


# Keysight Technologies

## N9081A & W9081A *Bluetooth®*

### X-Series Measurement Application

#### Demo Guide



## Introduction

This demonstration guide will follow the list from Table 1 on page 2 which includes all of the test cases for transmitter tests defined by the *Bluetooth* SIG in version 2.1+EDR of the test specification and ULP (Ultra Low Energy) *Bluetooth* RF PHY Test Specification. Each demonstration is given a brief description of its function.

# Bluetooth RF Transmitter Tests

Table 1. Bluetooth RF transmitter tests

| <b>Bluetooth transmitter tests</b>                      | <b>Identifier</b> | <b>N/W9081A X-Series measurement application</b>                    |
|---------------------------------------------------------|-------------------|---------------------------------------------------------------------|
| <b>Basic rate</b>                                       |                   |                                                                     |
| Output power                                            | TRM/CA/01/C       | Transmit analysis                                                   |
| Power density                                           | TRM/CA/02/C       | No one-button support. Use GPSA mode. Not included in this document |
| Power control                                           | TRM/CA/03/C       | No one-button support, Use GPSA mode. Not included in this document |
| TX output spectrum frequency range                      | TRM/CA/04/C       | No one-button support, use GPSA mode. Not included in this document |
| TX output spectrum -20 dB bandwidth                     | TRM/CA/05/C       | Output spectrum bandwidth                                           |
| TX output spectrum adjacent channel power               | TRM/CA/06/C       | Adjacent channel power                                              |
| Modulation characteristics                              | TRM/CA/07/C       | Transmit analysis                                                   |
| Initial carrier frequency tolerance                     | TRM/CA/08/C       | Transmit analysis                                                   |
| Carrier frequency drift                                 | TRM/CA/09/C       | Transmit analysis                                                   |
| <b>EDR</b>                                              |                   |                                                                     |
| EDR relative transmit power                             | TRM/CA/10/C       | Transmit analysis                                                   |
| EDR carrier frequency stability and modulation accuracy | TRM/CA/11/C       | Transmit analysis                                                   |
| EDR differential phase encoding                         | TRM/CA/12/C       | Transmit analysis                                                   |
| EDR in-band spurious emissions                          | TRM/CA/13/C       | EDR in-band spurious emissions                                      |
| <b>LE (Low Energy) or ULP (Ultra Low Power)</b>         |                   |                                                                     |
| Output power                                            | TRM/CA-01-C       | Transmit analysis                                                   |
| In-band emissions                                       | TRM/CA-02-C       | LE in-band emissions                                                |
| Modulation characteristics                              | TRM/CA-03-C       | Transmit analysis                                                   |
| Carrier frequency offset and drift                      | TRM/CA-04-C       | Transmit analysis                                                   |

# Demonstration Preparation

All demonstrations utilize the N9030A PXA, N9020A MXA or N9010A EXA signal analyzer with the N9081A measurement application, the N9000A CXA with the W9081A measurement application, and the Keysight Technologies, Inc. N5182A MXG vector signal generator with the N7606B Signal Studio software.

Keystrokes surrounded by [ ] indicate hard keys on X-Series analyzers, while key names surrounded by { } indicate soft keys located on the right edge of the X-Series display.

## Minimum equipment configuration requirements

| Product type                                                         | Model number                                         | Required options                                                                                                                                                                                                                                               |
|----------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MXG vector signal generator<br>Note: ESG-C can also be used          | N5182A (or E4438C)                                   | <ul style="list-style-type: none"><li>- 503 or 506 – frequency range at 3 GHz or 6 GHz</li><li>- 651,652 or 654 – internal baseband generator</li><li>- Option 654 – 125 MSa clock rate required for MXG not for ESG-C</li></ul>                               |
| Signal Studio software for <i>Bluetooth</i>                          | N7606B – V1.2.1.0 or later                           | <ul style="list-style-type: none"><li>- 3FP – N5182A connectivity</li><li>- QFP – Advanced <i>Bluetooth</i> V1.1 option</li><li>- RFP – Advanced <i>Bluetooth</i> V2.1 + EDR option</li><li>- SFP – Advanced <i>Bluetooth</i> ultra low power option</li></ul> |
| X-Series signal analyzer<br>Note: Firmware revision A.06.06 or later | N9030A PXA<br>N9020A MXA<br>N9010A EXA<br>N9000A CXA | <ul style="list-style-type: none"><li>- 503, 508 (507 for EXA), 513 or 526 – frequency range up to 26.5 GHz</li><li>- B25 – 25 MHz analysis bandwidth</li></ul>                                                                                                |
| X-Series <i>Bluetooth</i> measurement application                    | N9081A-2FP<br>W9081A-2FP                             | <ul style="list-style-type: none"><li>- <i>Bluetooth</i> measurement application (for PXA/MXA/EXA)</li><li>- <i>Bluetooth</i> measurement application (for CXA only)</li></ul>                                                                                 |
| Controller PC for Signal Studio                                      |                                                      | Install N7606B to generate and download the signal waveform into the MXG via GPIB or LAN (TCP/IP) – please refer to the online documentation for installation and setup                                                                                        |

### Helpful tip:

Update your instrument firmware and software to the latest version, at

[www.keysight.com/find/xseries\\_software](http://www.keysight.com/find/xseries_software)  
[www.keysight.com/find/signalstudio](http://www.keysight.com/find/signalstudio)

# Demonstration Setup

## Connect the PC, X-Series signal analyzer, and MXG signal generator

Connect a PC (loaded with N7606B Keysight Signal Studio for *Bluetooth* software and Keysight I/O libraries) to the N5182A MXG via GPIB or LAN. Follow the Signal Studio instruction to complete the connection, then perform the following steps to interconnect the X-Series and MXG (see Figure 1 for a graphical overview):

- A. Connect the MXG RF Output port to the MXA RF Input port
- to the MXA RF Input port
- B. Recommend to connect the MXG 10 MHz Out to the X-Series Ext Ref In port (rear panel) for frequency accuracy

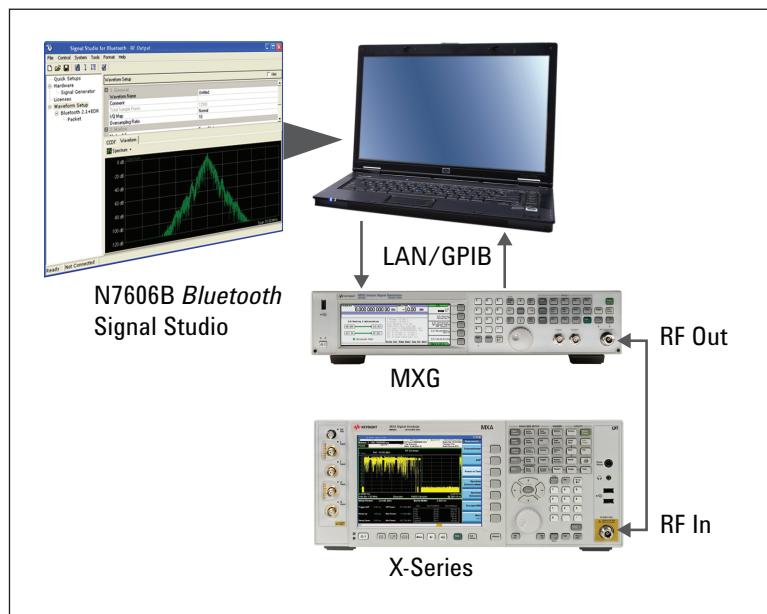
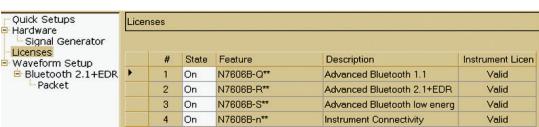
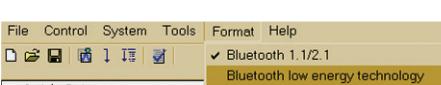





