure 6-4 Typical MASTER Clock Test Waveform (using a pair of SMA cables)

Test Setup

You can run the Power Spectral Density (PSD) Test using either a spectrum analyzer or an oscilloscope. When using the oscilloscope, refer to "General Test Setup for 100BASE-T1 and ECU" on page 18 for connection details.

If you use the N9010B Signal Analyzer, convert the differential output to a single-ended output using a balun. Use the balun on either the AE6941A Automotive Ethernet Fixture, as shown in Figure 2-5 or the N5395C Ethernet Test Fixture, as shown in Figure 2-6.

NOTE Use the software supplied with your transmitter PHY to control the Device Under Test. This test requires Test Mode 5 enabled.

Specification References

[1] OPEN Alliance Automotive Ethernet ECU Test Specification, v3.0, Section 5.2.2.1.4, Test OABR_PMA_TX04

[2] 100BASE-T1, IEEE Std 802.3bwTM - 2015, Section 96.5.4.4

Check the Power Spectral Density (PSD) Test Information

Reference "[1]" and "[2]" specifies that in Test Mode 5, the power spectral density (PSD) of the transmitter shall be between the upper and lower bounds specified in the following table.

Frequency	PSD Upper Bound (dBm/Hz) ¹	PSD Lower Bound (dBm/Hz) ¹
@1 MHz	-63.3	-70.9
@20 MHz	-64.8	-75.8
@40 MHz	-68.5	-89.2
57 MHz-200 MHz	-76.5	-

1 Settings: RBW=10 kHz, VBW=30 kHz, sweep time >1 min, RMS detector.

The upper and lower limits are piece-wise linear masks connecting points given in the table above. Provided is a lower PSD mask to ensure tolerances.

You can run this test using an external spectrum analyzer or the oscilloscope.

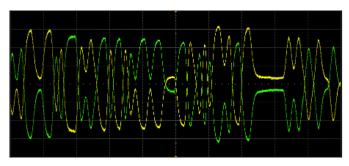


Figure 6-5 Typical Spectral Density Loss Test Waveform

Test Setup

Run the Management Data Input (MDI) Return Loss test with E5080B Vector Network Analyzer connected externally to the oscilloscope. Refer to Figure 3-14 for the connection diagram.

Specification References

[1] OPEN Alliance Automotive Ethernet ECU Test Specification, v3.0, Section 5.2.2.1.5, Test OABR_PMA_TX05

[2] 100BASE-T1, IEEE Std 802.3bwTM - 2015, Section 96.8.2.1

Check MDI Return Loss Test Information

This test can run with an external vector network analyzer. However, you can use a VNA exported data file in the Touchstone or CITI format in place of the external vector network analyzer.

NOTE	The DUT must be set to SLAVE Mode of operation and not transmitting any test symbols.
NOTE	 Calibrate the VNA prior to running the tests. Set the VNA as follows: Measurement: Return Loss S_{dd11} Start Frequency: 0.3 MHz Stop Frequency: 1 GHz Sweep Type: Logarithmic Sweep Points: 1600 Output Power: minimum -10 dBm Measurement Bandwidth: 100Hz Logic Port Impedance Differential Mode: 100 Ω Logic Port Impedance Common Mode: 25 Ω
	 Smoothing function is deactivated Refer to "Calibrating the VNA" on page 147. Reference "[1]" and "[2]" specifies that the MDI return loss shall meet or exceed the following equation for all frequencies ranging from 1 MHz to 66 MHz (with 100 reference impedance) at all

Frequency	Return Loss (dB)
1 – 30 MHz	20
30 – 66 MHz	20 – 20*log(f/30)

Test Setup

Run the Management Data Input (MDI) Mode Conversion test with a vector network analyzer connected externally to the oscilloscope. Refer to Figure 3-14 for the connection diagram.

Specification References

[1] OPEN Alliance Automotive Ethernet ECU Test Specification, v3.0, Section 5.2.2.1.6, Test OABR_PMA_TX06

[2] 100BASE-T1, IEEE Std 802.3bwTM – 2015, Section 96.8.2.2

Check MDI Mode Conversion Test Information

This test can run with an external vector network analyzer. However, you can also use a VNA exported data file in the Touchstone or CITI format in place of the external vector network analyzer. The DUT must be set to SLAVE Mode of operation and not transmitting any test symbols.

The DUT must be set to SLAVE Mode of operation and not transmitting any test symbols.

NOTE

NOTE

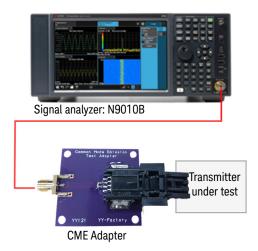
Calibrate the VNA prior to running the tests. Set the VNA as follows:

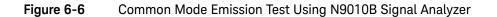
- Measurement: Mode Conversion S_{dc11}
- Start Frequency: 0.3 MHz
- Stop Frequency: 1 GHz
- Sweep Type: Logarithmic
- Sweep Points: 1600
- Output Power: minimum -10 dBm
- Measurement Bandwidth: 100Hz
- Logic Port Impedance Differential Mode: 100 Ω
- Logic Port Impedance Common Mode: 25 Ω
- Smoothing function is deactivated

Refer to "Calibrating the VNA" on page 147.

Reference "[1]" and "[2]" specifies that the MDI Mode Conversion shall meet or exceed the following equation for all frequencies ranging from 1 MHz to 200 MHz at all times.s

6 100BASE-T1 ECU Tests and Test Report


Frequency	Mode Conversion (dB)
@1 MHz	-60
@22 MHz	-60
@100 MHz	-47
@200 MHz	-37


Test Setup

You can run the MDI Common Mode Emission Test using either a signal analyzer (spectrum analyzer) or an oscilloscope.

When using the oscilloscope or N9010B Signal Analyzer, it is essential to use the Common Mode Emission Test adapter described on page 24 to condition and convert the signal to a single-ended output.

You can use any other test fixture/adapter, but it must meet the requirements as described in the IEEE 100BASE-T1 EMC Test Specifications for Transceivers, Appendix D, D.1. When you use an oscilloscope for running the MDI common mode emission test under Open Alliance 100M ECU spec, ensure to select the 'One Channel' under 'Set up' tab, and in 'Select Tests' tab, select the 'OABR_PMA_TX_07'.

NOTE

Use the software supplied with your transmitter PHY to control the Device Under Test. The default iteration of test is 10, as per specification.

Specification References

[1] OPEN Alliance Automotive Ethernet ECU Test Specification, v3.0, Section 5.2.2.1.7, Test OABR_PMA_TX07

[2] 100BASE-T1, IEEE EMC Test Specification for Transceivers, Version 1, Appendix D

Check MDI Common Mode Emission Test Information

Reference "[1]" and "[2]" specifies that in Test Mode 5, the test shall be classified passed, if the value of the MDI common-mode emission (CME) of the transmitter, fulfills the limit specified in the following table.

Frequency	CME Limit (dBµV)
@2 MHz	24
@70 MHz	24

You can run this test using an external spectrum analyzer or the oscilloscope. The recommended settings for CME measurement at MDI are as follows.

Table 6-1 Settings for Measurement Device for CME Test

Measuring Equipment	Spectrum Analyzer	Spectrum Analyzer EMI Measuring Receiver			
Measurement unit		dBµV			
Detector		Peak	-		
Frequency range		1 MHz to 200 MHz			
Resolution bandwidth (RBW)	10 kHz	9 kHz	10 kHz		
Video bandwidth (VBW)	> 3 x RBW	-	-		
Number of passes	10 (max hold)	1	in minimum 10 (max hold)		
Measurement time per step	-	\geq 1 ms	-		
Frequency sweep time	≥20 s	-	-		
Frequency step width	-	\leq 0.4 x RBW	-		
Time Base	-	-	50 µs/div 500 kS in minimum 1 GSa/s		
Amplitude	-	-	\leq 2 mV/div		
Input			DC 50 Ω		

Test Setup

You have the option to use either Section 2 of the AE6941A Automotive Ethernet Fixture or Sections 1 and 11 of the N5395C Ethernet Test Fixture in this test.

A disturbing signal source is required to test for compliance. There is an option to test without a disturbing signal source, but the test result is not applicable for compliance. The test accepts only a differential signal.

When using a supported function generator, there is an automatic calibration process to calibrate the function generators. If you use an unsupported model, you will have to calibrate the function generators manually. Refer to the individual user manuals to determine calibration steps as well as the respective standard specification for calibration settings.

NOTE

Use the software supplied with your transmitter PHY to control the Device Under Test. This test requires Test Mode 4 enabled. The default iteration of test is 10, as per specification.

Supported Function Generators	Number Required	Notes	Connection diagram with AE6941A	Connection diagram with N5395C
Keysight 33250A	2	Keysight 82357B USB/GPIB interface and one additional GPIB cable required.	Figure 3-8	Figure 3-11
Keysight 33622A	1	LAN/ USB Cable required.	Figure 3-7	Figure 3-10
Keysight 81150A/81160A	1	LAN/ USB Cable required.	Figure 3-9	Figure 3-12

Using the Optional AE6950A Frequency Divider Board

If you want to use the optional AE6950A Frequency Divider Board to provide a stable 10 MHz reference clock, refer to "Using the AE6950A Frequency Divider Board" on page 165 for detailed information.

Specification References

[1] OPEN Alliance Automotive Ethernet ECU Test Specification, v3.0, Section 5.2.2.1.8, Test OABR_PMA_TX08

[2] 100BASE-T1, IEEE Std 802.3bwTM – 2015, Section 96.5.4.2

Check Transmitter Distortion Test Information

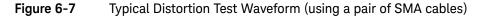
When operating in Test Mode 4 and capturing the waveform using the recommended fixture, the peak distortion values, measured at a minimum of 10 equally-spaced phases of a single symbol period, shall be less than 15 mV.

NOTE If using the Frequency Divider, connect the 10 MHz output(s) of the divider to the 10 MHz Ref In Input of the oscilloscope and function generator for clock synchronization.

Reference "[1]" and "[2]" specify that the peak distortion is determined by sampling the differential signal output with the symbol rate clock at an arbitrary phase and processing a block of any 2047 consecutive samples with MATLAB code in reference "[1]" and "[2]".

Apply a software high pass filter to the sampled signal before post-processing.

Alternatively, you can also run this test without the disturbing signal, but you cannot use the result to determine compliance.


Transmitter Distortion Enhance Clock Recovery Algorithm

Keysight employs an enhanced clock recovery algorithm when the TX_TCLK is not available. The algorithm conditions the signal to the nominal bitrate. It is enabled by default when the **Use 10MHz Ref Clock** checkbox is disabled.

When the **Use 10MHz Ref Clock** checkbox is enabled, the AE6950A Frequency Divider board, and access to TX_TCLK, is required for synchronization.

NOTE

If using the Frequency Divider, connect the 10 MHz output(s) of the divider to the 10 MHz Ref In Input of the oscilloscope and function generator for clock synchronization.

