X-Series Signal Analyzers

N9010B EXA Signal Analyzer

Notices

© Keysight Technologies, Inc. 2016-2024

No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Keysight Technologies, Inc. as governed by United States and international copyright laws.

Trademark Acknowledgments

Manual Part Number

N9010-90071

Edition

Edition 1, April 2024
Supersedes: February 2024
Published by:
Keysight Technologies
1400 Fountaingrove Parkway
Santa Rosa, CA 95403

Warranty

THE MATERIAL CONTAINED IN THIS DOCUMENT IS PROVIDED "AS IS," AND IS SUBJECT TO BEING CHANGED, WITHOUT NOTICE, IN FUTURE EDITIONS. FURTHER, TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, KEYSIGHT DISCLAIMS ALL WARRANTIES, EITHER EXPRESS OR IMPLIED WITH REGARD TO THIS MANUAL AND ANY INFORMATION CONTAINED HEREIN, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. KEYSIGHT SHALL NOT BE LIABLE FOR ERRORS OR FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH THE FURNISHING, USE, OR PERFORMANCE OF THIS DOCUMENT OR ANY INFORMATION CONTAINED HEREIN. SHOULD
KEYSIGHT AND THE USER HAVE A SEPARATE WRITTEN AGREEMENT WITH WARRANTY TERMS
COVERING THE MATERIAL IN THIS

DOCUMENT THAT CONFLICT WITH THESE TERMS, THE WARRANTY TERMS IN THE SEPARATE AGREEMENT WILL CONTROL.

Technology Licenses

The hardware and/or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license.

U.S. Government Rights

The Software is "commercial computer software," as defined by Federal Acquisition Regulation ("FAR") 2.101. Pursuant to FAR 12.212 and $27.405-3$ and Department of Defense FAR Supplement ("DFARS") 227.7202, the U.S. government acquires commercial computer software under the same terms by which the software is customarily provided to the public. Accordingly, Keysight provides the Software to U.S. government customers under its standard commercial license, which is embodied in its End User License Agreement (EULA), a copy of which can be found at http://www.keysight.com/find/sweula The license set forth in the EULA represents the exclusive authority by which the U.S. government may use, modify, distribute, or disclose the Software. The EULA and the license set forth therein, does not require or permit, among other things, that Keysight: (1) Furnish technical information related to commercial computer software or commercial computer software documentation that is not customarily provided to the public; or (2) Relinquish to, or otherwise provide, the government rights in excess of these rights customarily provided to the public to use, modify, reproduce, release, perform, display, or disclose commercial computer software or commercial computer software documentation. No additional
government requirements beyond those set forth in the EULA shall apply, except to the extent that those terms, rights, or licenses are explicitly required from all providers of commercial computer software pursuant to the FAR and the DFARS and are set forth specifically in writing elsewhere in the EULA. Keysight shall be under no obligation to update, revise or otherwise modify the Software. With respect to any technical data as defined by FAR 2.101, pursuant to FAR 12.211 and 27.404 .2 and DFARS 227.7102, the U.S. government acquires no greater than Limited Rights as defined in FAR 27.401 or DFAR 227.7103-5 (c), as applicable in any technical data.

Safety Notices

CAUTION

A CAUTION notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a CAUTION notice until the indicated conditions are fully understood and met.

WARNING

A WARNING notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met.

Where to Find the Latest Information

Documentation is updated periodically. For the latest information about these products, including instrument software upgrades, application information, and product information, browse to one of the following URLs, according to the name of your product:
http://www.keysight.com/find/exa
To receive the latest updates by email, subscribe to Keysight Email Updates at the following URL:
http://www.keysight.com/find/MyKeysight
Information on preventing instrument damage can be found at:
www.keysight.com/find/PreventingInstrumentRepair

Is your product software up-to-date?