Figure 1. Demonstration setup

# Generate *Bluetooth* waveform with Signal Studio on N5182A MXG

The Keysight N7606B Signal Studio for *Bluetooth* is a Windows-based utility that simplifies the creation of standards-based waveforms for *Bluetooth* v2.1+EDR and low energy wireless technology testing.

| Instructions                                                                                                                                                                                                              | Keystrokes                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>On the MXG</b>                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                   |
| Preset the MXG; check the IP address                                                                                                                                                                                      | <b>[Preset]</b><br><b>[Utility] {I/O Config} {GPIB/LAN Setup}</b> e.g.<br><b>{GPIB Address 20}</b>                                                                                                                                                                                                                                                |
| <b>On the Signal Studio software</b>                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                   |
| Run the Keysight Signal Studio for <i>Bluetooth</i>                                                                                                                                                                       | Double-click on the <b>Bluetooth</b> shortcut on the desktop or access the program via the Windows start menu                                                                                                                                                                                                                                     |
| Verify the software is communicating with the instrument via the GPIB or LAN (TCP/IP) link                                                                                                                                | To establish a new connection, click on the <b>{System}</b> pull-down menu at the top of the Signal Studio program window. Next, select <b>{Run System Configuration Wizard}</b>                                                                                                                                                                  |
| Use the basic parameters of the signal at center frequency 2.402 GHz, amplitude -10 dBm, and RF Output turned ON                                                                                                          | Click <b>Signal Generator</b> at the Hardware on the explorer menu on the left. Press <b>[Preset]</b> green button on the top. Then use the default setting<br>Frequency = 2.402 GHz, Amplitude = -10 dBm, RF Output = On, ALC = On                                                                                                               |
| Set a test signal in waveform setup; the N7606B needs to install the following option(s) for:<br><i>Bluetooth</i> 1.1 – Option QFP,<br><i>Bluetooth</i> 2.1+EDR – Option RFP,<br><i>Bluetooth</i> low energy – Option SFP | Verify which version of standard <i>Bluetooth</i> signals supported in your <i>Bluetooth</i> signal studio. Click <b>Licenses</b> on the Explorer menu on the left, and ensure that the states for N7606B-x* is set to On<br>* x represents Q, R, S, or n<br> |
| Download the signal to the MXG                                                                                                                                                                                            | The <i>Bluetooth</i> low energy wireless technology packet can be selected from the <b>Format</b> in the menu bar<br>                                                                                                                                         |
| Save the signal file for future use                                                                                                                                                                                       | Click <b>Generate and Download</b> button on the top tool bar. If you encounter any errors, please refer to the online help of Signal Studio software<br><b>File &gt; Save Setting File &gt; Bluetooth_Demo1.scp</b><br>(name it as you like)                                                                                                     |

# Demonstrations

## Demonstration 1:

### Transmit analysis for Bluetooth basic rate and low energy technologies

The RF transmit power and modulation characteristics measurements are combined into this single transmit analysis in the N/W9081A with one-button measurement for basic rate and low energy technologies. From the perspective of test cases for the *Bluetooth* RF layer certification testing, this one-button measurement can perform and complete the test purposes (TP) listed in Table 2 at one time.

The automation detection and predefined parameter are set up by pushing the one-button transmit analysis measurement and display a single view with four traces (Figure 2).

Table 2. Transmit analysis for basic rate and ultra low energy (ULE)\*

| TP identifier | Transmit tests                      | Demonstrations in N/W9081A |
|---------------|-------------------------------------|----------------------------|
| TRM/CA/01/C   | Output power                        | Demo 1.1                   |
| TRM/CA/07/C   | Modulation characteristics          | Demo 1.2                   |
| TRM/CA/08/C   | Initial carrier frequency tolerance | Demo 1.3                   |
| TRM/CA/09/C   | Carrier frequency drift             | Demo 1.4                   |

1. \*Note: The ULE Bluetooth RF PHY test cases and implementations are derived from the basic rate Bluetooth RF test cases. For the transmit analysis, both have the same test conditions. For the following demonstrations, we will use the Bluetooth basic rate signals.



Figure 2. Transmit analysis for a Bluetooth basic rate signal

- Top left: RF envelope
- Top right: Demodulation waveform
- Bottom left: RF spectrum
- Bottom right: Numeric summary table

## Demonstration 1.1:

### Output power (TRM/CA/01/C)

Power level is a critical parameter in digital communication systems. The power tests help to ensure that power levels are high enough to maintain links, yet low enough to minimize interference within the ISM band and to maximize battery life. *Bluetooth* devices are classified according to three power classes shown in Table 3.

Most portable *Bluetooth* devices are in Power Class 1 or 2 (with a nominal output power of 0 dBm), due to cost and battery life issues. In Table 3, the power limit ranges are also defined in the N/W9081A *Bluetooth* measurement application.

Output power measurements are performed in the time domain. Because the *Bluetooth* signal is a sequence of TDD bursts, it is necessary to trigger properly. Triggering occurs on the rising edge of the envelope to obtain a viewable signal. Figure 3 illustrates power and timing characteristics of a standard *Bluetooth* signal burst in the time domain.

Table 3. Bluetooth transmit power classification

| Power class | Output power range | Power limit range on N/W9081A |
|-------------|--------------------|-------------------------------|
| 1           | 1 to 100 mW        | 0 to + 20 dBm                 |
| 2           | 0.25 to 2.5 mW     | -6 to + 4 dBm                 |
| 3           | 1 mW max power     | -100 to 0 dBm                 |

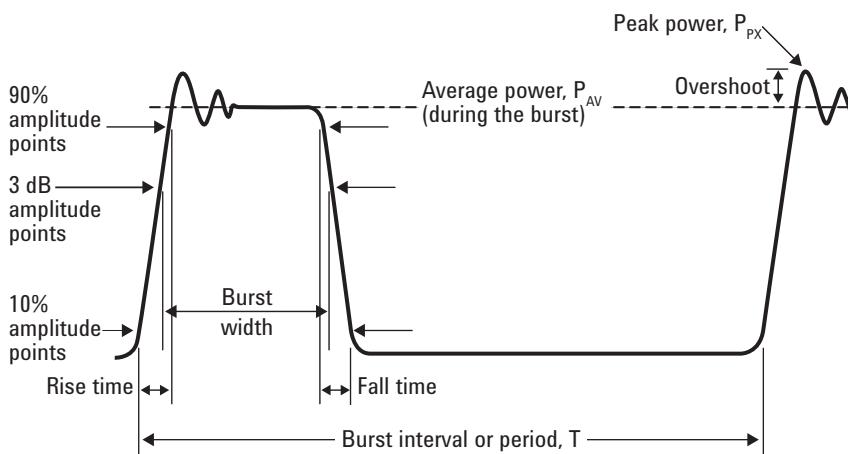



Figure 3. Time domain power and timing analysis

### Helpful tip:

Signal Studio *Bluetooth* generates -10 dBm signal power in default, but the N/W9081A predefines the device power class at 1, so in order to achieve the PASS indication, you need to change the power class from 1 to 3 under the Mode Setup. Refer to Figure 2.

