

Keysight TD-SCDMA

X-Series Measurement App, Traditional UI

N9079EMOD

Technical Overview

- TD-SCDMA RF transmitter measurements
- HSDPA/HSUPA/8PSK modulation and code domain analysis support
- Demodulation availability of code channel with phase shift or rotation for multi-carrier TD-SCDMA signals
- One-button tests with pass/fail limits per 3GPP standard
- Hardkey/softkey manual user interface and SCPI remote user interface
- Built-in, context sensitive help
- Flexible licensing provides the option of using perpetual or time based licenses with one or multiple signal analyzers

TD-SCDMA Measurement Application

The TD-SCDMA measurement application transforms the X-Series signal analyzers into standard-based TD-SCDMA transmitter testers by adding fast, one-button RF conformance measurements to help you design, evaluate, and manufacture your TD-SCDMA devices. Software capability is further enhanced by adding support to phase shift or rotation for multi-carrier TD-SCDMA signals, allowing you to stay on the leading edge of design and manufacturing challenges.

X-Series measurement applications can help you:

- Gain more insight into device performance with intuitive display and graphs for your application. Select from our library of over 25 different measurement applications.
- Ensure that your design meets the latest standard. Updates are made to the X-Series measurement applications as standards evolve.
- Apply the same measurement science across multiple hardware platforms for consistent measurement results over your design cycle from R&D to production.
- Choose the license structure that meets your business needs. We provide a range of license types (node-locked, transportable, floating or USB portable) and license terms (perpetual or time-based).

Download your next insight

Keysight software is downloadable expertise. From first simulation through first customer shipment, we deliver the tools your team needs to accelerate from data to information to actionable insight.

- Electronic design automation (EDA) software
- Application software
- Programming environments
- Productivity software

Learn more at
www.keysight.com/find/software

Start with a 30-day free trial.
www.keysight.com/find/free_trials

TD-SCDMA Technology Overview

Time Division-Synchronous Code Division Multiple Access (TD-SCDMA) combines FDMA, CDMA and TDMA technologies. Unlike W-CDMA and cdma2000® technologies, this TDD standard transmits and receives on the same frequency, which greatly increases spectrum efficiency. Because TD-SCDMA effectively handles symmetrical and asymmetrical traffic, it is ideal for data-intensive applications, such as mobile Internet access and multimedia applications.

TD-SCDMA was proposed by China Wireless Telecommunication Standards group (CWTS) and approved as a 3G technology by ITU in 1999. The TD-SCDMA standard now is fully supported by 3GPP and China Communication Standards Association (CCSA). The 3GPP TD-SCDMA standard is also known as the low chip rate (LCR) option of TDD, which is included in the 3GPP Universal Terrestrial Radio Access (UTRA) as the UTRA-TDD option.

In combination of Time Division Multiple Access (TDMA) and Time Division Duplex (TDD), the TD-SCDMA technology is based on the backbone of TDMA-TDD operation which significantly improves network performance by allowing radio resources to process network traffic in both directions, per uplink and downlink. There are 7 time slots (numbered 0 through 6) in a single 5 ms long frame, and within each time slot there are up to 16 code channels that are available to allocate to a single user or to distribute among multiple users.

Time division duplexing is used to separate uplink and downlink periods in a given time frame. Therefore, a resource unit (RU) is defined by a frequency, time slot, and code channel with spreading factor. The basic resource unit uses a spreading factor of 16. In TD-SCDMA, the chip rate is 1.28 Mcps and each carrier signal occupies 1.6 MHz bandwidth.

Since the adoption of TD-SCDMA by the 3GPP body, the standard has continued to evolve. As with W-CDMA, the high-speed downlink packed access (HSDPA) and the high-speed uplink packed access (HSUPA) specifications for TD-SCDMA were added

into 3GPP Release 5 and, respectively, HSPA+ features for TDD are part of 3GPP Release 8. Meanwhile, the 3GPP has specified UMTS Long Term Evolution (LTE) TDD mode as the evolution patch for TD-SCDMA, which is also referred to as TD-LTE.

Key specifications and differences of TD-SCDMA, TD-HSPA and TD-HSPA+ are summarized in Table 1.