Viewing the Test Report

After running any or all of the Compliance tests, the **Results** tab will show the passed tests and details about the individual tests. For test result details, select any one of the tests from the top pane with the test details shown as follows. In Figure 6-8 selected is the Transmitter Power Spectral Density test, and the test results, with waveform, are shown as follows.

et Up Select Te	<u>H</u> e sts	ř	re Connect	Run	Autom	ate Res	ults HTM	L Report			
Test Name					Actual	Value	Margin %	Pass Limits			# Trials
🗸 Transmitter P	owe	r Spectra	al Density		2.978	dBm	298E+01	Overall = Pass			3
Transmitter +Vout Droop				7.65 %	ò	83.0	VALUE < 45.00 %			2	
Transmitter -	Voul	t Droop			7.53 %	ò	83.3	VALUE < 45.00 %			2
MDI Output J	itter	, јтхоит	(Master)		23.756	ps	52.5	VALUE < 50.000 ps			1
Transmit Cloc	k Fr	equency	(Master)		66.669	450 MHz	29.1	66.660000 MHz <= VALU	JE <= 66.67333	3 MHz	2
Transmitter D	isto	rtion(w/c	Disturbing Si	ignal)	23.787	' mV	-58.6	VALUE <= 15.000 mV			2
mai Summary					<u> </u>	measure	menc Devic	a Parameter	value	Power	Spectral Density
Trial Summary	-1		Actual Value	Ma	argin	Measure	ment Devi	Parameter	Value	Power	Spectral Density
					C 1+0/				0.070.10		Power Spectral Density
	<u> </u>		3.126 dBm 134.8 mdBm	3.126				Power Spectral Density	2.978 dBm	40 (2)(LH	
Passed:	3	StdDev		134.6	5 %			Additional Info		40 40 40 12;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	
Passed: Failed:	3 0	StdDev Range Min	134.8 mdBm 263.4 mdBm 2.978 dBm	134.6 263.0 2.978	5 % 0 % 3 k%					40 (2)(LH	
Passed: Failed: Worst:	3 0 3	StdDev Range Min Max	134.8 mdBm 263.4 mdBm 2.978 dBm 3.241 dBm	134.0 263.0 2.978 3.241	5 % 0 % 3 k% 1 k%			Additional Info Power Spectral Density		40 40 40 12;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	
	3 0 3 1	StdDev Range Min Max Sum	134.8 mdBm 263.4 mdBm 2.978 dBm 3.241 dBm 9.379 dBm	134.6 263.0 2.978 3.241 9.378	5 % 0 % 3 k% 1 k% 3 k%			Additional Info Power Spectral Density Measurement Device	(See image)	121/1018/KI1940	Power Spectral Density
Passed: Failed: Worst:	3 0 3 1	StdDev Range Min Max Sum	134.8 mdBm 263.4 mdBm 2.978 dBm 3.241 dBm	134.6 263.0 2.978 3.241 9.378	5 % 0 % 3 k% 1 k% 3 k%	Spectru	m Analyzer	Additional Info Power Spectral Density Measurement Device	(See image)	twor Spectral Deerkyld(3m)rz)	Power Spectral Constry
Passed: Failed: Worst:	3 0 3 1	StdDev Range Min Max Sum	134.8 mdBm 263.4 mdBm 2.978 dBm 3.241 dBm 9.379 dBm	134.6 263.0 2.978 3.241 9.378	5 % 0 % 3 k% 1 k% 3 k%	Spectru	m Analyzer	Additional Info Power Spectral Density Measurement Device	(See image) Spectrum Ana	twor Spectral Deerkyld(3m)rz)	Power Spectral Dansky

Figure 6-8 Typical results tab

Figure 6-9 shows a portion of a typical **HTML Report**. Below this segment are waveforms and more test data.

Test Report

Pass

Test Configuration Details						
Application						
Name	AE6910T/AE6920T Automotive Ethernet Test Application					
Version	1.30.0000.0					
	Device Description					
Technology Spec	Open Alliance					
StandardType	100M (ECU)					
Spectral Measurement Device	Oscilloscope					
Bandpass Filter	Yes					
DisturbingSignalSource	81150A/60A					
VNA Calibration Type	Manual Calibration					
SA Compensation Used	No					
Offline Mode Used	No					
	Test Session Details					
Infiniium SW Version	06.60.00403					
Infiniium Model Number	DSAV164A					
Infiniium Serial Number	MY58120112					
Debug Mode Used	No					
Compliance Limits	TC8 ECU Specification v2.0 (official)					
Last Test Date	2019-04-26 13:13:32 UTC -06:00					

Summary of Results

Pa	ass	# Failed	# Trials	Test Name	Actual Value	Margin	Pass Limits
-	1	0	1	Transmitter +Vout Droop	6.04 %	86.6 %	VALUE < 45.00 %
-	1	0	1	Transmitter -Vout Droop	6.14 %	86.4 %	VALUE < 45.00 %
-	/	0	1	MDI Output Jitter, JTXOUT (Master)	23.142 ps	53.7 %	VALUE < 50.000 ps
~	1	0	1	Transmit Clock Frequency (Master)	66.668170 MHz	38.7 %	66.660000 MHz <= VALUE <= 66.673333 MHz
	1	0	1	Transmitter Power Spectral Density	2.683 dBm	268E+01 %	Overall = Pass
~	1	0	1	Transmitter Distortion(w/ Disturbing Signal)	4.795 mV	68.0 %	VALUE <= 15.000 mV

Report Detail

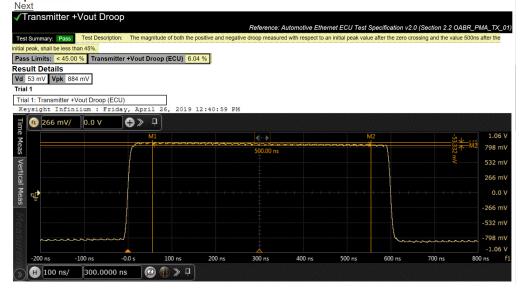


Figure 6-9 Top portion of a typical HTML report

6 100BASE-T1 ECU Tests and Test Report

THIS PAGE HAS BEEN INTENTIONALLY LEFT BLANK.

Keysight AE6910T/AE6920T Automotive Ethernet Compliance Solution User Guide and Methods of Implementation

1000BASE-T1 ECU Tests and Test Report

CT_1000BASE-T1_PMA_TX_01 / 126 CT_1000BASE-T1_PMA_TX_02 / 128 CT_1000BASE-T1_PMA_TX_03 / 129 CT_1000BASE-T1_PMA_TX_03 / 130 CT_1000BASE-T1_PMA_TX_05 / 131 CT_1000BASE-T1_PMA_TX_06 / 133 CT_1000BASE-T1_PMA_TX_08 / 134 CT_1000BASE-T1_PMA_TX_09 / 136 Viewing the Test Report / 137

7

Test Setup

You can run this test using either **Two Channels** or a **One Channel** from the transmitter (MDI). Refer to "General Test Setup for 1000BASE-T1 and ECU" on page 19 for connection details.

NOTE

Use the software supplied with your transmitter PHY to control the Device Under Test. This test requires Test Mode 1 enabled. The default iteration of test is 10, as per specification.

Specification References

[1] OPEN Alliance Automotive Ethernet TC8 ECU Test Specification, v1.0, Section 4.2.2.1, Test CT_1000BASE-T1_PMA_TX_01

[2] 1000BASE-T1, IEEE Std 802.3bpTM – 2016, Section 97.5.3.1

Check the Transmitter Output Droop (Positive) Test Information

This test measures the positive output droop of the transmitter.

Reference "[1]" specifies the positive output droop of a compliant PHY. The positive droop measured with an initial value at 4 ns after the zero-crossing and a final value of 16 ns after the zero-crossing, shall be less than 10%.

The application triggers the Test Mode 6 signal on the rising edge and determines the time the positive peak occurred at 4 ns after the zero-crossing. This application then measures the voltage 12 ns after the initial peak-crossing; with the Droop calculated as follows:

Droop = 100 × (Vd/Vpk)%

Where:

- Vd is the magnitude of the droop.
- **Vpk** is the initial peak after the zero-crossing.

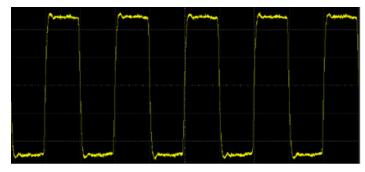


Figure 7-1 Typical Positive Droop Test Waveform (using a pair of SMA cables)

Check the Transmitter Output Droop (Negative) Test Information

This test measures the negative output droop of the transmitter.

Reference "[1]" specifies the negative output droop of a compliant PHY. The negative droop measured with an initial value at 4 ns after the zero-crossing and a final value of 16 ns after the zero-crossing, shall be less than 10%.

The application triggers the Test Mode 6 signal on the falling edge and determines the time the negative peak occurred at 4 ns after the zero-crossing. This application then measures the voltage 12 ns after the initial peak-crossing; with the Droop calculated as follows:

Droop = 100 × (Vd/Vpk)%

Where:

- Vd is the magnitude of the droop.
- Vpk is the initial peak after the zero-crossing.

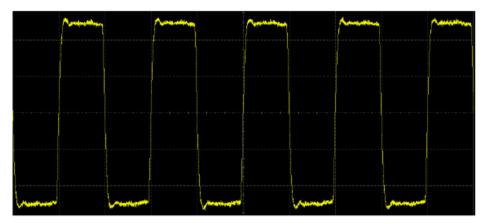


Figure 7-2 Typical Negative Droop Test Waveform (using a pair of SMA cables)

Test Setup

NOTE

You can run this test using either **Two Channels** or a **One Channel** from the transmitter (MDI). Refer to "General Test Setup for 1000BASE-T1 and ECU" on page 19 for connection details.

Use the software supplied with your transmitter PHY to control the Device Under Test. This test requires Test Mode 1 enabled. The default iteration of test is 10, as per specification.

Specification References

- [1] OPEN Alliance Automotive Ethernet TC8 ECU Test Specification, v1.0, Section 4.2.2.2.
- [2] 1000BASE-T1, IEEE Std 802.3bpTM 2016, Section 97.5.3.3

MDI Output Jitter (MASTER)

Reference "[2]" specifies that when in Test Mode 2, the RMS (Root Mean Square) value of the MDI output jitter, relative to an unjittered reference, shall be less than 5 ps.

Reference "[2]" specifies that when in Test Mode 2, the peak-to-peak value of the MDI output jitter, relative to an unjittered reference, shall be less than 50 ps.

This test measures the data time interval error of the Test Mode 2 signal at the MDI. The ideal reference data rate is selected automatically by the oscilloscope and compared to the original signal to determine the data time interval error

Figure 7-3

Typical Test Mode 2 Waveform (using a pair of SMA cables)

Test Setup

NOTE

You can run this test using either **Two Channels** or a **One Channel** from the transmitter (MDI). Refer to "General Test Setup for 1000BASE-T1 and ECU" on page 19 for connection details.

Use the software supplied with your transmitter PHY to control the Device Under Test. This test requires Test Mode 2 enabled. The default iteration of test is 10, as per specification.

Specification References

- [1] OPEN Alliance Automotive Ethernet TC8 ECU Test Specification, v1.0, Section 4.2.2.3
- [2] 1000BASE-T1, IEEE Std 802.3bpTM 2016, Section 97.5.3.6

Check the Transmit Clock Frequency Test Information

This test measures the frequency of the transmitter clock when the PHY is operating in MASTER mode.

Reference "[1]" specifies the symbol transmission rate of a compliant PHY. The symbol transmission rate of the MASTER PHY shall be within the range of 750 MHz ±100 ppm.

Reference "[2]" specifies that in Test Mode 2, the PHY shall transmit a continuous pattern of {+1} symbols followed by three {-1} symbols with the transmitted symbols timed from its local clock source of 750 MHz. The transmitter output is a 125 MHz signal. Hence, the accuracy of the Transmit Clock Frequency is also 125 MHz ±100 ppm.

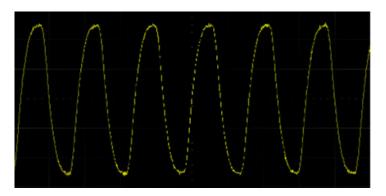


Figure 7-4

Typical MASTER Clock Test Waveform (using a pair of SMA cables)

Test Setup

You can run this test using either **Two Channels** or a **One Channel** from the transmitter (MDI). Refer to "General Test Setup for 1000BASE-T1 and ECU" on page 19 for connection details.

NOTE Use the software supplied with your transmitter PHY to control the Device Under Test.

Specification References

- [1] OPEN Alliance Automotive Ethernet TC8 ECU Test Specification, v1.0, Section 4.2.2.4
- [2] 1000BASE-T1, IEEE Std 802.3bpTM 2016, Section 97.5.3.4

Check the Transmitter Power Spectral Density (PSD) Test Information

Reference "[1]" and "[2]" specifies that in Test Mode 5, the power spectral density (PSD) of the transmitter shall be between the specified upper and lower masks of the following equations.

$$UpperPSD(f) = \begin{bmatrix} -80 & \frac{dBm}{Hz} & 0 < f \le 100 \\ -76 - \frac{f}{25} & \frac{dBm}{Hz} & 100 < f \le 400 \\ -85.6 - \frac{f}{62.5} & \frac{dBm}{Hz} & 400 < f \le 600 \end{bmatrix}$$
$$LowerPSD(f) = \begin{bmatrix} -86 & \frac{dBm}{Hz} & 40 < f \le 100 \\ -82 - \frac{f}{25} & \frac{dBm}{Hz} & 100 < f \le 400 \end{bmatrix}$$

Where f is the frequency in MHz.

Consider the resolution bandwidth of 100kHz and sweep time of larger than 1 second in PSD measurements.

You can run this test using an external spectrum analyzer or the oscilloscope.

Test Setup

Run this test with the E5080B Vector Network Analyzer connected externally to the oscilloscope. Refer to Figure 3-14 for the connection diagram.

This test can run with an external vector network analyzer. However, you can use a VNA exported data file in the Touchstone or CITI format in place of the external vector network analyzer.