In the N/W9081A, the *Bluetooth* signal with packet type, payload and packet length in bits can be automatically determined. The following power measurement parameters can be controlled:

- Burst synchronization method: Preamble (p0 defines the start of the burst), RF amplitude (3 dB points of the burst) and None (no synchronization process)
- Output power start and stop markers can be modified (default to start at 20% and stop at 80% per standard required)
- Trigger source: free run, video, external-1 /2, and RF burst (default is RF burst)
- Display results as average power and peak power

| X-Series instructions                                            | Keystrokes                                                                                                                                       |
|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Select <i>Bluetooth</i> mode                                     | <b>[Mode Preset] [Mode] {Bluetooth}</b>                                                                                                          |
| Change a center frequency if it is not at the default 2.402 GHz  | <b>{Center Freq} [Center Frequency Number] {GHz}</b><br>In this demonstration, we use the default center frequency at 2.402 GHz                  |
| Run a transmit analysis measurement                              | <b>[Meas] {Transmit Analysis}</b>                                                                                                                |
| Choose power class for device                                    | <b>[Mode Setup] {Device} {Power Class 3}</b>                                                                                                     |
| Select RF Envelope view (Figure 4)                               | <b>[View/Display] {RF Envelope}</b>                                                                                                              |
| Change acquisition time to see one burst <i>Bluetooth</i> signal | <b>[Sweep/Control] {Acquisition time}</b><br>Push the button of <b>[▼]</b> down key and make the trace to a best display position (see Figure 5) |

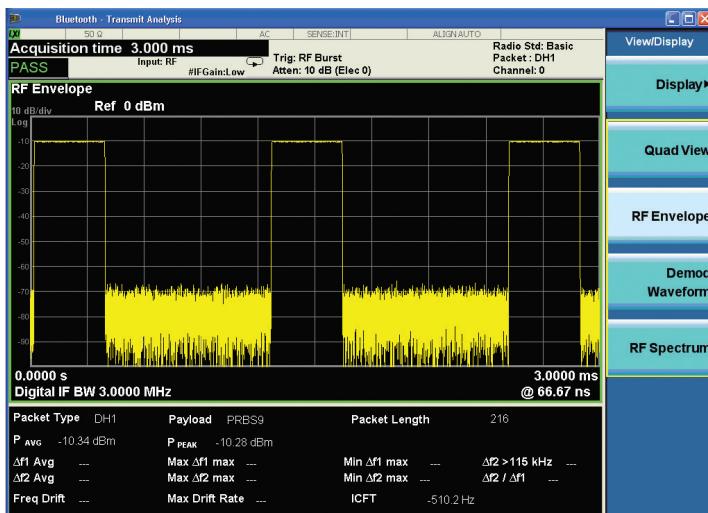



Figure 4. RF envelope view of transmit analysis measurement for the Bluetooth basic rate

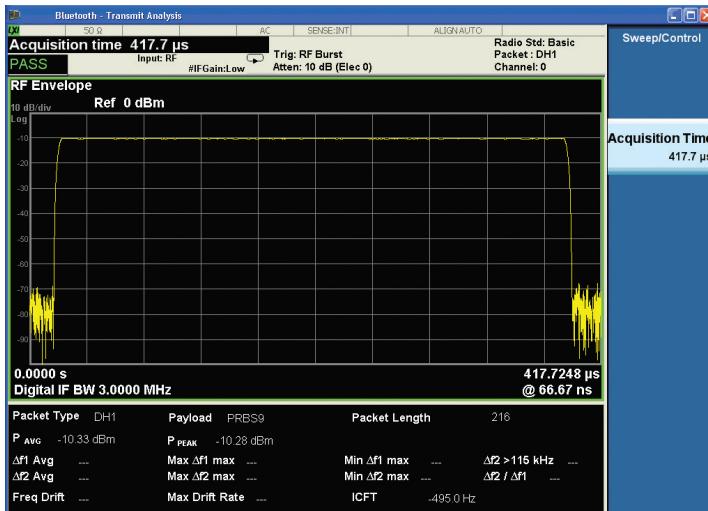
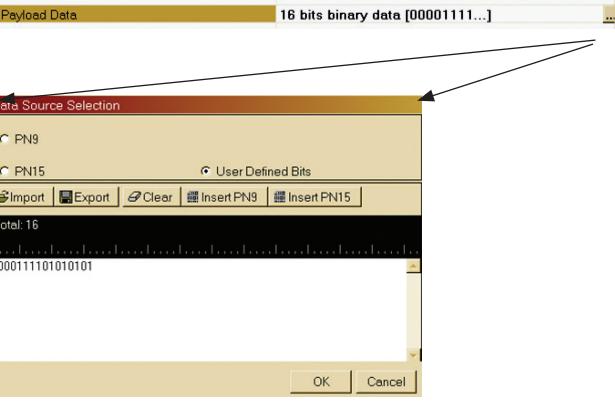



Figure 5. The Bluetooth one burst signal (DH1 packet, PRBS9 as payload and packet length 216 bits)

## Demonstration 1.2:

### Modulation characteristics (TRM/CA/07/C)

The modulation characteristics test is a frequency deviation measurement. For modulation characteristics, two sets of a repeating 8-bit sequence are used in the payload. These are 00001111 and 10101010. The combination of the two sequences checks both the modulator performance and the pre-modulation filtering. This test procedure requires using the longest supported packets and running the measurement at the lowest, middle, and highest operating frequencies. In the standard, the test procedures are quite complex to have  $\Delta f1_{max}$ ,  $\Delta f1_{avg}$  for the pattern 00001111, and  $\Delta f2_{max}$  and  $\Delta f2_{avg}$  for the resulting 01010101 pattern. The following measurement conditions are verified to ensure the modulation characteristics:


1.  $140 \text{ kHz} \leq \Delta f1_{avg} \leq 175 \text{ kHz}$
2.  $\Delta f2_{max} \geq 115 \text{ kHz}$
3.  $\Delta f2_{max} / \Delta f1_{avg} \geq 0.8$

The N/W9081A provides the ability to perform this test automatically.

- Modulation graph and numeric results showed at same time
- Provide “Pass” or “Fail” indicator per standard conditions

Generate the payload sequence

00001111 and 01010101 in the Signal Studio:

| Signal Studio Instructions    | Keystrokes                                                                                                                                                                                                                                                                                          |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Modify the waveform setup     | Click on <b>Packet</b> under <i>Bluetooth 2.1+EDR</i> on the Explorer menu on the left                                                                                                                                                                                                              |
| Manually set the payload date | Click on <b>Payload Data</b> in the manual of Payload Setting under Packet Parameters Setup on the right, then find a small button  in end that line, click it to access a dialog box to define the packet payload |
| Type the bits                 | Select <b>User Defined Bits</b> , type <b>0000111101010101</b> in the blank area, the user interface should looks like:<br><br><br>Click <b>OK</b> button                                                        |

Download the signal to the MXG  
Then Press  **Generate and Download** button on the top tool bar

Set up the X-Series analyzer to analyze the *Bluetooth* signal.

| X-Series instructions                      | Keystrokes                             |
|--------------------------------------------|----------------------------------------|
| Select the transmit analysis               | <b>[Meas] {Transmit Analysis}</b>      |
| View demodulation waveform only (Figure 6) | <b>[View/Display] {Demod Waveform}</b> |