Table 1. Differences in TD-SCDMA, TD-HSPA, and HSPA+ standards

	TD-SCDMA	TD-HSPA (HSDPA, HSUPA)	TD-HSPA+
Multiple access	TDMA/CDMA	TDMA/CDMA	TDMA/CDMA
Modulation	QPSK 8-PSK	QPSK, 16QAM	QPSK, 16QAM, 64QAM
Symbol rate/chip rate	1.28 Mcps	1.28 Mcps	1.28 Mcps
Channel spacing	1.6 MHz/carrier	1.6 MHz/carrier	1.6 MHz/carrier
Date rate/user	Up to 2 Mbps	HSDPA: 2.8 Mbps ¹	DL: 8.4 Mbps ¹

1. These are peak data rates from 3GPP specifications. 2.8 Mbps is at 1.6 MHz bandwidth, 8.4 Mbps is using N-point carriers (here N = 3) technologies.

RF Transmitter Tests

With the TD-SCDMA measurement application, perform RF transmitter measurements on BTS and mobile devices in time, frequency and modulation domains. The TD-SCDMA and HSPA signals as well as HSPA+ signals with all modulation formats, as shown in Table 2, can be measured.

Standard-based RF transmitter tests

The RF transmitter test requirements for TD-SCDMA are defined in TS 25 and 34 series of 3GPP standard. Table 2 shows the required base station RF transmitter tests along with the corresponding measurement applications.

Table 2. Required BTS RF transmitter measurements and the corresponding measurements in N9079EMOD and 89600B VSA.

3GPP TS.25.142 paragraph number	Transmitter test	N9079EMOD TD-SCDMA measurement application	89601B-B7N 3G modulation analysis (includes cdma2000, W-CDMA, 1x-EVDO and TD-SCDMA)
6.2	Maximum output power	Transmit power	Can be performed using band power marker
6.3	Frequency stability	OBW or modulation accuracy (Tx frequency error)	EVM
6.4	Output power dynamics	Transmit power	89600B based solutions offer
6.5.1	Transmit OFF power	Power vs. time	modulation quality measurements.
6.5.2	Transmit ON/OFF time mask	Power vs. time	For one button, non-demodulation, measurements such as spectrum
6.6.1	Occupied bandwidth	Occupied BW	emission mask and
6.6.2.1	Spectrum emission mask	Spectrum emission mask	PvT, the embedded
6.6.2.2	Adjacent channel leakage power ratio (ACLR)	Adjacent channel power	application must be used.
6.6.3	Spurious emissions	Spurious emissions	
6.7	Transmit intermodulation	Spectrum analyzer mode	
6.8.1	Modulation accuracy	Modulation accuracy	EVM
6.8.2	Peak code domain error	Modulation analysis	EVM

Measurement details

All of the RF transmitter measurements as defined by the 3GPP standard, as well as a wide range of additional measurements and analysis tools, are available with a press of a button. These measurements are fully remote controllable via the IEC/IEEE bus or LAN, using SCPI commands. A detailed list of supported measurements is shown in Table 3.

Analog baseband measurements are available on the PXA or MXA signal analyzer with BBIQ option. Supported baseband measurements include EVM and power versus time.

Table 3. List of one-button measurements provided by N9079EMOD measurement application

TD-SCDMA/HSPA/8PSK

Modulation analysis¹
(Composite EVM)

Rho

RMS EVM

Peak EVM

Peak code domain error

Frequency error

Phase error

Magnitude error

I/Q offset

Time offset

Transmit power

Power vs. time

Adjacent channel power (ACP)

Spectrum emission mask (SEM)

Occupied BW (OBW)