Specification References

- [1] OPEN Alliance Automotive Ethernet TC8 ECU Test Specification, v1.0, Section 4.2.2.5
- [2] 1000BASE-T1, IEEE Std 802.3bpTM 2016, Section 97.7.2.1

Check MDI Return Loss Test Information

Reference "[1]" specifies that the differential impedance at the MDI for each transmit/receive channel shall be such that any attenuated reflection is relative to the incident signal as per the following equation. This reflection must be due to differential signals incident upon the MDI with a test port having a differential impedance of 100 Ω .

$$ReturnLoss(f) \ge \begin{bmatrix} 18 - 18(\log_{10})\frac{20}{f} & 2 \le f < 20\\ 18 & 20 \le f < 100\\ 18 - 16.7(\log_{10})\frac{f}{100} & 100 \le f \le 600 \end{bmatrix}$$

Where f is the frequency in MHz.

In other words, the return loss shall meet or exceed the following equation for all frequencies ranging from 2 MHz to 600 MHz (with 100Ω differential impedance) at all times when the PHY is transmitting data or control symbols.

NOTE

The DUT must be set to SLAVE Mode of operation and not transmitting any test symbols.

NOTE

Calibrate the VNA prior to running the tests. Set the VNA as follows:

- Measurement: Return Loss S_{dd11}
- Start Frequency: 300 kHz
- Stop Frequency: 1 GHz
- Sweep Type: Logarithmic
- Sweep Points: 1600
- Output Power: minimum -10 dBm
- Measurement Bandwidth: 100Hz
- Logic Port Impedance Differential Mode: 100 Ω
- Logic Port Impedance Common Mode: 25 Ω
- Smoothing function is deactivated

Refer to "Calibrating the VNA" on page 147.

Test Setup

Run the Management Data Input (MDI) Mode Conversion Loss test with a vector network analyzer connected externally to the oscilloscope. Refer to Figure 3-14 for the connection diagram.

Specification References

- [1] OPEN Alliance Automotive Ethernet TC8 ECU Test Specification, v1.0, Section 4.2.2.6
- [2] 1000BASE-T1, IEEE Std 802.3bpTM 2016, Section 97.7.2.2

Check MDI Mode Conversion Loss Test Information

This test can run with an external vector network analyzer. However, you can also use a VNA exported data file in the Touchstone or CITI format in place of the external vector network analyzer.

NOTE The DUT must be set to SLAVE Mode of operation and not transmitting any test symbols.

NOTE

Calibrate the VNA prior to running the tests. Set the VNA as follows:

- Measurement: Mode Conversion S_{dc11}
- Start Frequency: 300 kHz
- Stop Frequency: 1 GHz
- Sweep Type: Logarithmic
- Sweep Points: 1600
- Output Power: minimum -10 dBm
- Measurement Bandwidth: 100Hz
- Logic Port Impedance Differential Mode: 100 Ω
- Logic Port Impedance Common Mode: 25 Ω
- Smoothing function is deactivated

Refer to "Calibrating the VNA" on page 147.

Test Setup

You have the option to use either Section 2 of the AE6941A Automotive Ethernet Fixture or Sections 1 and 11 of the N5395C Ethernet Test Fixture in this test.

A disturbing signal source is required to test for compliance. There is an option to test without a disturbing signal source, but the test result is not applicable for compliance. The test accepts only a differential signal.

When using a supported function generator, there is an automatic calibration process to calibrate the function generators. If you use an unsupported model, you will have to calibrate the function generators manually. Refer to the individual user manuals to determine calibration steps as well as the respective standard specification for calibration settings.

NOTE

Use the software supplied with your transmitter PHY to control the Device Under Test. This test requires Test Mode 4 enabled. The default iteration of test is 10, as per specification.

Supported Function Generators	Number Required	Notes	Connection diagram with AE6941A	Connection diagram with N5395C
Keysight 33622A	1	LAN/ USB Cable required.	Figure 3-7	Figure 3-10
Keysight 81150A/81160A	1	LAN/ USB Cable required.	Figure 3-9	Figure 3-12

Using the Optional AE6950A Frequency Divider Board

If you want to use the optional AE6950A Frequency Divider Board to provide a stable 10 MHz reference clock, refer to "Using the AE6950A Frequency Divider Board" on page 165 for detailed information.

Specification References

- [1] OPEN Alliance Automotive Ethernet TC8 ECU Test Specification, v1.0, Section 4.2.2.7
- [2] 1000BASE-T1, IEEE Std 802.3bpTM 2016, Section 97.5.3.2

Test Setup

You can run the Power Spectral Density (PSD) Test using either a spectrum analyzer or an oscilloscope. When using the oscilloscope, refer to "General Test Setup for 1000BASE-T1 and ECU" on page 19 for connection details.

Specification References

- [1] OPEN Alliance Automotive Ethernet TC8 ECU Test Specification, v1.0, Section 4.2.2.8
- [2] 1000BASE-T1, IEEE Std 802.3bp[™] − 2016, Section 97.5.3.2

Transmitter Peak Differential Output

Reference "[2]" specifies that in Test Mode 5, when measured with 100 Ω termination, the transit differential signal at the MDI shall be less than 1.30 Volt peak-to-peak.

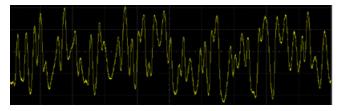


Figure 7-5 Typical Test Mode 5 Waveform (using a pair of SMA cables)

Viewing the Test Report

After running any or all of the Compliance tests, the **Results** tab will show the passed tests and details about the individual tests. For test result details, select any one of the tests from the top pane with the test details shown as follows. In Figure 7-6 selected is the Transmitter Power Spectral Density test, and the test results, with waveform, are shown as follows.

e View Tools Help					
Up Select Tests Configure Connect Run Autom	ate Results	HTML Report			
Test Name	Actual Value		Margin %	Pass Limits	
Transmitter +Vout Droop	630 m%		93.7000	VALUE < 10.00 %	
Transmitter -Vout Droop	-23.9652742	80000 E39%	239.653 E39	VALUE < 10.00 %	
Check the Transmit Clock Frequency	124.999260	MHz		124.987500 MHz <= VALUE <= 125.0	
Check the Transmitter Power Spectral Density (PSD)	1.090 dBm/H	lz		verall = Pass	
Check the transmitter distortion(w/ Disturbing Signal) 5.832 mV		61.1200	VALUE <= 15.000 mV	
	- 111	_			
arameter	Value			ntial Output (ECU 1000Base-T1)	
ansmitter Peak Differential Output (ECU 1000Base-T1) 1.092 V	Keysight Infinity	D.O V O > 0	2023 3:41:53 PM	
				648 /	
		a planet	hukan tati da ki	****	
		ng lines			

Figure 7-6 Typical results tab

Figure 7-7 shows a portion of a typical **HTML Report**. Below this segment are waveforms and more test data.

Test Report

Pass

Test Configuration Details				
	Application			
Name	AE69x0T Automotive Ethernet			
Version	1.69.9019.0			
	Device Description			
Technology Spec	Open Alliance			
StandardType	1000M (ECU)			
SignalSource	Two Oscilloscope Channels			
DisturbingSignalSource	33250A			
VNA Calibration Type	Manual Calibration			
SA Compensation Used	No			
Spectral Measurement Device	Oscilloscope			
Offline Mode Used	No			
Test Session Details				
Infiniium SW Version	11.40.00202			
Infiniium Model Number	UXR0334A			
Infiniium Serial Number	MX62410120			
Debug Mode Used	No			
Compliance Limits	TC8 ECU Specification Layer 1 10008ASE-T1 v1.0 (official)			
Last Test Date	2023-06-26 15:41:53 UTC +08:00			

Summary of Results

Test	Statistics	Marg	in Thresholds
Failed	0	Warning	< 5 %
Passed	6	Critical	< 0 %
Total	6		

Pass	# Failed	# Trials	Test Name (click to jump)	Actual Value	Margin	Pass Limits
0	0	1	Transmitter +Vout Droop	630 m%	93.7000 %	VALUE < 10.00 %
0	0	1	Transmitter - Vout Droop	-23.965274280000 E39%	239.653 E39 %	VALUE < 10.00 %
۲	0	1	Check the Transmit Clock Frequency	124.999260 MHz	47.0400 %	124.987500 MHz <= VALUE <= 125.012500 MHz
0	0	1	Check the Transmitter Power Spectral Density (PSD)	1.090 d8m/Hz	10.9000 %	Overall = Pass
0	0	1	Check the transmitter distortion(w/ Disturbing Signal)	5.832 mV	61.1200 %	VALUE <= 15.000 mV
0	0	1	Check the transmitter Peak Differential Output	1.092 V	16.0000 %	VALUE < 1.300 V

Report Detail

	Summary	Next
Transmitter +Vout Droop Automotive Ethemet ECU Test Specification Layer 1 1000BASE-T1 v1.0 (Section 4.2.2.1 C	T_1000BASE-T1_P	MA_TX_01)
The magnitude of both the positive and negative droop measured with respect to an initial value at 4ns after the zero crossing and a final value at 16ns aft less than 10%. Actual Value Measurement Name: Transmitter +Vout Droop (ECU 1000Base-T1) Pass Limits: VALUE < 10.00 %	er the zero crossing.	shall be
Actual Value Plangin Vd Vpk 630 mX 93.7000 X 3 mV 418 mV		

Transmitter +Vout Droop (ECU 1000Base-T1)

Figure 7-7 Top portion of a typical HTML report

Keysight AE6910T/AE6920T Automotive Ethernet Compliance Solution User Guide and Methods of Implementation

8 Appendix

Reference Documents / 140 Keysight Connection Expert - Adding Instrument Using Remote Interface / 141 Keysight Connection Expert - Adding Instrument using LAN Instrument / 144 Keysight Connection Expert - Adding Instrument using HiSlip Interface / 147 AE6941A Automotive Ethernet Fixture / 150 N5395C Ethernet Transmitter Test Fixture / 153 Configuring External Instruments / 157 Calibrating External Instruments / 162 Code Emulator for E5071C / 175 Equation Editor / 176 Offline Mode / 177 Using the AE6950A Frequency Divider Board / 186 List of Abbreviations / 192

Reference Documents

OPEN Alliance / ECU Specifications: www.opensig.org or www.ieee802.org

AE6910T/AE6920T Automotive Ethernet Compliance Software: www.keysight.com/find/AE6910T-SW www.keysight.com/find/AE6920T-SW

AE6900T Automotive Ethernet Tx Solution: www.keysight.com/find/AE6900T

Other Keysight Automotive Ethernet Applications and Software

- AE6910T/AE6920T Automotive Ethernet Compliance Software: www.keysight.com/find/AE6910T-SW www.keysight.com/find/AE6920T-SW
- AE6900T Automotive Ethernet Tx Solution: www.keysight.com/find/AE6900T
- AE6900R Automotive Ethernet Rx Compliance Solution: www.keysight.com/find/AE6900R
- Keysight AE6910L Automotive Ethernet Channel (Cable and Connector) Compliance software: https://www.keysight.com/us/en/lib/software-detail/instrument-firmware-software/ae6910l-a utomotive-ethernet-lx-compliance-software-and-30day-trial-3133298.html
- D9020AUTP High Speed Automotive Protocol Decode/ Trigger Software (100BASE-T1) www.keysight.com/find/D9020AUTP

Keysight Connection Expert - Adding Instrument Using Remote Interface

The following are the steps to add instruments or interfaces to the Keysight Connection Expert.

1 Launch your Keysight Connection Expert.

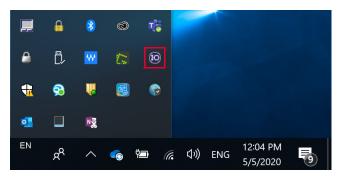
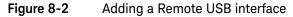



Figure 8-1 Launching the Keysight Connection Expert

2 Click the **+Add** button to add an instrument or interface. In this example, you will be adding a remote USB interface. So, click **+Add** > **Remote USB interface**.

Keysight Connection Expert 2019						
Instruments	PXI/AXIe Chassis					
My Instruments		🕇 Add	С	:=	T	Detail for USI
✓ LAN (TCPIPO)				rume strur		on ASRL3
Instruments found or your list.						
✓ COM (ASRL3)				strur		on ASRL5
No Instruments Found		GPIB-VXI interface Remote serial instrument				
				· · · ·	i inst inte	
	1	Rem	ote	USB	inter	face

- 3 Enter the Hostname or IP address, then click the **Test Connection** button, you will see the message "Verified".
- 4 Click **OK**.