The numeric results are shown in the bottom view trace, the details are:

|                     |                   |
|---------------------|-------------------|
| Packet type:        | DH1               |
| Payload:            | User defined bits |
| Packet length:      | 216               |
| P <sub>Avg</sub> :  | -10.33 dBm        |
| P <sub>Peak</sub> : | -10.29 dBm        |
| Δf1avg:             | 156.5 kHz         |
| Max Δf1max:         | 157.8 kHz         |
| Min Δf1max:         | 156.2 kHz         |
| Δf2 > 115 kHz:      | 100%              |
| Δf2avg:             | 144.1 kHz         |
| Max Δf2max:         | 162.8 kHz         |
| Min Δf2max:         | 136.2 kHz         |
| Δf2/Δf1:            | 0.92              |
| Freq drift:         | none              |
| Max drift rate:     | none              |
| ICFT:               | -1.054 kHz        |



Figure 6. The demodulation waveform shows the modulation characteristics measurement for the Bluetooth basic rate

## Demonstration 1.3:

### Initial carrier frequency tolerance (TRM/CA/08/C)

The initial carrier frequency tolerance test (also called frequency offset test) verifies the accuracy of the transmitter's carrier frequency. A standard DH1 packet with a preamble and with a pseudorandom bit sequence (PRBS) as payload is used. The initial four bits of a packet, the preamble bits, are analyzed to determine the extent of the frequency deviation from center frequency. This measurement requires the signal to be demodulated to measure the frequency deviation of each symbol. After demodulation, the frequency offset of each of the preamble bits is measured and averaged.

Generate the packet type DH1 with payload sequence PRBS9 in the Signal Studio:

| Signal Studio instructions     | Keystrokes                                                                                                                                                                                                                                                                                            |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Modify the waveform setup      | Click on <b>Packet</b> under 2.1+EDR on the Explorer menu on the left                                                                                                                                                                                                                                 |
| Manually set the payload date  | Click on <b>Payload Data</b> in the manual of Payload Setting under Packet Parameters Setup on the right, then find a small button  in end that line, click it to access a dialog box to define the packet payload |
| Type the bits                  | Check <b>PN9</b> in the Data Source Selection Click <b>OK</b> button                                                                                                                                                                                                                                  |
| Download the signal to the MXG | Press  <b>Generate and Download</b> button on the top tool bar                                                                                                                                                     |

Set up the X-Series analyzer to analyze the *Bluetooth* signal.

| X-Series instructions                               | Keystrokes                                                                                                                                                                                                                                                                       |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Select transmit analysis                            | <b>[Meas] {Transmit Analysis}</b>                                                                                                                                                                                                                                                |
| View demodulation waveform only                     | <b>[View/Display] {Demod Waveform}</b>                                                                                                                                                                                                                                           |
| Stop the trace updates                              | Press <b>[Single]</b> button                                                                                                                                                                                                                                                     |
| Zoom in for the first eight bits display (Figure 7) | Then press <b>[SPAN X Scale] {Scale/div}</b><br>Enter 4 us of Scale/div<br>The ICFT result is showing -452.1 Hz offset, and the first four of these bits comprise the 1010 preamble. (The ICFT result should be different from this demonstration, it is an instantaneous value) |

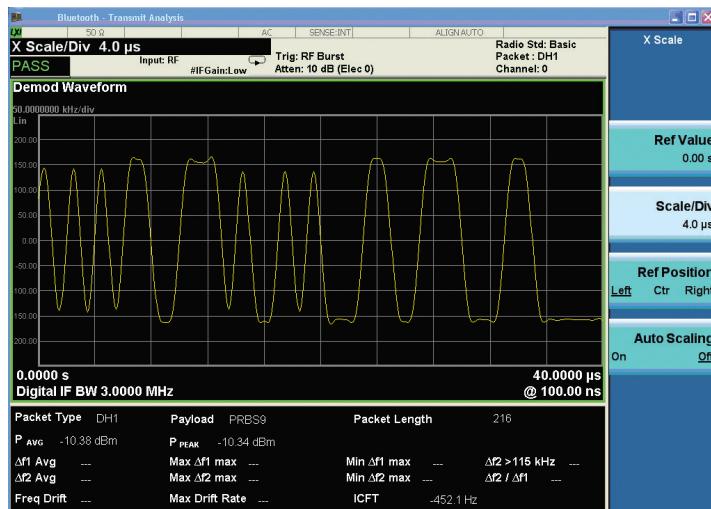



Figure 7. Zooming in ICFT result with the demodulation waveform

## Demonstration 1.4:

### Carrier frequency drift (TRM/CA/09/C)

Carrier frequency drift consists of verification of the transmitter center frequency drift with a packet. As with the two previous tests, modulation characteristics and initial carrier frequency tolerance, carrier frequency drift is also measured as a demodulated signal. In the standard, this carrier frequency drift test is required for three types of packets (DH1, DH3, DH5) with payload data consisting of a repeating 4-bit 1010 sequence.

In the N/W9081A, this carrier frequency drift is combined into the transmit analysis measurement with modulation characteristics and initial carrier frequency tolerance.

Generate the packet type DH3 with payload sequence 1010 in the Signal Studio:

| Signal Studio instructions     | Keystrokes                                                                                                                                                                                                                                                                                                   |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Modify the waveform setup      | Click on <b>Packet</b> under <i>Bluetooth 2.1+EDR</i> on the explorer menu on the left                                                                                                                                                                                                                       |
| Change the packet type to DH3  | Click on <b>Packet Type</b> in the manual of General Setting under Packet Parameters Setup on the right, pull-down menu of the packet type to find DH3                                                                                                                                                       |
| Manually set the payload date  | Click on <b>Payload Data</b> in the manual of Payload Setting under Packet Parameters Setup on the right, then find a small button  at the end of that line, click it to access a dialog box to define the packet payload |
| Select user defined bits       | Select <b>User Defined Bits</b> , type <b>1010</b> in the blank area. Click <b>OK</b> button                                                                                                                                                                                                                 |
| Download the signal to the MXG | Press  <b>Generate and Download</b> button on the top tool bar                                                                                                                                                            |

Set up the X-Series analyzer to analyze the *Bluetooth* signal.

| X-Series instructions                          | Keystrokes                                                    |
|------------------------------------------------|---------------------------------------------------------------|
| Change the test status from single to continue | Press <b>[Cont]</b>                                           |
| Select transmit analysis                       | <b>[Meas] {Transmit Analysis}</b>                             |
| View demodulation waveform only                | <b>[View/Display] {Demod Waveform}</b>                        |
| Modify the scale of X-axes (Figure 8)          | <b>[SPAN X Scale] {Scale/div}</b><br>Enter 40 us of Scale/div |

Figure 8 results show the following:

Frequency drift: 375 Hz

Max drift rate: 264 Hz/50 µs

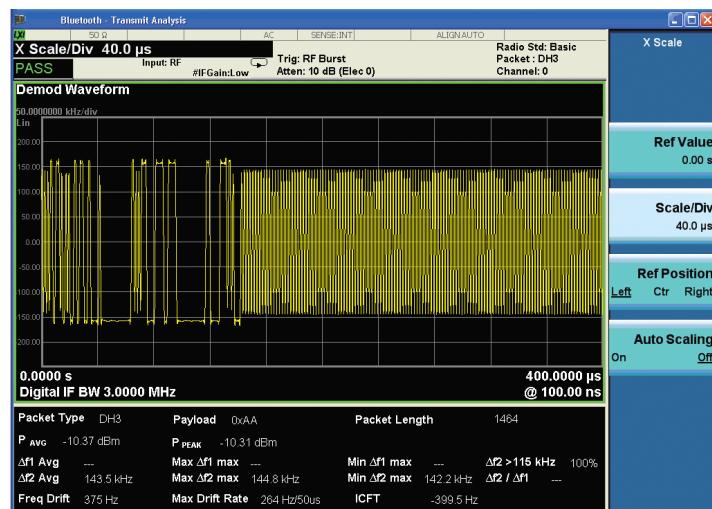



Figure 8. Frequency drift result for DH3 with 1010 payload

## Demonstration 2:

### Transmit output spectrum for *Bluetooth* basic rate and low energy technologies

The transmit output spectrum measurements analyze the power levels in the frequency domain to ensure that out-of-channel emissions are minimized. These help reduce overall system interference and ensure regulatory compliance. In the *Bluetooth* core specification, the transmit output spectrum consists of three parts, frequency range,  $-20$  dB bandwidth and adjacent channel power. Since the frequency range test can be performed in the spectrum analyzer mode, we will not discuss it here and instead focus on the other two measurements in Table 4.