CCDF

Code domain

IQ waveform

Monitor spectrum

1. For 16QAM, 64QAM and 8PSK modulation analysis, need to install Option 2FP of N9079EMOD.

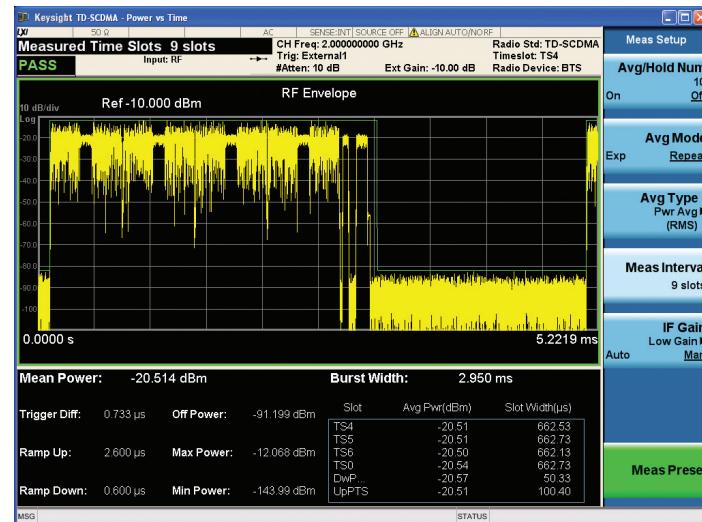


Figure 1. TD-SCDMA PvT measurement of nine time slots on one 5 ms sub-frame

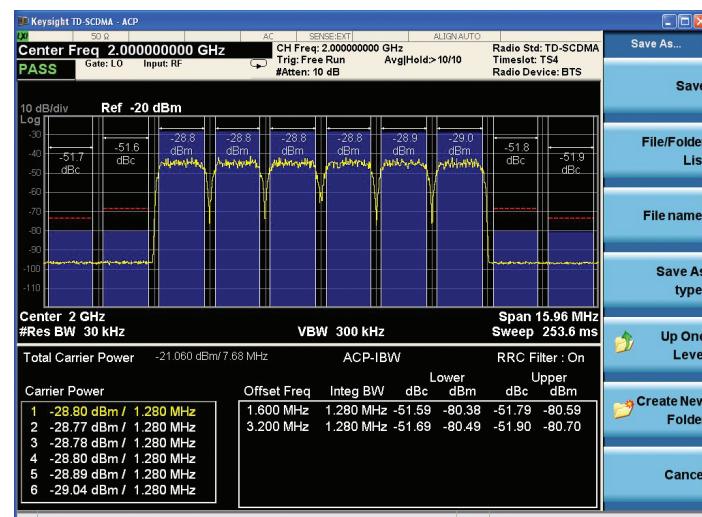


Figure 2. TD-SCDMA six carriers ACP



Figure 3. Composite EVM for time slot 0 with 40 degree phase rotation

Key Specifications

Definitions

- Specifications describe the performance of parameters covered by the product warranty.
- 95th percentile values indicate the breadth of the population ($\approx 2\sigma$) of performance tolerances expected to be met in 95% of cases with a 95% confidence. These values are not covered by the product warranty.
- Typical values are designated with the abbreviation "typ." These are performance beyond specification that 80% of the units exhibit with a 95% confidence. These values are not covered by the product warranty.
- Nominal values are designated with the abbreviation "nom." These values indicate expected performance, or describe product performance that is useful in the application of the product, but is not covered by the product warranty.
- PXA specifications apply to analyzers with frequency options of 526 and lower. For analyzers with higher frequency options, specifications are not warranted but performance will nominally be close to that shown in this section.

Supported devices and standard version

Device type	BTS, MS
Standard version	Mobile station: 3GPP TS34.122 Base Station: 3GPP TS25.142
BTS type	1.28 Mcps 3GPP TDD
Radio band ¹	1900 to 1920 MHz 2010 to 2025 MHz 1850 to 1910 MHz 1930 to 1990 MHz 1910 to 1930 MHz 2570 to 2620 MHz 2300 to 2400 MHz 1880 to 1920 MHz

1. 3GPP has designed frequency bands for UTRA/TDD for uplink and downlink transmission. Refer to TS24.142 paragraph 4.2 for details.