Add a remote USB interface	×
Specify Connection Addresses:	
VISA Interface ID:	USB2 •
TCPIP Interface ID:	тсріро 👻
Specify Connection Information:	
Find Interfaces	
Hostname or IP Address:	10.154.14.147
SICL Interface Name on Remote Host:	usb0
Verify Connection:	
Test Connection	Verified
	OK Cancel

Figure 8-3 Add a remote USB interface

- 5 You will see the remote USB interface under **Remote USB**.
- 6 Copy the **SICL Address**. You will need to add this to configure the address of the remote USB interface.

Keysight Connection Expert 2019		¢?_∂×
Instruments PXI/AXIe Chassis		
My Instruments + Add 2 🖬 🕇	Details for Agilent Technologies 81160A	
V LAN (TCPIPO)	🛛 🖉 🗙 📃 📴 😉 🙆 🌐	
Instruments found on local subnet, click [+Add] to add to your list.	Check Edit Remove Interactive IO Monitor Command BenchVue Web UI Soft Front Status IO Expert Panel	
V COM (ASRL3)		
No Instruments Found	Manufacturer: Agilent Technologies	
V 😢 COM (ASRL4)	Serial Number: MY51401540	
No Instruments Found	Firmware Version: 2.0.0.0-2.6	
V 😢 COM (ASRL5)	Web Information: Product Page	
No Instruments Found	Connection Strings	
V USB (USB0)		
No Instruments Found	VISA Address Aliases SICL Address	
✓ Remote USB (USB1)	USB1::0x0957::0x4108::MY51401540::0 ⁴ :3]WSTR USBInstrument1 Ion[10.154.14.147]:usb0[2391::16648::MY51401540::0	
81160A, Agilent Technologies USB1::0x0957::0x4108::MY51401540::0 USBInstrument1	Installed IVI Drivers 🔥 Update	
	<no drivers="" installed=""></no>	
	Remote 10 Server Off 22-Bit Keysight VISA is P	imary Version: 18.1.24715.0

Figure 8-4 Details for the added instrument or interface

Keysight Connection Expert - Adding Instrument using LAN Instrument

The following are the steps to add instruments or interfaces to the Keysight Connection Expert.

1 Launch your Keysight Connection Expert as shown in Figure 8-1.

2 Click +Add > LAN instrument.

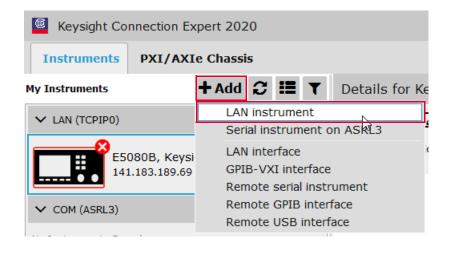


Figure 8-5 Adding a LAN instrument

- 3 Select the Enter Address tab.
- 4 Enter the Hostname or IP address, then click the **Test This Visa Address** button, you will see the message "Verified".
- 5 Click **OK**.

Add a LAN device X						
Select from List	Enter Add	dress				
Set LAN Address:						
Hostname or IP A	ddress:	141.183.189.168				
TCPIP Interface ID	:	ТСРІРО	-			
Set Protocol:						
 Instrument (V 	/XI-11)	Remote Name:	inst0			
HiSlip		Remote Name:	hislip0			
Socket		Port Number:	5025			
Verify Connection:						
✓ Allow *IDN Q	uery					
Test This VISA A	ddress	TCPIP0::141.183.189. Verified	168::inst0::INSTR			
View Web Page:						
Instrument Web Int	erface					
			OK Cancel			

Figure 8-6 Add a LAN instrument

- 6 You will see the instrument under LAN (TCPIPO).
- 7 Copy the **SICL Address**. You will need to add this to configure the address of the LAN interface.

Keysight Connection Expert 2019	0	�? _ ♂ ×
Instruments PXI/AXIe Chassis		
My Instruments + Add 2 = T	Details for Agilent Technologies 81150A	
My Instruments Add Image: Construct of the second	Details for Agilent Technologies 81150A	st
	Remote IO	O Server Off 32-Bit Keysight VISA is Primary Version: 18.1.24715.0

Figure 8-7 Details for the added LAN device

Keysight Connection Expert - Adding Instrument using HiSlip Interface

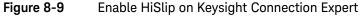
Perform the following steps on the VNA software followed by the Keysight Connection Expert.

On the VNA software

- 1 Go to the VNA software > System > System Setup > Remote Interface...
- 2 Check the HiSLIP checkboxes.
- 3 Set the Address numbering to your desired number, for instance "0".

Ren	note Interface		– 🗆	×
	HISLIP ☑ HISLIP	Instrument: VISA Address:	hislip_PXI10_CHASSIS1_SLOT1_INDEX0 TCPIP0::CYRVNV2::hislip_PXI10_CHASSIS1_SLOT1_INDEX0::INSTF	
	 ☑ Legacy HiSLIP Security □ Enable Remote Dri 	Address 0		
	SCPI Monitor/Input		,	

Figure 8-8 Enable HiSLIP on the VNA software

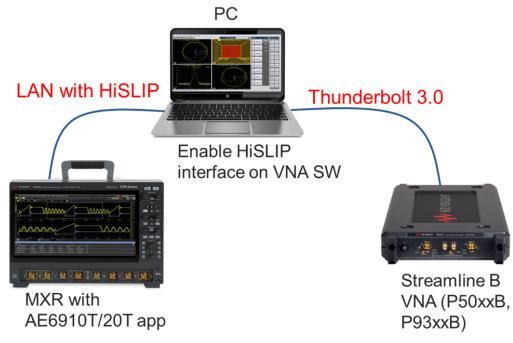

4 Click OK.

On the Keysight Connection Expert

On scope, connect to the PC over LAN using the Host PC IP address with following selections.

- 1 Launch your Keysight Connection Expert as shown in Figure 8-1.
- 2 Click the +Add > LAN instrument as shown in Figure 8-5.
- 3 Select the Enter Address tab.
- 4 Enter the Hostname or IP Address: localhost.
- 5 Under **Set Protocol**, select **HiSlip** and enter the **Remote Name**. Ensure your HiSlip number is the same as the Address numbering you entered above in step 3 on the VNA software, for instance "hislip0".
- 6 Under Verify Connection, click Test This VISA Address.

Add a	LAN device					×
Sele	ct from List	Enter Addr	ess			
Set L	AN Address:		2			
	Hostname or IP	Address:	localhost			
	TCPIP Interface	ID:	TCPIP0	•		
Set	Protocol:					
	Instrument	(VXI-11)	Remote Name:	inst0		
	HiSlip		Remote Name:	hislip0		
	Socket		Port Number:	5025		
Verif	fy Connection:	1				
	✓ Allow *IDN (Test This VISA		TCPIP0::localhost::his Verified	lip0::INSTR		
View	v Web Page:					
	Instrument Web I	nterface				
					OK Can	cel



7 Click OK.

Keysight Connection Expert 2019	۵ ?	_ = ×
Instruments PXI/AXIe Chassis		
My Instruments + Add 🕄 🗮 🕇	Details for Keysight Technologies P5024A	
V LAN (TCPIPO)	😂 🗭 🗙 🔜 🎯 🖆 🔤 🌐	
M9804A, Keysight Technologies 141.183.191.217	Check Edit Remove Interactive IO Monitor Command BenchVue Web UI Soft Front Status IO Expert Panel	
P5024A, Keysight Technologies 127.0.0.1	Manufacturer: Keysight Technologies Model: P5024A Serial Number: MY58100344	∎
Unknown Iocalhost	Firmware Version: A.15.20.07 Connection Strings	
Unknown Iocalhost	VISA Address Aliases SICL Address	
✓ COM (ASRL3)		
No Instruments Found		

Instrument added

AE6941A Automotive Ethernet Fixture

This test fixture is designed to work for 100Base-T1 and 1000Base-T1 compliance tests.

The test fixture board is divided into three sections.

Compliance Test Board Section	Description
1	PSD (Power Spectral Density Test)
2	Transmitter/ Distortion
3	Protocol Decode or Receiver Test

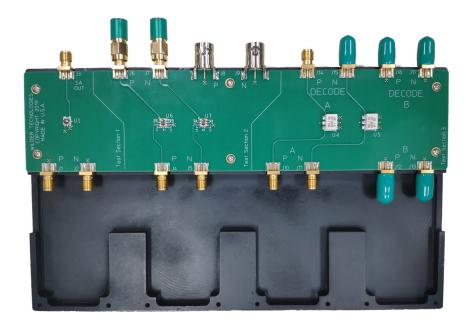


Figure 8-12 AE6941A Automotive Ethernet Fixture

The test fixture can be used with two adapters that are available to purchase separately; the SMA to MATEnet adapter and SMA to Mini-50 adapter as shown below. Optionally, this can be used with AE6965A H-MTD to SMA adapter.

Figure 8-13 SMA to MATEnet adapter

Figure 8-14 SMA to Mini-50 adapter

Figure 8-15 SMA to H-MTD adapter

The adapters attach to the AE6941A Automotive Ethernet Fixture are as shown in Figure 8-16. The AE6943A attached to the AE6941A Automotive Ethernet Fixture using the SMA screws provided as shown in Figure 8-16. The AE6943A can be interchanged depending on the DUT interface.

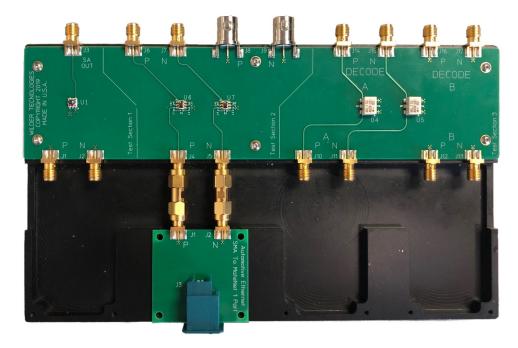


Figure 8-16 AE6941A Automotive Ethernet Fixture with AE6943A adapter

N5395C Ethernet Transmitter Test Fixture

Keysight's N5395C Ethernet 10/100/1G Transmitter Electrical Test Fixture includes a main test fixture board (N5392-66402), a short RJ45 interconnect cable (N5392-61601), and a small Return Loss impedance calibration board (N5392-66401).

Keysight recommends the N5395C Ethernet Test Fixture for the compliance of Test Mode 4. You may use a different, comparable fixture, but is not guaranteed to produce the same result.

Notice that the main Test Fixture board is divided into eight sections plus an area to store jumpers. You do not use all the sections in this demo/evaluation. Refer to Figure 8-17.

Compliance Test Board Section	Description	Compliance Test Mode
1	Differential Return Loss used for RJ45 devices	Conversion from RJ45 to SMA
2	Load & Probes	Not Used
3	100BT Jitter	Not Used
4	Common Mode Output Voltage	Not Used
6	10BT w/o TP Model	Not Used
7	10BT with TP Model	Not Used
10	Balun	Power Spectrum Density Test
11	Disturbance/Distortion	Transmitter Distortion Test

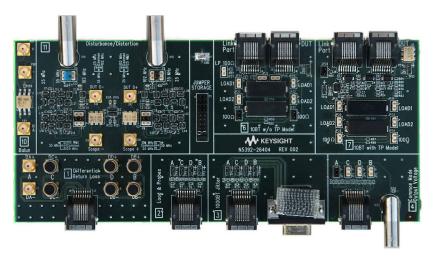


Figure 8-17 N

N5395C Ethernet Electrical Transmitter Test Fixture

Distortion Test Jumper Settings

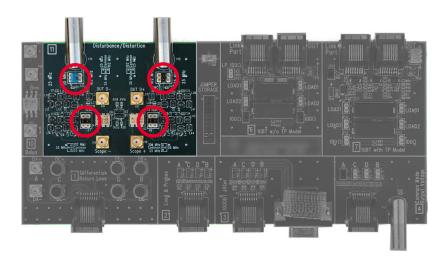


Figure 8-18 shows the jumper positions for the Ethernet Test Fixture Section 11 applicable for various frequencies.

Figure 8-18 Section 11 on the Ethernet Test Fixture

For 100M and ECU:

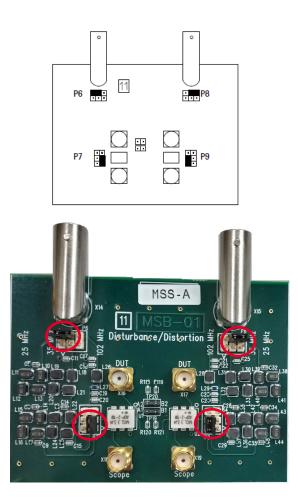
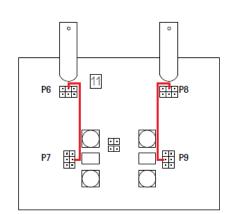



Figure 8-19 Jumper Location for 100M and ECU

For 1000M:

Jumper Location for 1000M

Configuring External Instruments

For each test, the Infiniium oscilloscope automatically configures any external instruments (AWG, E5080B Vector Network Analyzer, and N9010B EXA Signal Analyzer) as required for the test. To do this, however, the oscilloscope must know the SICL address of each instrument. The External Instruments **Status** indicator is red if the instruments are not properly configured.