Table 4. Transmit output spectrum measurements for Bluetooth basic rate

| TP identifier | Transmit tests                              | Demonstrations in N/W9081A |
|---------------|---------------------------------------------|----------------------------|
| TRM/CA/05/C   | Tx output spectrum $-20$ dB bandwidth       | Demo 2.1                   |
| TRM/CA/06/C   | Tx output spectrum – adjacent channel power | Demo 2.2                   |

## Demonstration 2.1:

### Tx output spectrum $-20$ dB bandwidth (TRM/CA/05/C)

The  $-20$  dB bandwidth is the difference between the frequency points below and above the operating frequency, as transmit power drops  $20$  dB. This test is performed at the lowest, middle and highest frequency channels. In the specification, it requires to use a  $2$  MHz span, peak detector and max hold mode with RBW  $10$  kHz and VBW at  $30$  kHz. In the N/W9081A, all of these parameters are already predefined in the signal analyzer.

Set up the X-Series analyzer to analyze the *Bluetooth* signal.

| X-Series instructions                            | Keystrokes                                                                       |
|--------------------------------------------------|----------------------------------------------------------------------------------|
| Preset the <i>Bluetooth</i> mode                 | <b>[Mode Preset]</b> green key on top right hand corner of the X-Series hardware |
| Measure the output spectrum bandwidth (Figure 9) | <b>[Meas]</b> <b>{Output Spectrum BW}</b>                                        |
| Adjust parameters if necessary                   | <b>[Meas Setup Scale]</b>                                                        |



Figure 9. A  $-20$  dB output spectrum bandwidth for a Bluetooth basic rate signal at the lowest channel (0)

## Demonstration 2.2:

### Tx output spectrum – adjacent channel power (TRM/CA/06/C)

The adjacent channel power, also known as ACP, is the most complex of the transmit output spectrum measurements. In the specifications, the power measurements are total peak powers for adjacent channels. It defines the equipment under test (EUT) transmitting on channel M and the adjacent power measured on channel N. The following conditions must be verified for compliance:

$$P_{TX}(f) \leq -20 \text{ dBm} \text{ for } |M-N| = 2$$

$$P_{TX}(f) \leq -40 \text{ dBm} \text{ for } |M-N| \geq 3$$

The N/W9081A, with a proprietary algorithm, performs a very quick ACP measurement with the press of a single button. It makes the complex ACP measurement easy and provides an ideal tool for precompliance test.

Change the center frequency in the Signal Studio:

| Signal Studio instructions     | Keystrokes                                                                                                                                                       |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Change the frequency           | Select <b>Signal Generator</b> under Hardware on the left, Click on <b>Frequency</b> line of Basic under Instrument Controls on the right, type <b>2.441 GHz</b> |
| Download the signal to the MXG | Press  <b>Generate and Download</b> button on the top tool bar                |

Set up the X-Series analyzer to analyze the *Bluetooth* signal.

| X-Series instructions                          | Keystrokes                             |
|------------------------------------------------|----------------------------------------|
| Set the middle channel                         | <b>[Freq] {LMH Channel}{Mid(39)}</b>   |
| Measure the adjacent channel power (Figure 10) | <b>[Meas] {Adjacent Channel Power}</b> |
| Adjust parameters if necessary                 | <b>[Meas Setup]</b>                    |

Figure 10 shows an ACP measurement performed for channel 39 (M=39). The condition  $P_{TX}(f) \leq -20 \text{ dBm}$  is checked for channels 37 and 41 (N=37, 41) and the condition  $P_{TX}(f) \leq -40 \text{ dBm}$  is verified for the rest of the channels. The conditional limits can be changed under [Meas Setup].

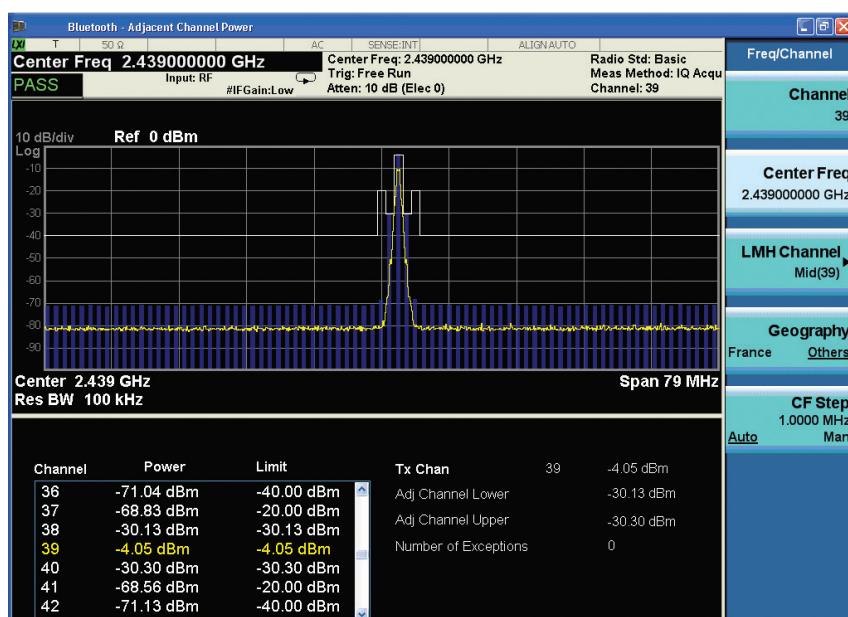



Figure 10. ACP measurement

## Demonstration 3:

### Transmit analysis for Bluetooth EDR

The *Bluetooth* core specification has evolved to support 2 Mb/s and 3 Mb/s peak data rates with the introduction of the enhanced data rate (EDR) feature. The key characteristic of the EDR packet is the change in modulation to differential phase shift keying (DPSK) following the packet header. The 2 Mb/s EDR packets use a  $\pi/4$ -DQPSK modulation and the 3 Mb/s EDR packets use 8DPSK modulation. The former is a mandatory function in any v2.0+EDR compliant radio, the 8DPSK is optional. Figure 11 shows the format for an EDR packet.

There is another one button measurement of transmit analysis for EDR in the N/W9081A which performs and completes the test purposes (TP) in the Table 5 at one time.

A single view with four traces in shown in Figure 12.