Note: Data subject to change

Performance Specifications

Description	PXA	MXA	EXA	CXA			
Transmit power							
Burst type	Traffic, UpPTS and DwPTS						
Measurement time	Up to 18 slots						
Power accuracy	± 0.20 dB (95%)	± 0.25 dB (95%)	± 0.29 dB (95%)	± 0.86 dB (95%)			
Measurement floor	-90.4 dBm (nom)	-88.3 dBm (nom)	-84.3 dBm (nom)	-83.3 dBm (nom)			
Power vs. time							
Burst type	Traffic, UpPTS and DwPTS						
Measurement time	Up to 9 slots						
Dynamic range	130.4 dB (nom)	130.3 dB (nom)	128.3 dB (nom)	125.3 dB (nom)			
Measurement floor	-100.4 dBm (nom)	-100.3 dBm (nom)	-98.3 dBm (nom)	-95.3 dBm (nom)			
Adjacent channel power							
Single carrier							
Minimum power at RF input	-36 dBm (nom)						
ACPR accuracy ¹							
Radio	Offset freq						
BTS	1.6 MHz	± 0.07 dB	± 0.17 dB	± 0.34 dB			
		(ACPR -37 to -43 dBc with optimum mixer level)					
BTS	3.2 MHz	± 0.11 dB	± 0.13 dB	± 0.18 dB			
		(ACPR -42 to -48 dBc with optimum mixer level)					
BTS	1.6 MHz	± 0.04 dB	± 0.11 dB	± 0.14 dB			
		(ACPR -43 dBc non-coherent ACPR)					
Four carriers							
ACPR accuracy, BTS, Incoherent TOI							
Noise correction (NC) off	± 0.08 dB	± 0.15 dB	N/A	N/A			
	(UUT ACPR -37 to -43 dB, optimum ML -14 dBm)						
Noise correction (NC) on	± 0.06 dB	± 0.10 dB	N/A	N/A			
	(UUT ACPR -37 to -43 dB, optimum ML -18 dBm)						
Spectrum emission mask							
Dynamic range, relative							
815 kHz offset	90.5 dB (typ)	85.3 dB (typ)	81.3 dB (typ)	71.7 dB (typ)			
Sensitivity, absolute							
815 kHz offset	-106.7 dBm (typ)	-104.7 dBm (typ)	-100.7 dBm (typ)	-92.7 dBm (typ)			
Accuracy							
815 kHz offset, relative	± 0.05 dB	± 0.12 dB	± 0.11 dB	± 0.11 dBm			
815 kHz offset, absolute	± 0.29 dB (95%)	± 0.27 dB (95%)	± 0.31 dB (95%)	± 0.65 dBm (95%)			
Spurious emissions							
Dynamic range, relative (RBW = 1 MHz)	92.1 dB (typ)	92.1 dB (typ)	77.4 dB (typ)	75.0 dB (typ)			
Sensitivity, absolute (RBW = 1 MHz)	-91.5 dB (typ)	-89.5 dB (typ)	-86.5 dB (typ)	-84.4 dBm (typ)			
Accuracy (attenuation = 10 dB)	± 0.19 dB (95%)	± 0.29 dB (95%)	± 0.38 dB (95%)	± 0.81 dB (95%)			
(Frequency range							
20 Hz to 3.6 GHz)	20 Hz to 3.6 GHz)	9 kHz to 3.6 GHz)	100 kHz to 3.0 GHz)				
± 1.08 dB (95%)	± 1.17 dB (95%)	± 1.22 dB (95%)	± 1.80 dB (95%)				
(Frequency range							
3.5 to 8.4 GHz)	3.5 to 8.4 GHz)	3.5 to 7.0 GHz)	3.0 to 7.5 GHz)				
± 1.48 dB (95%)	± 1.54 dB (95%)	± 1.59 dB (95%)		-			
(Frequency range							
8.3 to 13.6 GHz)	8.3 to 13.6 GHz)	6.9 to 13.6 GHz)					

1. The accuracy of the Adjacent Channel Power Ratio (ACPR) will depend on the mixer drive level and whether the distortion products from the analyzer are coherent with others in the UUT. These specifications apply even in the worst case condition of coherent analyzer and UUT distortion products. Please refer to the TD-SCDMA Specification Guide for a more detailed explanation.

Performance Specifications (continued)