NOTE

Connect the instruments to the oscilloscope before configuring them. The connection is generally through a USB connection.

Note that the 33250A AWGs require an 82357B USB/GPIB interface. You must configure the Master and Slave 33250A AWGs separately.

1 On the AE6910T/AE6920T Compliance Test Application's **Set Up** tab, click the **Signal Source Configure** button.

×	🕘 Automotive Ethernet Test Application New Device1	
F	ile View Tools Help	
s	Set Up Select Tests Configure Connect Run Automate Results HTML Report	
	Automotive Ethernet Test Application	ľ
	Technology	
	Specification: IEEE V Data Rate: 100M V bps	
	Oscilloscope Connection	
	Input: 🔵 Two Channels 🔘 One Channel	
	Waveform Capture	
	🖸 Oscilloscope HDF5(*.h5) 🛛 🔪 🔲 Network Analyzer CST(*.cst) 🛛 🖉 Spectrum analyzer XY Values(*.csv	
	Distortion Test Settings	
	Vise Disturbing Signal	
	Use 10MHz Ref Clock (Disabled : Uses Clock Recovery Algorithm for Synchronization) Disturbing Signal Source: 33250A Calibrate Sources	
SE		
٦	External Instruments	
UP	Vector Network Analyzer Spectrum Analyzer	
	O Manual Calibration Browse	
	O Automated Calibration	
	Not Connected Configure Not Connected Configure	
	Spectral Settings (Test Mode 5)	
	Spectral Analysis: 🔿 Oscilloscope 🌑 Spectrum Analyzer	J
	Offline Mode	
	Enable	
	Test Report Comments (Optional)	
	More	
۲	Messages	

Figure 8-21ECU Compliance Test Application Set Up Tab

There are three available external instrument configurations; Vector Network Analyzer, Spectrum Analyzer, and Signal Source (AWG).

- External Instrument List
 ?

 Please highlight the instrument to be configured and enter instrument address or click "Find" to search for the instrument address:

 Instrument
 Address
 Manufacturer
 Model
 Action

 Fg33250Slave
 #
 #
 #
 #

 Fg33522/3600
 usb0[2391:19207
 Agilent Technologies
 33612A
 #

 Fg33522/33600
 SICL
 usb0[2391::19207::MY53400166::0]
 Update
 Done
- 1 Clicking the **Configure** button opens the **External Instruments List** dialog box. Kindly take note that the **find** and **clear** functions are available under the Action column.

- 2 Add instruments or interfaces to Keysight connection expert by following the steps listed as follows. Refer to Keysight Connection Expert help file for connection steps for other interfaces.
 - "Keysight Connection Expert Adding Instrument Using Remote Interface" on page 141
 - "Keysight Connection Expert Adding Instrument using LAN Instrument" on page 144
 - "Keysight Connection Expert Adding Instrument using HiSlip Interface" on page 147
- 3 Select the AWG to use in your system. For the AE6900T Solution, you can select any of the AWG. For example, **Fg33522/33600**.
- 4 Provide the SICL address:
 - If you know the SICL address (you can use *Keysight IO Libraries Suite Connection Expert* utility to obtain the SICL address), enter it in the **SICL Address** field.
 - If you do not know the SICL address, click the button (under the Action Column), and the Compliance Test Application will attempt to locate and identify the AWG.
 - To clear the selected instrument details, click the 🛄 button.

5 Clicking on the 🔂 button, pops up a new window, "Detected Instrument" displaying values captured from the connected instrument.

Detected Instrument								
Please Select One Instrument:								
Address Manufactur Model								
usb0[2391::19207::MY53400166::0]	Agilent Technologies	33612A						
		Refresh Ok						

Figure 8-23 Detected Instrument

6 Click the "Refresh" button for application to attempt to locate and identify the AWG.

Detected Instrument		? (=) ×
Please Select One Inst	rument:	
Address	Manufactur	Model
lan[10.82.98.11]:inst0	Keysight Technologies	E5080B
	Ref	resh Ok

Figure 8-24 Detected Instrument

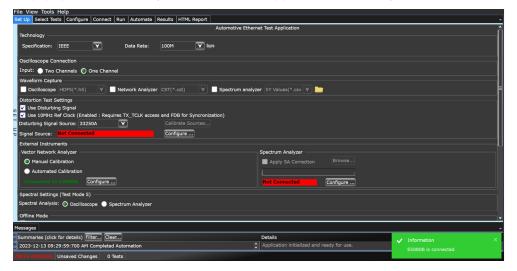
7 Highlight the instrument in Detected Instrument dialog box and click the OK button for adding the instrument to External instrument window.

Detected Instrument							
Please Select One Instrument:							
Address Manufactur Model							
usb0[2391::19207::MY53400166::0]	Agilent Technologies		33612A				
			l				
			l				
			2				
			ł				
		Refresh	Ok				

Figure 8-25 Adding the instrument to External instrument window.

8 When adding instrument from "Detected Instrument" to "External Instrument List" window based on the Model, if a wrong model is selected for the corresponding instrument, error window will pop up.

External Instrum	nent List		?				
		to be configured h for the instrum		trument	bps Detected Instrument		? – X
Instrument Address Manufacturer Model Action				Please Select One Instrume	ent:		
Fg33250Master Fg33250Slave					Address	Manufactur	Model
Fg33522/33600	usb0[2391::19207	Agilent Technologies	33612A	+ 👬	usb0[2391::19207::MY53400166::0]	Agilent Technologies	33612A
Fg81150/60							
E-222E0M+							
Fg33250Master							
SICL							
Update							
			D	one		Refi	r esh Ok



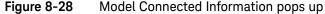


Figure 8-27

9 Click the **Update** button, which enables the **Identify** button.

- 10 Click the **Identify** button. Then, you will need to wait for a few seconds for the instrument's **Manufacturer** and **Model** to be populated.
- 11 Repeat step 2 to step 10 for the E5080B Vector Network Analyzer and the N9010B EXA Spectrum (or Signal) Analyzer by selecting the configure buttons on the Vector Network Analyzer and Spectrum Analyzer external instruments section.
- 12 Upon completion, click the **Done** button to return to the **Set Up** tab. An information window will pop up on the bottom right side corner of the application with message "Model is connected".

13 The Signal Source **Status** indicator turns green to indicate that all external instruments are configured properly, as shown as follows.

NOTE

If the DUT is designed based on the IEEE standard for either 10BASE-T1S, 100BASE-T1, 1000BASE-T1, 2.5GBASE-T1, 5GBASE-T1, or 10GBASE-T1, then it supports Data Rate of 10 Mbps, 100 Mbps, 1000 Mbps, 2.5 Gbps, 5 Gbps, or 10 Gbps. By default, the 100 Mbps is selected.

If the DUT is designed based on the Open Alliance standard for TC8 ECU, then it only supports Data Rate of 100 Mbps.

AWG selection varies depending on the standard and the data rate selected.

Configure ...

Calibrating External Instruments

Calibrate all instruments before running the compliance tests. The Compliance Test Application guides you in calibrating the AWG and the VNA.

Calibrating the AWG

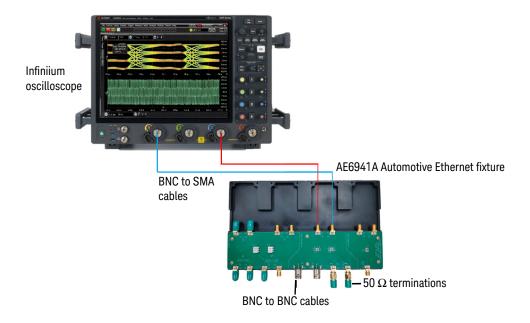
Before running disturbing signal tests, calibrate the AWG(s). Once calibrated, connect the equipment depending on the AWG used.

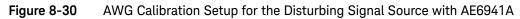
For AE6941A:

- When using a 33622A AWG, see Figure 3-7 on page 59.
- When using two 33250A AWGs, see Figure 3-8 on page 60.
- When using an 81150A/81160A ANG, see Figure 3-9 on page 60.

For N5395C:

- When using a 33622A AWG, see Figure 3-10 on page 61.
- When using two 33250A AWGs, see Figure 3-11 on page 61.
- When using an 81150A/81160A ANG, see Figure 3-12 on page 62.


You must configure The AWG Disturbing Signal Source before attempting to calibrate it. If the system is not physically configured to perform the calibration, you will not be able to click the Calibrate Sources button. Refer to "Configuring External Instruments" on page 157.


NOTE

NOTE

Instead of connecting SMA to SMA cables on the N5395C Evaluation Board, connect 50 Ω terminators to the two scope SMA connectors on the Evaluation Board. Figure 8-32 shows this connection.

AE6941A Fixture Connection Setup

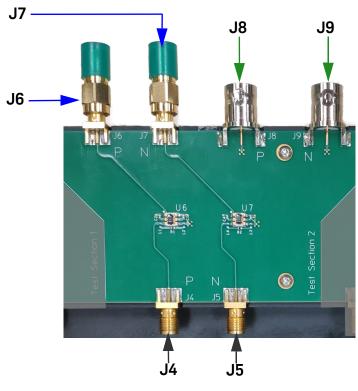


Figure 8-31 AE6941A Connection Setup

Follow the following steps to set up the connection.

- 1 Connect AWG Channel 1 to J8(P).
- 2 Connect AWG Channel 2 to J9(N).
- 3 Connect 50 Ω Terminators to J6(P) and J7(N).
- 4 Connect J4(P) to Oscilloscope CHAN 1*.
- 5 Connect J5(N) to Oscilloscope CHAN 4*.

NOTE

 \ast User selection determines the Oscilloscope channel in use.

N5395C Fixture Connection Setup

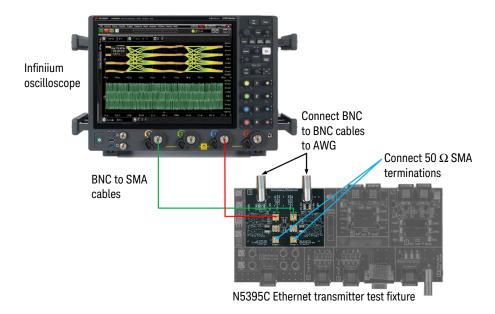
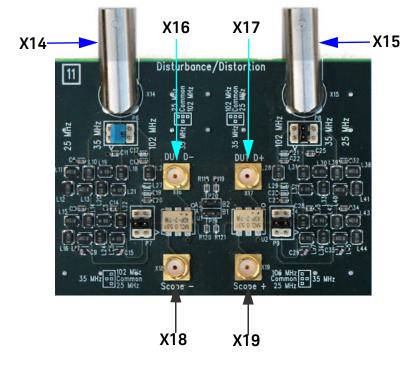



Figure 8-32 AWG Calibration Setup for the Disturbing Signal Source with N5395C

N5395C Connection Setup

Figure 8-33 AE6941A Connection Setup

Follow the following steps to set up the connection.

- 1 Connect AWG channel 1 to X14.
- 2 Connect AWG channel 2 to X15.
- 3 Connect 50 Ω terminators to X18 and X19.
- 4 Connect X16 to Oscilloscope CHAN1*.
- 5 Connect X17 to Oscilloscope CHAN4*.

NOTE

* User selection determines the Oscilloscope channel in use.

Performing the AWG Calibration for the Disturbing Signal Source

1 On the AE6910T/AE6920T Compliance Test Application's **Distortion Test Settings** section tab, click the drop down menu and choose the appropriate source.

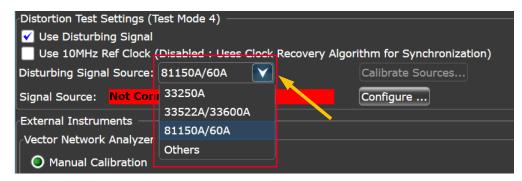
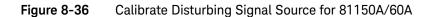


Figure 8-34 Disturbing Signal Source


- 2 Configure the Signal Source. Refer to "Configuring External Instruments" on page 157.
- 3 Click the **Calibrate Sources** button. This opens the **Calibrate Disturbing Signal** dialog box for the selected AWG.