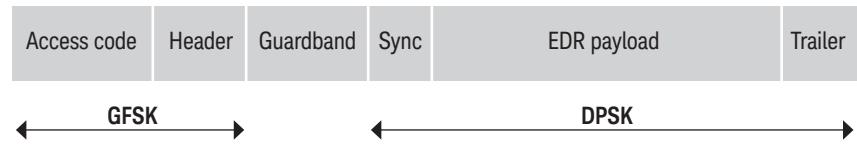



Figure 11. Bluetooth EDR packet format

Table 5. Transmit analysis for enhanced data rate (EDR)

| TP identifier | Transmit tests                                          | Demonstrations in N/W9081A |
|---------------|---------------------------------------------------------|----------------------------|
| TRM/CA/10/C   | EDR relative transmit power                             | Demo 3.1                   |
| TRM/CA/11/C   | EDR carrier frequency stability and modulation accuracy | Demo 3.2                   |
| TRM/CA/12/C   | EDR differential phase encoding                         | Demo 3.3                   |

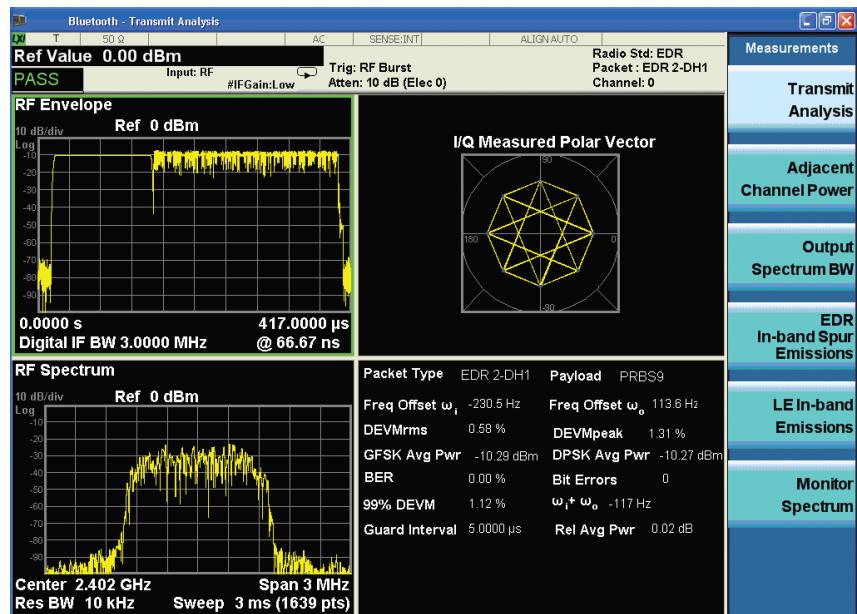



Figure 12. Transmit analysis for an EDR signal

Top left: RF envelope

Top right: I/Q measured constellation/polar graph of an EDR payload

Bottom left: RF spectrum

Bottom right: Numeric summary table

## Demonstration 3.1:

### EDR relative transmit power (TRM/CA/10/C)

The EDR relative transmit power verifies the difference between the average transmit power during the GFSK modulation and the average transmit power during the DPSK modulation within a specified range. The relative output is expected to comply with the following measurement condition:

$$(P_{\text{GFSK}} - 4 \text{ dB}) < P_{\text{DPSK}} < (P_{\text{GFSK}} + 1 \text{ dB}).$$

Generate the *Bluetooth* EDR signal in the Signal Studio:

| Signal Studio instructions     | Keystrokes                                                                                                                                                                     |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Modify the waveform setup      | Click on <b>Packet</b> under <i>Bluetooth</i> 2.1+EDR on the Explorer menu on the left                                                                                         |
| Select a predefined EDR signal | Explore the menu of the <b>Link Type</b> under General Setting, click on <b>ACL (Enhanced Data Rate)</b>                                                                       |
| Download the signal to the MXG | Click <b>OK</b> button, then press  <b>Generate and Download</b> button on the top tool bar |

Set up the X-Series analyzer to analyze the *Bluetooth* signal.

| X-Series instructions                                             | Keystrokes                                                         |
|-------------------------------------------------------------------|--------------------------------------------------------------------|
| Select transmit analysis                                          | <b>[Meas] {Transmit Analysis}</b>                                  |
| View RF envelope only                                             | <b>[View/Display] {RF Envelope}</b>                                |
| Make the measurement in single mode                               | <b>[Single]</b>                                                    |
| Zoom in for one burst display of preamble and payload (Figure 13) | <b>[SPAN X Scale] {Scale/div}</b><br>Enter 44 $\mu$ s of Scale/div |

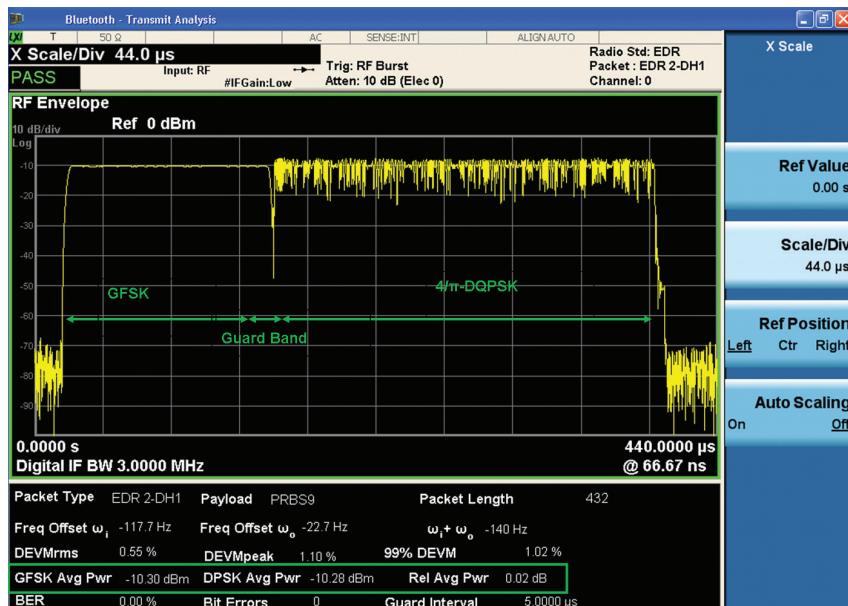



Figure 13. This RF envelope shows the N/W9081A displaying the transition between GFSK and  $4/\pi$ -DQPSK modulation schemes with the guard band separating the two modulation schemes when transmitting a 2-DH1. The EDR relative transmit power results are framed in the lower numerical trace. Note: The green markers/data are for illustrative purposes and not actually displayed on the instrument's screen.

## Demonstration 3.2:

### EDR carrier frequency stability and modulation accuracy (TRM/CA/11/C)

This test verifies that the modulation accuracy and the frequency stability are working within the required limits. The EDR carrier frequency stability test verifies the frequency stability for the transmitter's RF center frequency carrier. According to the *Bluetooth* RF core specification, this measurement requires to records 200 non-overlapping blocks, each with a length of 50 symbols ( $\mu$ s) for evaluation. The Figure 14 illuminates the  $\Delta_i$  (reported as initial frequency error) and  $\Delta_0$  (the worst-case block frequency error) with their limits.

The maximum value of the combined frequency errors,  $\Delta_i + \Delta_0$ , to  $\pm 75$  kHz.