Description	PXA	MXA	EXA	CXA
Occupied bandwidth				
Minimum power at RF input			-30 dBm (nom)	
Frequency accuracy		±4.8 kHz (RBW = 30 kHz, Number of points = 1001, Span = 4.8 MHz)		
Power statistics CCDF				
Histogram resolution			0.01 dB	
Code domain BTS measurements (-25 dBm ≤ ML ≤ -15 dBm, 20 to 30 °C)				
Code domain power				
Absolute accuracy (-10 dBc DPCH, ATTen = 10 dB)	±0.25 dB (95%)	±0.25 dB (95%)	±0.32 dB (95%)	±0.61 dB (95%)
Absolute accuracy (-10 dBc HS-PDSCH, ATTen = 10 dB)	±0.26 dB (95%)	±0.26 dB (95%)	±0.33 dB (95%)	±0.62 dB (95%)
Relative accuracy				
Code domain power range				
DPCH channel				
0 to -10 dBc		±0.02 dB		
-10 to -20 dBc		±0.02 dB		
-20 to -30 dBc		±0.02 dB		
HS-PDSCH channel				
0 to -10 dBc		±0.03 dB		
-10 to -20 dBc		±0.11 dB		
-20 to -30 dBc		±0.32 dB		
Symbol power vs. time				
Relative accuracy				
Code domain power range				
DPCH channel				
0 to -10 dBc		±0.02 dB		
-10 to -20 dBc		±0.06 dB		
-20 to -30 dBc		±0.19 dB		
HS-PDSCH channel				
0 to -10 dBc		±0.03 dB		
-10 to -20 dBc		±0.11 dB		
-20 to -30 dBc		±0.32 dB		
Symbol error vector magnitude				
Accuracy				
DPCH channel				
0 to -25 dBc		±1.1% (nom)		
HS-PDSCH channel				
0 to -25 dBc		±1.1% (nom)		

Performance Specifications (continued)

Description	PXA	MXA	EXA	CXA
Modulation accuracy (Composite EVM) BTS measurements (-25 dBm ≤ ML ≤ -15 dBm, 20 to 30 °C)				
Composite EVM				
Range				
Test signal with TSO active and one DPCH in TSO			0 to 18%	
Test signal with TSO active and one HS-PDCH in TSO			0 to 17% (nom)	
Accuracy				
Test signal with TSO active and one DPCH in TSO			±0.7% when EVM ≤ 9%	
Peak code domain error				
Accuracy				
Test signal with TSO active and two DPCH in TSO			±0.3 dB	
Test signal with TSO active and two HS-DPSCH in TSO			±1.0 dB	
I/Q origin offset				
DUT maximum offset			-20 dBc (nom)	
Analyzer noise floor			-50 dBc (nom)	
Frequency error				
Range			±7 kHz (nom)	
Test signal with TSO active and one DPCH in TSO			±5.2 Hz + (transmitter frequency x frequency reference accuracy)	
Test signal with TSO active and one HS-PDCH in TSO			±6 Hz + (transmitter frequency x frequency reference accuracy) (nom)	

For a complete list of specifications refer to the appropriate specifications guide.

Benchtop:

PXA: www.keysight.com/find/pxa_specifications

MXA: www.keysight.com/find/mxa_specifications

EXA: www.keysight.com/find/exa_specifications

CXA: www.keysight.com/find/cxa_specifications

PXIe:

VSA up to 6 GHz: www.keysight.com/find/m9391a

VSA up to 50GHz: www.keysight.com/find/m9393a

VXT: www.keysight.com/find/m9421a

Ordering Information

Flexible licensing and configuration

- **Perpetual:** License can be used in perpetuity.
- **Time-based:** License is time limited to a defined period, such as 12-months.
- **Node-locked:** Allows you to use the license on one specified instrument/computer.
- **Transportable:** Allows you to use the license on one instrument/computer at a time. This license may be transferred to another instrument/computer using Keysight's online tool.
- **Floating:** Allows you to access the license on networked instruments/computers from a server, one at a time. For concurrent access, multiple licenses may be purchased.
- **USB portable:** Allows you to move the license from one instrument/computer to another by end-user only with certified USB dongle, purchased separately.
- **Software support subscription:** Allows the license holder access to Keysight technical support and all software upgrades

You Can Upgrade!

All of our X-Series application options are license-key upgradeable.