Periodically, Keysight releases software updates to fix known defects and incorporate product enhancements. To search for software updates for your product, go to the Keysight Technical Support website at:
http://www.keysight.com/find/techsupport

Contents

1. EXA Signal Analyzer
Definitions and Requirements. 14

Definitions . 14
Conditions Required to Meet Specifications. 14
Certification . 15
Frequency and Time . 16
Frequency Range. 16
Band. 16
Standard Frequency Reference . 18
Precision Frequency Reference . 19
Frequency Readout Accuracy . 20
Frequency Counter . 21
Frequency Span. 21
Sweep Time and Trigger . 22
Triggers . 23
Gated Sweep . 24
Number of Frequency Sweep Points (buckets). 24
Nominal Measurement Time vs. Span [Plot] . 25
Resolution Bandwidth (RBW) . 26
Analysis Bandwidth . 27
Preselector Bandwidth . 27
Video Bandwidth (VBW) . 28
Amplitude Accuracy and Range . 29
Measurement Range . 29
Maximum Safe Input Level . 29
Display Range . 29
Marker Readout. 30
Frequency Response . 31
IF Frequency Response . 32
IF Phase Linearity . 33
Absolute Amplitude Accuracy . 33
Input Attenuation Switching Uncertainty . 35
RF Input VSWR . 35
Resolution Bandwidth Switching Uncertainty . 36
Reference Level. 36
Display Scale Fidelity. 37
Available Detectors . 38
Dynamic Range . 39
Gain Compression . 39
1 dB Gain Compression Point (Two-tone). 39
Displayed Average Noise Level . 41
Displayed Average Noise Level (DANL). 41
Spurious Responses . 43
Residual Responses. 43
Second Harmonic Distortion. 44
Third Order Intermodulation . 45
Nominal Dynamic Range vs. Offset Frequency vs. RBW for Freq Option ≤ 526 [Plot] 46
Nominal Dynamic Range at 1 GHz for Freq Option ≤ 526 [Plot] . 47
Nominal Dynamic Range Bands 1-4 for Freq Option ≤ 526 [Plot] . 47

Contents

Phase Noise 48
Nominal Phase Noise of Different LO Optimizations [Plot] 49
Nominal Phase Noise of Different Center Frequencies [Plot] 50
Power Suite Measurements 51
Channel Power 51
Occupied Bandwidth 51
Adjacent Channel Power (ACP) 52
Power Statistics CCDF 54
Burst Power 55
TOI (Third Order Intermodulation) 55
Harmonic Distortion 55
Spurious Emissions 56
Spectrum Emission Mask 57
Options 58
General 60
Inputs/Outputs 65
Front Panel 65
Rear Panel 66
Regulatory Information 69
2. I/Q Analyzer
Specifications Affected by I/Q Analyzer 74
Frequency 75
Clipping-to-Noise Dynamic Range 76
Data Acquisition 77
Time Record Length (IQ pairs) 77
ADC Resolution 77
3. Option B25-25 MHz Analysis Bandwidth
Specifications Affected by Analysis Bandwidth 80
Other Analysis Bandwidth Specifications 81
IF Spurious Response 81
IF Frequency Response 82
IF Phase Linearity 83
Data Acquisition 85
Time Record Length (IQ pairs) 85
ADC Resolution 85
4. Option B40-40 MHz Analysis Bandwidth
Specifications Affected by Analysis Bandwidth 88
Other Analysis Bandwidth Specifications 89
IF Frequency Response 90
IF Phase Linearity 91
EVM 92
Data Acquisition 93
Time Record Length 93
ADC Resolution 93
Capture Time [Plot] 93

Contents

5. Option CR3 - Connector Rear, 2nd IF Output
Specifications Affected by Connector Rear, 2nd IF Output 96
Other Connector Rear, 2nd IF Output Specifications 97
Aux IF Out Port. 97
Second IF Out 97
6. Option CRP - Connector Rear, Arbitrary IF Output
Specifications Affected by Connector Rear, Arbitrary IF Output 100
Other Connector Rear, Arbitrary IF Output Specifications 101
Aux IF Out Port. 101
Arbitrary IF Out 101
7. Option EA3 - Electronic Attenuator, 3.6 GHz
Specifications Affected by Electronic Attenuator 104
Other Electronic Attenuator Specifications 105
Range (Frequency and Attenuation) 105
Distortions and Noise 106
Frequency Response 107
Absolute Amplitude Accuracy 107
Electronic Attenuator Switching Uncertainty 108
8. Option EMC - Precompliance EMI Features
Frequency 110
Frequency Range 110
EMI Resolution Bandwidths 110
Amplitude 112
EMI Average Detector 112
Quasi-Peak Detector 112
RMS Average Detector 112
9. Option ESC - External Source Control
General Specifications 114
Frequency Range. 114
Dynamic Range 116
Power Sweep Range 116
Measurement Time 117
Supported External Sources 118
10. Option EXM - External Mixing
Specifications Affected by External mixing 120
Other External Mixing Specifications 121
Connection Port EXT MIXER 121
Mixer Bias 121
IF Input. 122
LO Output 123