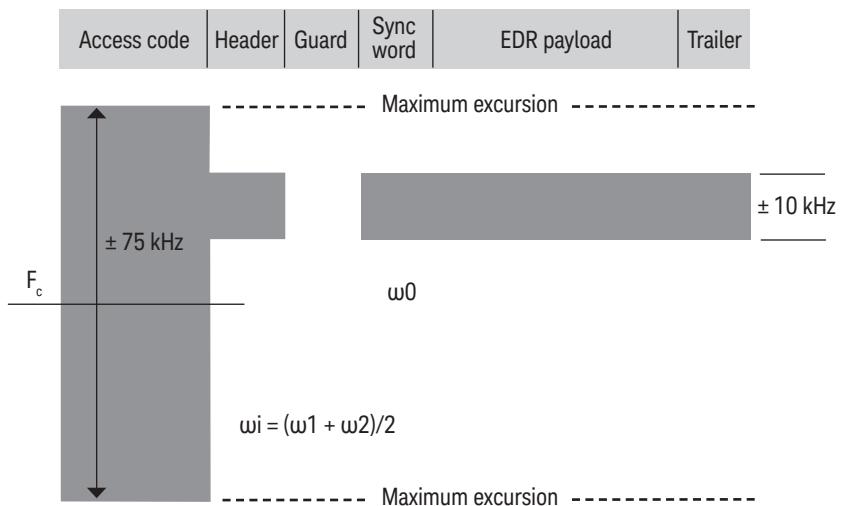



Figure 14. The carrier frequency stability limits over different portions of the Bluetooth EDR packet

Generate the *Bluetooth* EDR signal in the Signal Studio:

| Signal Studio instructions     | Keystrokes                                                                                                |
|--------------------------------|-----------------------------------------------------------------------------------------------------------|
| Modify the waveform setup      | Click on <b>Packet</b> under <i>Bluetooth</i> 2.1+EDR on the Explorer menu on the left                    |
| Select a predefined EDR signal | Explore the menu of the <b>Link Type</b> under General Setting, click on <b>eSCO (Enhanced Data Rate)</b> |
| Select a different packet type | Explore the menu of the <b>Packet Type</b> under General Setting, click on <b>6: 2-EV3</b> <sup>1</sup>   |
| Download the signal to the MXG | Click <b>OK</b> button, then press <b>Generate and Download</b> button on the top tool bar                |

1. There are five packet types have been defined to use for the TRM/CA/11/C measurement item

Set up the X-Series analyzer to analyze the *Bluetooth* signal.

| X-Series instructions                 | Keystrokes                               |
|---------------------------------------|------------------------------------------|
| Select transmit analysis              | [Meas] {Transmit Analysis}               |
| View constellation only (Figure 15)   | [View/Display] {IQ Measured Polar Graph} |
| Make the measurement to continue mode | [Cont]                                   |

Figure 15 shows that an instantaneous initial frequency stability is measured as  $-174.9$  Hz, the block frequency error as  $96.6$  Hz and combined frequency error as  $-78$  Hz.

The modulation accuracy is tested using a differential error vector magnitude (DEVM) measurement. The DEVM measurement is similar to the traditional error vector magnitude (EVM) measurement specified in other digital communication system. The DEVM defined in the *Bluetooth* core specification represents the magnitude of the error between two received signals spaced one symbol apart in time. The error is measured after all linear distortions are removed from the received signal, which includes tracking the frequency drift of the carrier. The modulation accuracy is reported as three separate values, the 99% DEVM, RMS DEVM, and peak DEVM. Figure 15 also provides these three results in the third line in the numerical summary table.

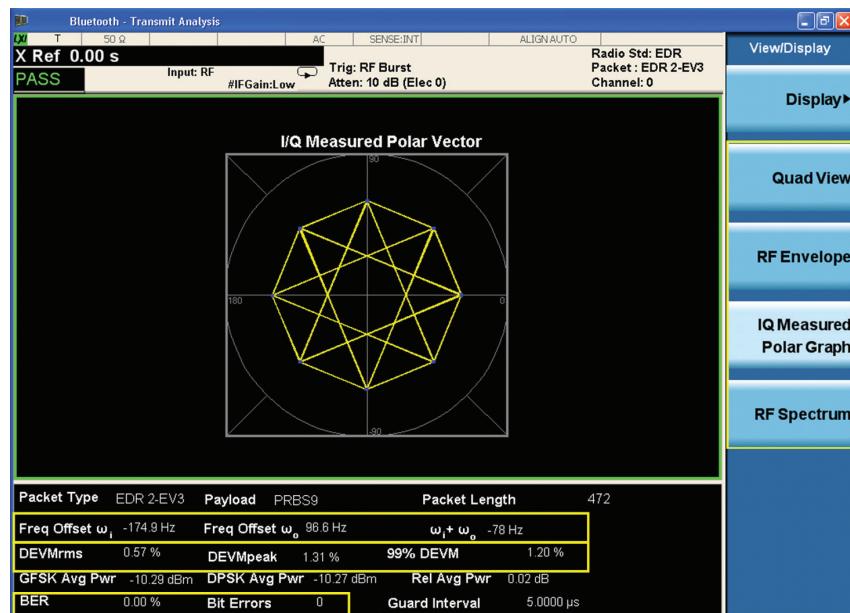



Figure 15. Constellation view of an EDR payload using a  $\pi/4$ -DQPSK modulation with numeric results summary table for the EDR transmit analysis

## Demonstration 3.3:

### EDR differential phase encoding (TRM/CA/12 /C)

This test verifies that the modulator corrects differential phase encoding. For the EDR payload, the modulator is required to correctly map the binary data stream into a set of specified phase angles in the complex plane. The test conditions require to perform over 100 packets.

In Figure 15, the latest line is showing the differential phase encoding results with no bit errors (Bit Error=0) and bit error rate (BER=0%) in the numerical summary table.

## Demonstration 4:

### EDR in-band spurious emissions (TMR/CA/13/C)

This test verifies that the level of unwanted signals from the DPSK-modulated data produced within the frequency range is below a limit set by the modulation scheme used. In the *Bluetooth* specification, the signal must meet the following conditions:

$$\begin{aligned} P_{\text{TX-26 dB}}(f) &\leq P_{\text{TXref}} - 26 \text{ dB} \text{ for } |M-N| = 1 \\ P_{\text{TX}}(f) &\leq -20 \text{ dBm} \text{ for } |M-N| = 2 \\ P_{\text{TX}}(f) &\leq -40 \text{ dBm} \text{ for } |M-N| \geq 3 \end{aligned}$$

In the N/W9081A, the measurement provides 79 scalar values of the  $P_{\text{TX}}$  per channel with a proprietary algorithm quickly, the same as the ACP measurement for basic rate and low energy technologies. Using a single button, the EDR in-band spurious emission measurement provides more results.

Change the center frequency in the Signal Studio:

| Signal Studio instructions     | Keystrokes                                                                                                                                                       |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Change the frequency           | Select <b>Signal Generator</b> under Hardware on the left, Click on <b>Frequency</b> line of Basic under Instrument Controls on the right, type <b>2.405 GHz</b> |
| Download the signal to the MXG | Press  <b>Generate and Download</b> button on the top tool bar                |

Set up the X-Series analyzer to analyze the *Bluetooth* signal.

| X-Series instructions                                  | Keystrokes                                 |
|--------------------------------------------------------|--------------------------------------------|
| Set channel 3 as the input signal                      | <b>[Freq] {Channel} Enter [3]{Enter}</b>   |
| Measure the EDR in-band spurious emissions (Figure 16) | <b>[Meas] {EDR In-band Spur Emissions}</b> |
| Adjust parameters if necessary                         | <b>[Meas Setup]</b>                        |

Figure 16 shows an in-band spurious emissions measurement for EDR signal performed for channel 3 (M=3). The condition  $P_{\text{TX-26 dB}}(f) \leq P_{\text{TXref}} - 26 \text{ dB}$  is checked for channels 2 and 4 (N=2, 4);  $P_{\text{TX}}(f) \leq -20 \text{ dBm}$  is checked for channels 1 and 5 (N=1, 5) and the condition  $P_{\text{TX}}(f) \leq -40 \text{ dBm}$  is verified for the rest of the channels. In the right of the numeric result table, the adjacent channel power between 1 MHz and 1.5 MHz from the carrier (Adj 500 kHz lower/upper) shall be at least 26 dB below the maximum power of the carrier transmit channel.