TD-SCDMA/HSPA measurement application (N9079EMOD)

Model	Software License Type	Support Contract	Support Subscription (12-month) ²
N9079EMOD-1FP	Node-locked perpetual	R-Y5C-001-A ²	R-Y6C-001-L ²
N9079EMOD-1FL	Node-locked 12-month	R-Y4C-001-L ¹	Included
N9079EMOD-1TP	Transportable perpetual	R-Y5C-004-D ²	R-Y6C-004-L ²
N9079EMOD-1TL	Transportable 12-month	R-Y4C-004-L ¹	Included
N9079EMOD-1NP	Floating perpetual	R-Y5C-002-B ²	R-Y6C-002-L ²
N9079EMOD-1NL	Floating 12-month	R-Y4C-002-L ¹	Included
N9079EMOD-1UP	USB portable perpetual	R-Y5C-005-E ²	R-Y6C-005-L ²
N9079EMOD-1UL	USB portable 12-month	R-Y4C-005-L ¹	Included

One month software support subscription extensions³

Model	Description
R-Y6C-501 ³	1-month of software support subscription for node-locked license
R-Y6C-502 ³	1-month of software support subscription for floating license
R-Y6C-504 ³	1-month of software support subscription for transportable license
R-Y6C-505 ³	1-month of software support subscription for USB portable license

Try Before You Buy!

Evaluate a full-featured version of our X-Series measurement application with our **FREE** trial. Redeem one 30-day trial license of each measurement application online at: www.keysight.com/find/X-Series_apps_trial

Hardware Configurations

To learn more about compatible platforms and required configurations, please visit: www.keysight.com/find/X-Series_apps_platform

Software Models & Options

To learn more about X-Series measurement application licensing, model numbers and options, please visit:
www.keysight.com/find/X-Series_apps_model

1. All time-based X-Series measurement application licenses includes a 12-month support contract which also includes the 12-month software support subscription as same duration.
2. Support contract must bundle software support subscription for all perpetual licenses in the first year. All software upgrades and Keysight support are provided for software licenses with valid support subscription.
3. After the first year, software support subscription may be extended with annual or monthly software support subscription extensions for perpetual licenses.

Hardware Configuration

For optimizing the TD-SCDMA/HSPA measurement application, Keysight recommends a minimum level of instrument hardware functionality at each instrument performance point. Supported instruments include:

Benchtop:

- PXA N9030A
- MXA N9020A
- EXA N9010A
- CXA N9000A

PXIe:

- VSA (6 GHz) M9391A
- VSA (50 GHz) M9393A
- VXT M9420/21A

N90x0A X-Series signal analyzer

Capability	Instrument Option	Benefit
Analysis bandwidth	10 or 25 MHz as default or higher	Required: Wider analysis bandwidth options such as 25/40/85/160 MHz can be selected depending on the specified signal analyzer model
Precision frequency reference	-PFR	Recommended: For enhanced frequency accuracy and repeatability for lower measurement uncertainty
Electronic attenuator	-EA3	Recommended: Fast and reliable attenuation changes ideal for manufacturing without the wear associated with mechanical attenuators up to 3.6 GHz in 1 dB steps
Pre-amplifier	3.6 GHz (-P03) or higher	Recommended: For maximizing the measurement sensitivity
Fine resolution step attenuator	-FSA	Recommended: Useful for maximizing useable dynamic range to see signals
Analog baseband I/Q inputs	-BBA on PXA and MXA only	Optional: To extend measurements at baseband if required by device under test

M9391/93A PXIe VSA vector signal analyzer

Description	Model-Option	Additional information
Frequency range 3 or 6 GHz	M9391A-F03, or F06	One required for M9391A
Frequency range 8.4, 14, 18, or 27 GHz	M9393A-F08, F14, F18, or F27	One required for M9393A
Frequency extension to 43.5 or 50 GHz	M9393A-FRZ or FRX	Optional (requires M9393A-F27)
Analysis bandwidth 40, 100 or 160 MHz	M9391A/M9393A-B04, B10 or B16	One required
Memory 128, 512 or 1024 MSa	M9391A/M9393A-M01, M05 or M10	One required
Frequency reference 10 MHz and 100 MHz	M9391A/M9393A-300	One required

M9420/21A PXIe VXT vector transceiver

Description	Model-Option	Additional information
Frequency range 3.8 or 6 GHz	M9420A/M9421A-504, or 506	One required
Analysis bandwidth 40, 80 or 160 MHz	M9420A/M9421A-B40/B80/B1X	One required
Memory 256 or 512 MSa	M9420A/M9421A-M02/M05	One required
Half duplex port	M9420A/M9421A-HDX	Optional
High output power	M9420A/M9421A-1EA	Optional

Related Literature

Description	Publication number
N9079A & W9079A Self-Guided Demonstration	5990-5928EN
Keysight Signal Generators and Spectrum analyzers TD-SCDMA Solutions (Chinese), Application Note	5989-6744CHCN
N9079A & W9079A TD-SCDMA with HSPA/8PSK Measurement Application Measurement Guide	N9079-90005
User's and Programmer's Reference Guide is available in the library section of the N9079A and W9079A product pages.	