Distortion Test Settings (Test Mode 4)	
🖌 Use Disturbing Signal	
Use 10MHz Ref Clock (Disabled : Uses Clock Recovery Algor	ithm for Synchronization)
Disturbing Signal Source: 81150A/60A	Calibrate Sources
Signal Source: Connected to BL LOOA	Configure

Figure 8-35 AWG Calibration Setup for the Disturbing Signal Source

4 With the appropriate AWG Address set and the correct oscilloscope channels selected, click the **Calibrate** button to start the calibration process.

Calibrate Disturbing Signal for 81150A/6	DA	?	
Function Generator Address	Oscilloscope Channel	Help	
Adress: usb0[2391::16648::MY514	Ch1: Channel 1		
	Ch2: Channel 3	Calibrate	
Disturbing Signal Last Calibration: 11/3/	2022 12:12:53 PM [Failed]	Done	
Note: If the function generators haven't been turned OFF, there is no need for re-calibration.			
TRIMINAL TO TRIMINAL TO TT TANK TO SUBJECT AND A			

8 Appendix

5 When the software finishes the calibration, click the **Done** button to return to the Set Up tab. Refer to the AE6910T/AE6920T online help for a more detailed explanation.

Calibrating the VNA

You have an option to either perform a manual calibration or an automated calibration. By default, manual calibration is selected.

Manual Calibration

Before using the VNA, you must calibrate it using the N4431B Ecal Kit (or similar Ecal Kit). See Figure 8-37 for the connection diagram. Calibrate the VNA using the instructions in the VNA's user guide.

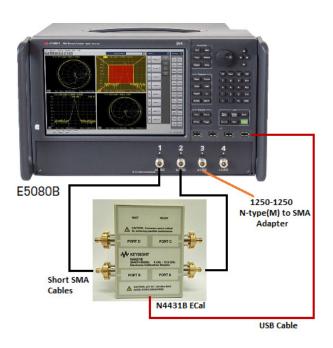


Figure 8-37 VNA Calibration Setup Connection

- 1 Connect the USB port on the Ecal module with the USB port on the E5080B via a USB cable. You may perform this connection while the E5080B's power is on.
- 2 Allow the Ecal module to warm up for 15 minutes until the module indicator changes from **WAIT** to **READY**.
- 3 Connect port A and port B on the Ecal module to the VNA's test ports (using SMA cables) to be calibrated. Use the N-type (M) to SMA Adapter to easily connect to the SMA cables.
- 4 Press **Channel Next/Channel Prev** keys to select the channel for which you want to perform the calibration.
- 5 Click Ecal.
- 6 Click 2 Port Ecal.
 - When using a 2-port E5080B, pressing this key performs a 2-port Ecal.
 - When using a 3-port or 4-port E5080B, click one of the softkeys to start a full 2-port calibration.

- 7 The following is a list of setup requirements before running the calibration routine.
 - · Set Measurement to either Sdd11 or Sdc11 depending on test.
 - Set **Start** to **0.3 MHz**. (Frequency may vary depending on the tests. Refer to the individual test information).
 - Set **Stop** to **1 GHz**. (Frequency may vary depending on the tests. Refer to the individual test information).
 - Set Format to Log Mag.
 - Set Sweep Type to Logarithmic.
 - · Set Points to 1600.
 - Set Output Power to 0 dBm.
 - Set Measurement Bandwidth to 100 Hz.

NOTE

If you are using the E5080B in Manual Calibration mode, you will need to set the E5071C Code Emulator. Refer to "Code Emulator for E5071C" on page 175.

When using a E5080B, as a first choice, use the automated calibration and test instead of the code emulator whenever possible.

Automated Calibration

The following steps detail how to perform an Automated Calibration. Refer to Figure 8-38 for the VNA calibration setup.

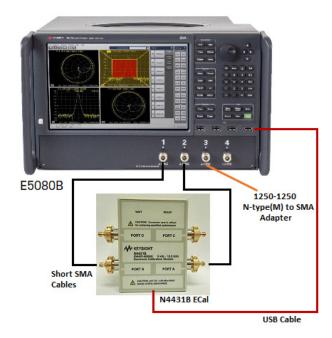


Figure 8-38 VNA Calibration Setup Connection

- 1 Configure the VNA. Refer to "Configuring External Instruments" on page 157.
- 2 Ensure that the status shows that it is connected to the E5080B (or supported models).
- 3 Select Automated Calibration and the Calibrate button appears.

Calibrate
Configure

4 Click **Calibrate** to launch the **VNA Calibration Setup** window. By default, it populates the recommended parameter settings. However, you have the option to edit the parameters as you see fit.

VNA Calibration Setup		🖓 🔞 26 🕜 Hot Reload <	? – 🗙
General Settings]
VNA Address and Test Type	;	VNA Channels	
Address:	an[10.82.98.11]:inst(D Port A: Channel 1	Calibrate
Test Type: Return Loss		Port B: Channel 2	Done
VNA Parameters			
Sweep Start (MHz)	1	Output Power (dBm)	-10
Sweep Stop (MHz)	200	Meas. Bandwidth (Hz)	100
Sweep Type	Log Freq 🔽	Impedance Diff. Mode (Ω)	100
Sweep Points	1600	Impedance Comm. Mode	25
Calibration Status			
VNA Last Calibration: Not o	calibrated		
Note: If the VNA haven't been tu for a re-calibration.	rned OFF, as well as r	no change in cables and configu	rations, there is no need

Figure 8-40 VNA Calibration Setup parameter settings

5 Once you finalize the parameters, click the **Calibrate** button to start the calibration process.

Figure 8-41 VNA Channels

6 This action starts the calibration process. The connection prompt appears for you to make connections as well as to confirm the connections made. Once done, select I have completed these instructions. The selection will change from Orange to Green. Click Next to initiate the process.

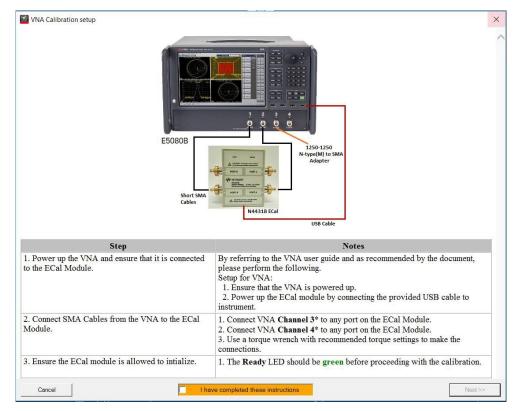


Figure 8-42 VNA Calibration Setup

7 Depending on the selected parameters, the calibration time may vary. Once the calibration is done and completed, the **Calibration Status** box will reflect the date and time, as well as the calibrated test and parameters.

Calibration Status	
VNA Last Calibration: 4/30/2020 7:46:13 PM [Calibrated]	î
Calibrated Settings:	
Port A: Channel 3 Port B: Channel 4 Start Freq: 1 MHz Stop Freq: 66 MHz	
Points: 1600 Meas Bandwidth: 100 Hz Output Power: 10 dBm	~

Figure 8-43 Calibration Status Box

8 The calibration is now complete, and you can proceed to select the test and run it accordingly.

Aborting Calibration

If an automated calibration has started, and you would like to cancel or abort it, follow the following steps.

1 Click the **Stop Calibration** button.

Calibration in progress	×
Applying settings to ENA Time elapsed (Minutes:Seconds): 00:01	
Stop Calibration	

Figure 8-44 Calibration in progress - Stop Calibration

2 Click the **Abort** button on the VNA Graphical User Interface.

weeping	
Abort	
Slow sweep	

Figure 8-45 Abort Sweep

These actions cancel the initiated user calibration.

Code Emulator for E5071C

The E5071C code emulation mode is for remote controlling the VNA with test programs written for the E5071C ENA Series network analyzer. In the E5071C command emulation mode, the VNA firmware translates the incoming E5071C SCPI commands and executes the VNA's equivalent command(s).

How to use the code emulator

The following steps describes how you can use the code emulator.

1 Select System > System Setting > Code Emulation > 5071 to display the following dialog box.

E5071 Code Emulator	_ _ X	
Channels T 2	races	
Enable Custom IDN	String	
Manufacturer	Keysight Technologies	
Model Number	E5080A	
Serial Number	MY5510xxxx	
Firmware Version	A.11.xx.xx	
Get IDN		
Enable Code Emulation on Start Up		
Start		

Figure 8-46 E5071 Code Emulator

- 2 Select the required number of **Channels** and **Traces** for your measurement.
- 3 Specify the IDN string if you want to modify it. The *IDN? returns the value you set.
- 4 If you want to start with the Code Emulator at the next VNA application start-up, check the **Enable Code Emulation on Start Up** checkbox.
- 5 Click the Start button. Upon clicking it, the Start button changes to Exit.
- 6 The dialog box "To quit the emulation mode requires you to exit the VNA application. Do you want to continue?" is displayed. Click **Ok**.
- 7 The E5080A/B is preset, but you can set the number of traces and channels.
- 8 Execute your program in the E5071C commands thorough GPIB, USB, or LAN.
- 9 To quit the emulation mode, press **Exit** on the dialog box in Figure 8-46.

NOTE

When using a E5080B, as a first choice, use the automated calibration and test instead of the code emulator whenever possible.

Equation Editor

For models like the E5061B that do not support differential measurements like S_{dd11} or S_{dc11} , the application automatically configures the VNA and sets up the equation editor to effectively make the required measurements.

However, you will still need to calibrate the equivalent single-ended measurements manually prior to running tests.

You can look up the equation editor content of the VNA for more details. By clicking on the following link then searching for "Equation Editor" will display all the relevant content for the E5061B.

www.keysight.com/find/E5061B

For Automotive Ethernet, the equivalent S_{dd11} and S_{dc11} equations are as follows:

 $S_{dd11} = 0.5 \times (S_{11} - S_{21} - S_{12} + S_{22})$

 $S_{dc11} = 0.5 \times (S_{11} - S_{21} + S_{12} - S_{22})$

Offline Mode

The **Offline Mode** allows you to use a saved waveform file to run the tests. The following are the steps to run the tests in offline mode:

1 Enable the Offline Mode.

Automotive Ethernet Test Application New Device1	
File View Tools Help	
Set Up Select Tests Configure Connect Run Automate Results HTML Report	-
Automotive Ethernet Test Application	Ê
Technology	
Specification: IEEE Y Data Rate: 100M Y bps	
Oscilloscope Connection	
Input: Two Channels O One Channel	
Waveform Capture	
Oscilloscope HDF5(*.h5) V Network Analyzer CST(*.cst) V Spectrum analyzer XY Values(*.csv V	a 👝 📗
Distortion Test Settings	
✓ Use Disturbing Signal	
Use 10MHz Ref Clock (Disabled : Uses Clock Recovery Algorithm for Synchronization)	
Disturbing Signal Source: 33250A Calibrate Sources	
Signal Source: Not Connected Configure	
External Instruments	
Vector Network Analyzer	
O Manual Calibration Browse	
Sector Automated Calibration	
Not Connected Configure Not Connected Configure	
Spectral Settings (Test Mode 5)	
Spectral Analysis: 🔿 Oscilloscope 🌒 Spectrum Analyzer	
Offline Mode	
Enable Manage Waveform	
Test Report Comments (Optional)	
More	
	U
	V
Messages	-
Summaries (click for details) Filter Clear Details	
2023-12-13 09:29:59:700 AM Completed Automation A Application initialized and ready for use.	
0 2023-12-13 09:30:03:596 AM Ready	×
Unsaved Changes 0 Tests	

Figure 8-47 Enable the Offline Mode

- 2 Click Manage Waveform... button.
- 3 Refer to the following to acquire, load, or clear waveforms:
 - "Acquiring waveforms" on page 178
 - "Loading waveforms" on page 181
 - "Clearing waveforms" on page 184

Acquiring waveforms

Offline Waveform	×
the second sector of the second sec	
Selected Waveform: (none)	
Load	Clear
Acquire	Done

1 Click Manage Waveform... as shown in Figure 8-47. The Offline Waveform dialog box appears.

Figure 8-48Offline Waveform dialog box

2 Click + to expand and view the available waveform types for each test mode.

Offline Waveform	X
 100Base-T1 Transmitter Tests Test Mode 1 Tests Test Mode 1 Waveform (Positive pulse) Test Mode 1 Waveform (Negative pulse) Test Mode 2 Tests Test Mode 3/TX_TCLK Tests Test Mode 4 Tests MDI Return Loss Tests MDI Rode Conversion Loss Tests Test Mode 5 Tests 	
Selected Waveform: Test Mode 1 Waveform (Positive pulse) Load Clear	
Acquire Done	

Figure 8-49 Test mode expanded view to Acquire

- 3 Select a Test Mode and click the **Acquire** button to acquire the waveform associated with the selected test.
 - A **Capture in progress**... dialog box appears, indicating the progress of the capture and saving of the waveform on the local disk. You may click the **Stop Capture** button if you want to abort capturing the waveform file.