Figure 16. EDR in-band spurious emissions measurement

## Demonstration 5:

### Low energy in-band emissions (TMR/CA-02-C)

For the *Bluetooth* low energy technology, its specification of the in-band emissions is defined in ULP *Bluetooth* RF PHY test specifications. It has the same test procedures and conditions as the *Bluetooth* EDR in-band spurious emissions measurement.

$P_{TX}(f) \leq -20 \text{ dBm}$  for  $(f_{TX} \pm 2 \text{ MHz})$   
 $P_{TX}(f) \leq -30 \text{ dBm}$  for  $(f_{TX} \pm [3+n] \text{ MHz})$ ,  
 $n=0,1,2,\dots$

Generate the *Bluetooth* low energy signal in the Signal Studio:

| Signal Studio instructions               | Keystrokes                                                                                                                                                                     |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Select the low energy format             | Dropdown menu of the <b>Format</b> in the menu bar, click on the <i>Bluetooth</i> low energy technology as selection                                                           |
| Change the center frequency to 2.405 GHz | Click on <b>Signal Generator</b> on the Explorer menu on the left. Enter <b>2.478 GHz</b> in the <b>Frequency</b> line under the Basic                                         |
| Download the signal to the MXG           | Click <b>OK</b> button, then press  <b>Generate and Download</b> button on the top tool bar |

Set up the X-Series analyzer to analyze the *Bluetooth* low energy signal.

| X-Series instructions                        | Keystrokes                                           |
|----------------------------------------------|------------------------------------------------------|
| Change to low energy mode                    | <b>[Mode Setup] {Radio Standard} {Low Energy}</b>    |
| Change center frequency number               | <b>[Freq] {Center Freq} {LMH Channel} {High(39)}</b> |
| Measure the LE in-band emissions (Figure 17) | <b>[Meas] {LE In-band Emissions}</b>                 |
| Adjust parameters if necessary               | <b>[Meas Setup]</b>                                  |

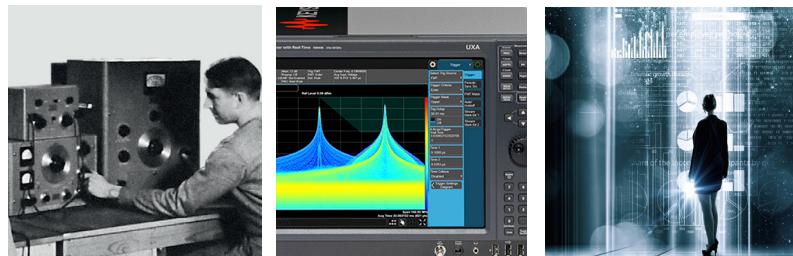

Figure 17 shows an in-band spurious emissions measurement for a low energy signal performed for a high channel. Here the high channel is 39, the whole channel space is 78 MHz  $\pm 2 \text{ MHz}$ .



Figure 17. LE in-band spurious emissions measurement

## Evolving Since 1939

Our unique combination of hardware, software, services, and people can help you reach your next breakthrough. We are unlocking the future of technology.  
From Hewlett-Packard to Agilent to Keysight.



### myKeysight

#### myKeysight

[www.keysight.com/find/mykeysight](http://www.keysight.com/find/mykeysight)

A personalized view into the information most relevant to you.

[http://www.keysight.com/find/emt\\_product\\_registration](http://www.keysight.com/find/emt_product_registration)

Register your products to get up-to-date product information and find warranty information.

### KEYSIGHT SERVICES

Accelerate Technology Adoption.  
Lower costs.

#### Keysight Services

[www.keysight.com/find/service](http://www.keysight.com/find/service)

Keysight Services can help from acquisition to renewal across your instrument's lifecycle. Our comprehensive service offerings—one-stop calibration, repair, asset management, technology refresh, consulting, training and more—helps you improve product quality and lower costs.



#### Keysight Assurance Plans

[www.keysight.com/find/AssurancePlans](http://www.keysight.com/find/AssurancePlans)

Up to ten years of protection and no budgetary surprises to ensure your instruments are operating to specification, so you can rely on accurate measurements.

#### Keysight Channel Partners

[www.keysight.com/find/channelpartners](http://www.keysight.com/find/channelpartners)

Get the best of both worlds: Keysight's measurement expertise and product breadth, combined with channel partner convenience.

Bluetooth and the Bluetooth logos are trademarks owned by Bluetooth SIG, Inc., U.S.A. and licensed to Keysight Technologies.

[www.keysight.com/find/n9081a](http://www.keysight.com/find/n9081a)

## Web Resources

#### Product page:

[www.keysight.com/find/n9081a](http://www.keysight.com/find/n9081a) and  
[www.keysight.com/find/w9081a](http://www.keysight.com/find/w9081a)

#### X-Series signal analyzers:

[www.keysight.com/find/X-Series](http://www.keysight.com/find/X-Series)

#### X-Series advanced measurement applications:

[www.keysight.com/find/X-Series\\_Apps](http://www.keysight.com/find/X-Series_Apps)

#### Signal Studio software:

[www.keysight.com/find/SignalStudio](http://www.keysight.com/find/SignalStudio)

#### Signal generators:

[www.keysight.com/find/sg](http://www.keysight.com/find/sg)

For more information on Keysight Technologies' products, applications or services, please contact your local Keysight office. The complete list is available at: [www.keysight.com/find/contactus](http://www.keysight.com/find/contactus)

### Americas

|               |                  |
|---------------|------------------|
| Canada        | (877) 894 4414   |
| Brazil        | 55 11 3351 7010  |
| Mexico        | 001 800 254 2440 |
| United States | (800) 829 4444   |

### Asia Pacific

|                    |                |
|--------------------|----------------|
| Australia          | 1 800 629 485  |
| China              | 800 810 0189   |
| Hong Kong          | 800 938 693    |
| India              | 1 800 11 2626  |
| Japan              | 0120 (421) 345 |
| Korea              | 080 769 0800   |
| Malaysia           | 1 800 888 848  |
| Singapore          | 1 800 375 8100 |
| Taiwan             | 0800 047 866   |
| Other AP Countries | (65) 6375 8100 |

### Europe & Middle East

|                |                                                           |
|----------------|-----------------------------------------------------------|
| Austria        | 0800 001122                                               |
| Belgium        | 0800 58580                                                |
| Finland        | 0800 523252                                               |
| France         | 0805 980333                                               |
| Germany        | 0800 6270999                                              |
| Ireland        | 1800 832700                                               |
| Israel         | 1 809 343051                                              |
| Italy          | 800 599100                                                |
| Luxembourg     | +32 800 58580                                             |
| Netherlands    | 0800 0233200                                              |
| Russia         | 8800 5009286                                              |
| Spain          | 800 000154                                                |
| Sweden         | 0200 882255                                               |
| Switzerland    | 0800 805353                                               |
| United Kingdom | Opt. 1 (DE)<br>Opt. 2 (FR)<br>Opt. 3 (IT)<br>0800 0260637 |

For other unlisted countries:

[www.keysight.com/find/contactus](http://www.keysight.com/find/contactus)  
(BP-9-7-17)

### DEKRA Certified

ISO9001 Quality Management System

[www.keysight.com/go/quality](http://www.keysight.com/go/quality)  
Keysight Technologies, Inc.  
DEKRA Certified ISO 9001:2015  
Quality Management System

This information is subject to change without notice.  
© Keysight Technologies, 2017  
Published in USA, December 2, 2017  
5990-6161EN  
[www.keysight.com](http://www.keysight.com)