Web

Product page:

www.keysight.com/find/N9079D

X-Series measurement applications:

www.keysight.com/find/X-Series_Apps

X-Series signal analyzers:

www.keysight.com/find/X-Series

PXIe VXT vector transceiver:

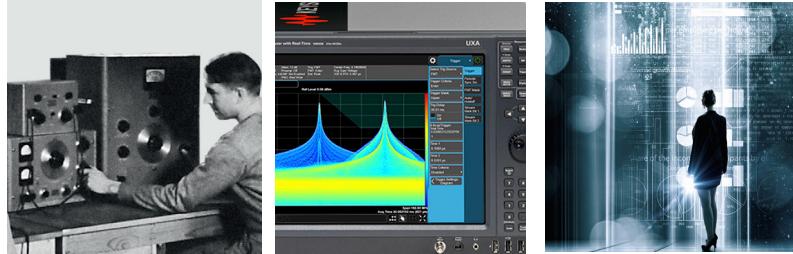
www.keysight.com/find/VXT

PXIe VSA vector signal analyzer:

www.keysight.com/find/M9391A

www.keysight.com/find/M9393A

Application pages:


www.keysight.com/find/cellular

www.keysight.com/find/td-scdma

Evolving Since 1939

Our unique combination of hardware, software, services, and people can help you reach your next breakthrough. We are unlocking the future of technology.

From Hewlett-Packard to Agilent to Keysight.

myKeysight

myKeysight

www.keysight.com/find/mykeysight

A personalized view into the information most relevant to you.

http://www.keysight.com/find/emt_product_registration

Register your products to get up-to-date product information and find warranty information.

KEYSIGHT SERVICES

Accelerate Technology Adoption.
Lower costs.

Keysight Services

www.keysight.com/find/service

Keysight Services can help from acquisition to renewal across your instrument's lifecycle. Our comprehensive service offerings—one-stop calibration, repair, asset management, technology refresh, consulting, training and more—helps you improve product quality and lower costs.

Keysight Assurance Plans

www.keysight.com/find/AssurancePlans

Up to ten years of protection and no budgetary surprises to ensure your instruments are operating to specification, so you can rely on accurate measurements.

Keysight Channel Partners

www.keysight.com/find/channelpartners

Get the best of both worlds: Keysight's measurement expertise and product breadth, combined with channel partner convenience.

cdma2000 is a registered certification mark of the Telecommunications Industry Association.

www.keysight.com/find/X-Series_apps

www.keysight.com/find/N9079D

For more information on Keysight Technologies' products, applications or services, please contact your local Keysight office. The complete list is available at: www.keysight.com/find/contactus

Americas

Canada	(877) 894 4414
Brazil	55 11 3351 7010
Mexico	001 800 254 2440
United States	(800) 829 4444

Asia Pacific

Australia	1 800 629 485
China	800 810 0189
Hong Kong	800 938 693
India	1 800 11 2626
Japan	0120 (421) 345
Korea	080 769 0800
Malaysia	1 800 888 848
Singapore	1 800 375 8100
Taiwan	0800 047 866
Other AP Countries	(65) 6375 8100

Europe & Middle East

Austria	0800 001122
Belgium	0800 58580
Finland	0800 523252
France	0805 980333
Germany	0800 6270999
Ireland	1800 832700
Israel	1 809 343051
Italy	800 599100
Luxembourg	+32 800 58580
Netherlands	0800 0233200
Russia	8800 5009286
Spain	800 000154
Sweden	0200 882255
Switzerland	0800 805353
	Opt. 1 (DE)
	Opt. 2 (FR)
	Opt. 3 (IT)
United Kingdom	0800 0260637

For other unlisted countries:

www.keysight.com/find/contactus
(BP-9-7-17)

DEKRA Certified
ISO9001 Quality Management System

www.keysight.com/go/quality
Keysight Technologies, Inc.
DEKRA Certified ISO 9001:2015
Quality Management System