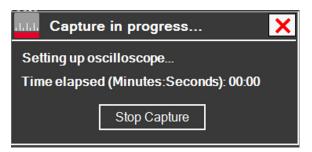
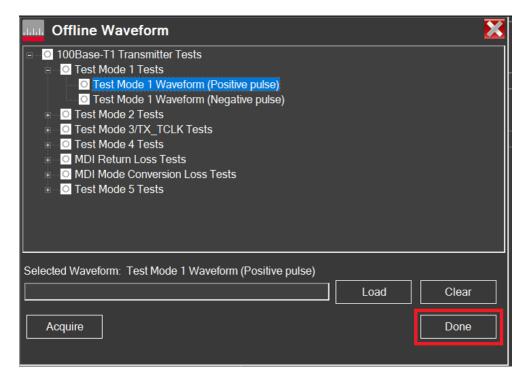



Figure 8-50 Capture in progress dialog box

- Notice the change in the status of the Test whose wave form has been captured.
- The file path and file name with *.wfm extension of the captured waveform is displayed. The default path where these files are captured is:
 (a) Dup group Date (for item) Append Ap
 - C:\ProgramData\Keysight\Infiniium\Apps\AutomotiveEthernetTest\Project\app\

Figure 8-51 File path and file name with *.wfm extension of the captured waveform

- 4 Repeat step 3 to acquire more waveforms for the remaining tests.
- 5 Once you have finished capturing the waveforms, click the **Done** button to return to the **Set Up** tab.

Loading waveforms

- 1 Click Manage Waveform... as shown in Figure 8-47. The Offline Waveform dialog box appears.
- 2 Click + to expand and view the available waveform types for each test mode as shown in Figure 8-48.

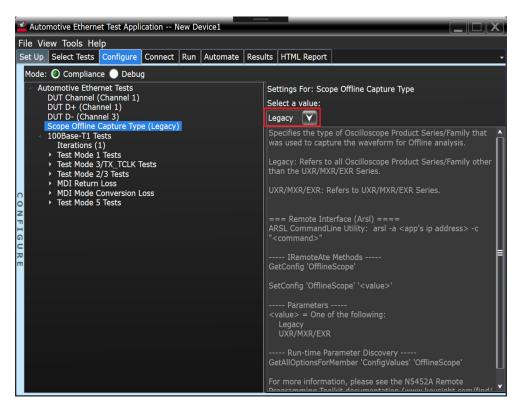
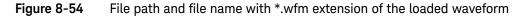


Figure 8-52 Test mode expanded view to Load


3 Select a test and click the Load button. The Select wfm file window appears.

🖾 Select wfm file						×
	< Auto	motiveEthernetTest > Project > app	~	ē	Search app	م
Organize 👻 New	folder					□ ?
📥 OneDrive - Keysig	^	Name	Date mod	ified	Туре	Size
💻 This PC		PositivePulse.wfm	9/2/2022 3	:46 PM	WFM File	7
 3D Objects Desktop Documents Downloads Music Pictures Videos Windows (C:) Network 						
- Network	~ <					>
F	ile nam	e: PositivePulse.wfm		~	All Files (*.*) Open	∨ Cancel

Figure 8-53 Select wfm file window

- 4 Select the waveform file associated with the test mode selected, and click **Open**.
 - The file path and file name with ***wfm** extension of the loaded waveform is displayed.
 - Notice the change in the status of the test whose waveform has been loaded.

Offline Waveform	×
 100Base-T1 Transmitter Tests Test Mode 1 Tests Test Mode 1 Waveform (Positive pulse) Test Mode 2 Tests Test Mode 2 Tests Test Mode 3/TX_TCLK Tests Test Mode 4 Tests MDI Return Loss Tests MDI Mode Conversion Loss Tests Test Mode 5 Tests 	
Selected Waveform: Test Mode 1 Waveform (Positive pulse) C:\Users\vinuv502\Desktop\Office\Waveform\AutomotiveEthern Load Clear	
Acquire Done	

5 Repeat step 3 and step 4 to load more waveforms associated with the various tests as required.

- 6 Once you have finished loading the waveforms, click the **Done** button.
- 7 Go to the **Configure** tab and select a value for the **Scope Offline Capture Type**. This specifies the type of scope that was used to capture the waveform for offline analysis.

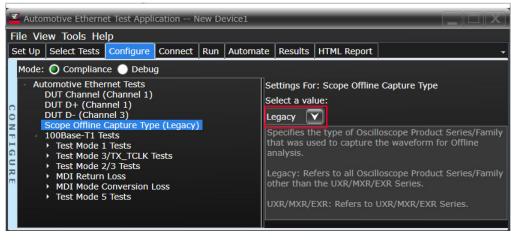


Figure 8-55 Select a value for the Scope Offline Capture Type

8 Return to the **Set Up** tab.

Clearing waveforms

- 1 Click Manage Waveform... as shown in Figure 8-47. The Offline Waveform dialog box appears.
- 2 Click + to expand and view the available waveform types for each test mode as shown in Figure 8-48.

IIII Offline Waveform	
□ 100Base-T1 Transmitter Tests	٦.
- 💿 Test Mode 1 Tests	
Test Mode 1 Waveform (Positive pulse)	
Test Mode 1 Waveform (Negative pulse)	
Test Mode 2 Tests	
O Test Mode 3/TX_TCLK Tests	
- O Test Mode 4 Tests	
OMDI Return Loss Tests OMDI Made Conversion Loss Tests	
e ─ O MDI Mode Conversion Loss Tests	
	┛
Selected Waveform: Test Mode 1 Waveform (Negative pulse)	
C:\Users\vinuv502\Desktop\Office\Waveform\AutomotiveEthern Load Clear	
Acquire Done	

Figure 8-56 Select a test mode and click Clear

- 3 Select a test mode and click **Clear**. This removes the file path and the file name displayed in the adjacent text field.
 - Notice the change in the status of the test whose waveform has been cleared.

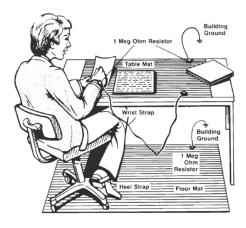
Offline Waveform	X
 100Base-11 Iransmitter Tests Test Mode 1 Tests Test Mode 1 Waveform (Positive pulse) Test Mode 1 Waveform (Negative pulse) 	
 O Test Mode 2 Tests O Test Mode 3/TX_TCLK Tests O Test Mode 4 Tests O MDI Return Loss Tests O MDI Mode Conversion Loss Tests O Test Mode 5 Tests 	
Selected Waveform: Test Mode 1 Waveform (Positive pulse)	Clear
Acquire	Done

Figure 8-57 Change in the status of the cleared waveform

- 4 Repeat step 3 to clear waveforms for the remaining tests.
- 5 Once you have finished clearing the waveforms, click the **Done** button to return to the **Set Up** tab.

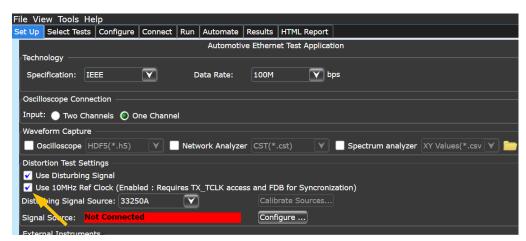
Using the AE6950A Frequency Divider Board

Keysight's AE6950A Frequency Divider Board produces two identical clock signal outputs (10 MHz) that are phase-locked to the input clock. Keysight recommends this Frequency Divider Board for the Transmitter Distortion Test.

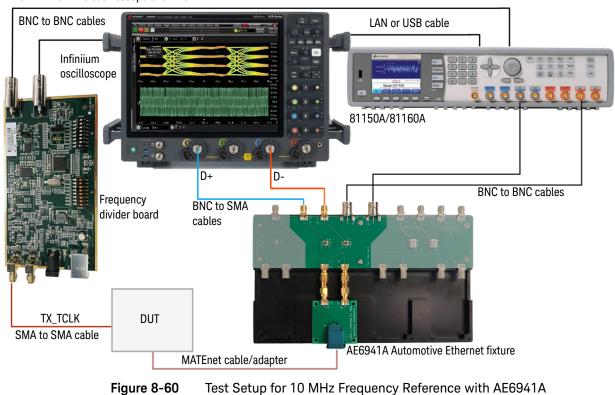

Figure 8-58 Keysight AE6950A Frequency Divider Board

Static-safe Handling Procedures

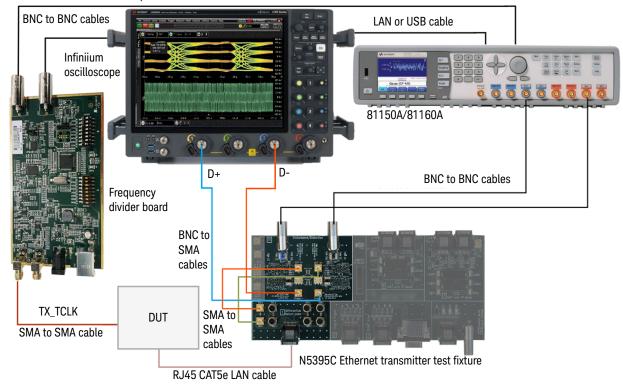
Electrostatic discharge (ESD) can damage or destroy electronic components. Use a static-safe work station to work on electronic assemblies. This figure shows a static-safe work station using two types of ESD protection:


- Conductive table-mat and wrist-strap combination
- Conductive floor-mat and heel-strap combination


Both types, when used together, provide a significant level of ESD protection. Of the two, only the table-mat and the wrist-strap combination provide adequate ESD protection when used alone. The static-safe accessories must provide at least 1 M Ω of isolation from the ground.


Observe appropriate ESD precautions before connecting and disconnecting cables as well as changing the positions of jumpers and switches.

To use the divider board, check the **Use 10MHz Ref Clock** on the ECU Compliance Test Application **Set Up** tab.



Configure the test setup shown as follows.

10 MHz Ref In to oscilloscope and ANG

10 MHz Ref In to oscilloscope and ANG

Figure 8-61Test Setup for 10 MHz Frequency Reference with N5395C

Frequency Divider Board Test Setup

- 1 Connect CH1 SMA connector to the Device Under Test (DUT).
- 2 Use BNC to BNC cables to connect both J400 and J403 BNC connectors to the oscilloscope and the AWG 10 MHz In.
- 3 Select 4.2 Vpp output voltage by shorting Pin1 and Pin2 of J100 with jumper.
- 4 Select Normal Running mode by switching switch A1 to OFF.
- 5 Select Frequency Tracking mode by switching switch A2 to OFF.
- 6 Select CH1 as input by switching switch A6 to OFF.
- 7 Select Targeted 25 MHz input by switching switch B2 to ON.
- 8 Power on the board by connecting a power source to the USB connector or the DC power jack. (4.5 V to 5.5 V @450 mA).
- 9 At power on, the LEDs should light up as follows:
 - the Power LED PWR (D303) should light up as GREEN
 - the LED A (D302) should light up as GREEN
 - the LED B (D304) should light up as GREEN

Connector Description

This section describes the various user components on the AE6950A.

Component	Description
USB type-B / DC Jack	It provides power to the fixture. You may use either the USB port or the 2.5 mm, center positive DC Power input jack may be used. The USB jack is not used for any other purpose. Input voltage is required to be within +4.5 V to +5.5 V @500 mA. Any voltage that is out of specification will trigger a warning on the Power LED.
SMA	It provides an interface to feed the input signal into the test fixture. CH1 connector is 50 Ω terminated, and CH2 connector is 10 $k\Omega$ terminated.
BNC	Both J400 and J403 produce a separate output clock signal. The signals are back-terminated by 50 $\Omega_{\!\cdot}$
Jumpers	They provide you with the option to modify the test fixture circuitry.
J100	This jumper controls the output signal amplitude:
	4.2Vpp: Connect pin 1 and pin 2
	3.3Vpp: Connect pin 2 and pin 3
	3.0Vpp: Connect pin 3 and pin 4
J300 & J302	This jumper allows you to probe the channel 1 and channel 2 inputs respectively.
J401	This jumper shorts both outputs together.
J402	Parking location for unused jumpers.

DIP Switch Description

Switch A

Switch A sets the Fixture operating mode.

Switches	Position	Operating mode	Comment
A1	off	Normal running mode	Normal operating mode
	on	Sleep mode	Changes made to any of the switches are ignored
A2	off	Frequency Tracking Mode	Output frequency track to input frequency
	on	Lock Frequency Mode	Output clock is phase lock to input clock
A3	off	NA	NA
	on	NA	NA
A4	off	NA	NA
	on	NA	NA
A5	off	NA	NA
	on	NA	NA
A6	off	Select CH1 as input	NA
	on	Select CH2 as input	NA
A7	off	NA	NA
	on	NA	NA
A8	off	NA	NA
	on	NA	NA

Switch B

Switch B sets the frequency divider to the relevant setting.

								Divider	Comment
B8	B7	B6	B5	B4	B3	B2	B1		To obtain 10 MHz output
off	Not valid (def)	Free Run Mode							
off	on	Div 1	Targeted 10 MHz input clock						
off	off	off	off	off	off	on	off	Div 5/2	Targeted 25 MHz input clock
off	off	off	off	off	on	off	off	Div 20/3	Targeted 66.67 MHz input clock
off	off	off	off	on	off	off	off	Div 25/2	Targeted 125 MHz input clock
off	off	off	on	off	off	off	off	Div 75	Targeted 750 MHz input clock

NOTE

Other combinations are not valid, and if no valid switch setting is detected, the LED will flash, indicating invalid switch B configuration. After reset, if no valid position is detected, the board uses the "Free Run Mode" which generates an accurate 10 MHz signal.

LED Description

Table 8-1

Power LED

	Green	Red
Input voltage below 4.5V	ON	Flash 1 Hz
Input voltage below 3.6V	ON	Flash 2 Hz
Input voltage above 5.5V	ON	ON

Table 8-2 LED A

	Green	Red
Input signal locked (Normal condition)	ON	OFF
Lost of Lock	Flash 1 Hz	OFF
Lost of Signal	OFF	Flash 1 Hz
Lost of 48 MHz reference	OFF	ON

Table 8-3 LED B

	Green	Red
Valid switch B configuration (Normal condition)	ON	OFF
Invalid switch B configuration	Flash 1 Hz	OFF
Missing input signal/ input signal out of range/ Warning. See LED A for list of warnings.	N/A	ON

List of Abbreviations

Abbreviation Definition A ANG Arbitrary Noise Generator AWG Arbitrary Waveform Generator B B BNC Bayonet Neill-Concelman C C CH1 Channel 1 CME Common-mode Emission D D DA+ Differential Pair A+ DA- Differential Pair A- DUT Device Under Test E E ECU Electronic/Engine Control Unit H H H-MTD High-Speed Modular Twisted-Pair Data M M MDI Media/Medium Dependent Interface O O QABR Open Alliance BroadR-Reach P Physical layer PSD Power Spectral Density R Resolution Bandwidth RMS Root Mean Square S Sittendard Instrument Control Library SMA SubMiniature version A T Transmit System Clock	Table 8-4	Abbreviation and Definition
ANGArbitrary Noise GeneratorAWGArbitrary Waveform GeneratorBBNCBayonet Neill-ConcelmanCCH1Channel 1CMECommon-mode EmissionDDA+Differential Pair A+DA-Differential Pair A-DUTDevice Under TestEUElectronic/Engine Control UnitHHPOIPOINotela/Medium Dependent InterfaceDAROpen Alliance BroadR-ReachPPhysical layerPSDPower Spectral DensityRRoot Mean SquareSICLStandard Instrument Control LibrarySMASubMiniature version ATSubMiniature version A	Abbreviation	Definition
AWGArbitrary Waveform GeneratorBBNCBayonet Neill-ConcelmanCCH1Channel 1CMECommon-mode EmissionDDA+Differential Pair A+DA-Differential Pair A-DUTDevice Under TestEECUElectronic/Engine Control UnitHH-MTDHigh-Speed Modular Twisted-Pair DataMOOABROpen Alliance BroadR-ReachPPHYPhysical LayerPSDPower Spectral DensityRRMSRoot Mean SquareSICLStandard Instrument Control LibrarySMASubMiniature version AT	A	
BBNCBayonet Neill-ConcelmanCCH1Channel 1CMECommon-mode EmissionDDA+Differential Pair A+DA+Differential Pair A-DUTDevice Under TestEECUElectronic/Engine Control UnitHHMOIMDIMedia/Medium Dependent InterfaceOARROpen Alliance BroadR-ReachPPHYPhysical layerPSDPower Spectral DensityRRBWResolution BandwidthRMSSott Mean SquareSICLStandard Instrument Control LibraryT	ANG	Arbitrary Noise Generator
BNCBayonet Neill-ConcelmanCCHChannel 1CMECommon-mode EmissionDCommon-mode EmissionDA+Differential Pair A+DA-Differential Pair A-DUTDevice Under TestEEECUElectronic/Engine Control UnitHHigh-Speed Modular Twisted-Pair DataMVODABROpen Alliance BroadR-ReachPPhysical layerPHYPhysical layerRBWResolution BandwidthRMSRoot Mean SquareSICLStandard Instrument Control LibraryTStandard Instrument Control Library	AWG	Arbitrary Waveform Generator
C CH1 Channel 1 CME Common-mode Emission D E DA+ Differential Pair A+ DA- Differential Pair A- DUT Device Under Test E E ECU Electronic/Engine Control Unit H High-Speed Modular Twisted-Pair Data MDI Media/Medium Dependent Interface O O OABR Open Alliance BroadR-Reach P Physical layer PSD Power Spectral Density R Esolution Bandwidth RMS Root Mean Square SICL Standard Instrument Control Library SMA SubMiniature version A	В	
CH1Channel 1CMECommon-mode EmissionDDA+Differential Pair A+DA-Differential Pair A-DUTDevice Under TestEECUElectronic/Engine Control UnitHH-MTDHigh-Speed Modular Twisted-Pair DataMOOPNPOpen Alliance BroadR-ReachPPSDPower Spectral DensityRMSRoot Mean SquareSICLStandard Instrument Control LibrarySMASubMiniature version AT	BNC	Bayonet Neill-Concelman
CMECommon-mode EmissionDDA+Differential Pair A+DA-Differential Pair A-DUTDevice Under TestEECUElectronic/Engine Control UnitHHigh-Speed Modular Twisted-Pair DataMMDIMedia/Medium Dependent InterfaceOPPHYOpen Alliance BroadR-ReachPPSDPower Spectral DensityRBWResolution BandwidthRNSStandard Instrument Control LibrarySMASubMiniature version AT	C	
DDA+Differential Pair A+DA-Differential Pair A-DUTDevice Under TestEEECUElectronic/Engine Control UnitHHigh-Speed Modular Twisted-Pair DataMMolia/Medium Dependent InterfaceOODABROpen Alliance BroadR-ReachPPhysical LayerPSDPower Spectral DensityRResolution BandwidthRMSResolution BandwidthSICLStandard Instrument Control LibrarySMASubMiniature version A	CH1	Channel 1
DA+Differential Pair A+DA-Differential Pair A-DUTDevice Under TestEEECUElectronic/Engine Control UnitHHigh-Speed Modular Twisted-Pair DataMMolia/Medium Dependent InterfaceOOpen Alliance BroadR-ReachPPPHYPhysical LayerPSDPower Spectral DensityRSoution BandwidthRMSRoot Mean SquareSICLStandard Instrument Control LibrarySMASubMiniature version A	CME	Common-mode Emission
DA-Differential Pair A-DUTDevice Under TestEEECUElectronic/Engine Control UnitHHigh-Speed Modular Twisted-Pair DataMMolia/Medium Dependent InterfaceOVOABROpen Alliance BroadR-ReachPPhysical layerPHYPhysical layerRBWResolution BandwidthRMSRoot Mean SquareSICLStandard Instrument Control LibrarySMASubMiniature version A	D	
DUTDevice Under TestEEECUElectronic/Engine Control UnitHHHHohrHigh-Speed Modular Twisted-Pair DataMMDIMedia/Medium Dependent InterfaceOOOABROpen Alliance BroadR-ReachPPHYPhysical layerPSDPower Spectral DensityRBWResolution BandwidthRMSRoot Mean SquareSICLStandard Instrument Control LibrarySMASubMiniature version A	DA+	Differential Pair A+
E ECU Electronic/Engine Control Unit H High-Speed Modular Twisted-Pair Data M Migh-Speed Modular Twisted-Pair Data MD Media/Medium Dependent Interface O O OABR Open Alliance BroadR-Reach P PhY PHY Physical layer PSD Power Spectral Density R Root Mean Square SICL Standard Instrument Control Library SMA SubMiniature version A	DA-	Differential Pair A-
ECUElectronic/Engine Control UnitHHH-MTDHigh-Speed Modular Twisted-Pair DataMMedia/Speed Modular Twisted-Pair DataMDIMedia/Medium Dependent InterfaceOOpen Alliance BroadR-ReachPPhysical layerPHYPhysical layerPSDPower Spectral DensityRResolution BandwidthRMSRoot Mean SquareSICLStandard Instrument Control LibrarySMASubMiniature version A	DUT	Device Under Test
H H-MTD High-Speed Modular Twisted-Pair Data M MDI Media/Medium Dependent Interface O 0 OABR Open Alliance BroadR-Reach P 9 PHY Physical layer PSD Power Spectral Density R Resolution Bandwidth RMS Root Mean Square SICL Standard Instrument Control Library SMA SubMiniature version A T SubMiniature version A	E	
H-MTDHigh-Speed Modular Twisted-Pair DataMMMDIMedia/Medium Dependent InterfaceOOpen Alliance BroadR-ReachPOpen Alliance BroadR-ReachPHYPhysical layerPSDPower Spectral DensityRResolution BandwidthRBWResolution BandwidthSICLStandard Instrument Control LibrarySMASubMiniature version AT	ECU	Electronic/Engine Control Unit
MMDIMedia/Medium Dependent InterfaceOOOABROpen Alliance BroadR-ReachPPHYPhysical layerPHYPhysical layerPSDPower Spectral DensityRRBWResolution BandwidthRMSRoot Mean SquareSICLStandard Instrument Control LibrarySMASubMiniature version AT	Н	
MDIMedia/Medium Dependent InterfaceOOOABROpen Alliance BroadR-ReachPPHYPhysical layerPSDPower Spectral DensityRResolution BandwidthRMSRoot Mean SquareSICLStandard Instrument Control LibrarySMASubMiniature version AT	H-MTD	High-Speed Modular Twisted-Pair Data
OOABROpen Alliance BroadR-ReachPPHYPhysical layerPSDPower Spectral DensityRRBWResolution BandwidthRMSRoot Mean SquareSICLStandard Instrument Control LibrarySMASubMiniature version AT	М	
OABROpen Alliance BroadR-ReachPPHYPhysical layerPSDPower Spectral DensityRResolution BandwidthRMSResolution BandwidthSICLStandard Instrument Control LibrarySMASubMiniature version ATControl Control	MDI	Media/Medium Dependent Interface
PPHYPhysical layerPSDPower Spectral DensityRResolution BandwidthRMSRoot Mean SquareSSiCLStandard Instrument Control LibrarySMASubMiniature version ATStandard Standard	0	
PHYPhysical layerPSDPower Spectral DensityRResolution BandwidthRMSRoot Mean SquareSICLStandard Instrument Control LibrarySMASubMiniature version ATStandard Standard St	OABR	Open Alliance BroadR-Reach
PSD Power Spectral Density R RBW Resolution Bandwidth RMS Root Mean Square S SICL Standard Instrument Control Library SMA SubMiniature version A T	Р	
R RBW Resolution Bandwidth RMS Root Mean Square S SiCL Standard Instrument Control Library SMA SubMiniature version A T	PHY	Physical layer
RBW Resolution Bandwidth RMS Root Mean Square S Standard Instrument Control Library SMA SubMiniature version A T	PSD	Power Spectral Density
RMS Root Mean Square S SICL Standard Instrument Control Library SMA SubMiniature version A T	R	
S SICL Standard Instrument Control Library SMA SubMiniature version A T Image: Total Control Contr	RBW	Resolution Bandwidth
SICL Standard Instrument Control Library SMA SubMiniature version A T	RMS	Root Mean Square
SMA SubMiniature version A T	S	
T	SICL	Standard Instrument Control Library
	SMA	SubMiniature version A
TX_TCLK Transmit System Clock	Т	
•	TX_TCLK	Transmit System Clock

Table 8-4Abbreviation and Definition

Abbreviation	Definition
V	
VBW	Video Bandwidth
Vd	The magnitude of the droop
Vpk	The initial peak after the zero-crossing

8 Appendix

THIS PAGE HAS BEEN INTENTIONALLY LEFT BLANK.

This information is subject to change without notice. © Keysight Technologies 2019-2024 February 2024

www.keysight.com