Contents

11. Option MPB - Microwave Preselector Bypass
Specifications Affected by Microwave Preselector Bypass 126
Other Microwave Preselector Bypass Specifications 127
Additional Spurious Responses 128
12. Option NF2 - Noise Floor Extension, Instrument Alignment
Specifications Affected by Noise Floor Extension 130
Displayed Average Noise Level 131
Displayed Average Noise Level with Noise Floor Extension Improvement 131
Displayed Average Noise Level with Noise Floor Extension 133
13. Option P03, P07, P13, P26, P32 and P44 - Preamplifier
Specifications Affected by Preamp 136
Other Preamp Specifications 137
Gain 137
Noise figure 137
1 dB Gain Compression Point 138
Displayed Average Noise Level (DANL) Preamp On 139
Frequency Response - Preamp On. 141
RF Input VSWR 142
Nominal VSWR - Preamp On, Freq Option ≤ 526 [Plot] 143
Third Order Intermodulation Distortion 144
Nominal Dynamic Range at 1 GHz, Preamp On, Freq Option ≤ 526 [Plot] 144
14. Option PFR - Precision Frequency Reference
Specifications Affected by Precision Frequency Reference 146
15. Option YAS - Y-Axis Screen Video Output
Specifications Affected by Y-Axis Screen Video Output 148
Other Y-Axis Screen Video Output Specifications 149
General Port Specifications 149
Screen Video 149
Delay 150
Continuity and Compatibility 151
16. Analog Demodulation Measurement Application RF Carrier Frequency and Bandwidth 155
Carrier Frequency 155
Maximum Information Bandwidth (Info BW) 155
Capture Memory 155
Post-Demodulation 156
Maximum Audio Frequency Span 156
Filters 156
Frequency Modulation 158
Conditions required to meet specification 158
FM Deviation Accuracy 158
FM Rate Accuracy 158

Contents

Carrier Frequency Error 158
Carrier Power 158
Frequency Modulation 159
Post-Demod Distortion Residual. 159
Post-Demod Distortion Accuracy 159
Distortion Measurement Range 159
AM Rejection 159
Residual FM 159
Hum \& Noise 159
Amplitude Modulation 160
Conditions required to meet specification 160
AM Depth Accuracy 160
AM Rate Accuracy ${ }^{\text {b }}$ 160
Carrier Power 160
Amplitude Modulation 161
Post-Demod Distortion Residual. 161
Post-Demod Distortion Accuracy 161
Distortion Measurement Range 161
FM Rejection 161
Residual AM 161
Phase Modulation 162
Conditions required to meet specification 162
PM Deviation Accuracy 162
PM Rate Accuracy b 162
Carrier Frequency Error b 162
Carrier Power 162
Phase Modulation 163
Post-Demod Distortion Residual. 163
Post-Demod Distortion Accuracy 163
Distortion Measurement Range 163
AM Rejection 163
Analog Out 164
FM Stereo/Radio Data System (RDS) Measurements 166
FM Stereo Modulation Analysis Measurements 166
17. Bluetooth Measurement ApplicationBasic Rate Measurements170
Output Power 170
Modulation Characteristics 171
Initial Carrier Frequency Tolerance 172
Carrier Frequency Drift 173
Adjacent Channel Power 173
Low Energy Measurements 174
Output Power 174
Modulation Characteristics 175
Initial Carrier Frequency Tolerance 176
Carrier Frequency Drift 177
LE In-band Emission 177
Enhanced Data Rate (EDR) Measurements 178

Contents

EDR Relative Transmit Power 178
EDR Modulation Accuracy 179
EDR Carrier Frequency Stability 180
EDR In-band Spurious Emissions 181
In-Band Frequency Range 182
Bluetooth Basic Rate and Enhanced Data Rate (EDR) System 182
Bluetooth Low Energy System 182
18. GSM/EDGE Measurement Application
Measurement 184
EDGE Error Vector Magnitude (EVM) 184
Power vs. Time 185
EDGE Power vs. Time 185
Power Ramp Relative Accuracy 185
Phase and Frequency Error 186
Output RF Spectrum (ORFS) 187
Frequency Ranges 190
In-Band Frequency Ranges 190
19. LTE/LTE-A Measurement Application
Supported Air Interface Features 192
Measurements 193
Channel Power 193
Power Statistics CCDF 194
Transmit On/Off Power 195
Adjacent Channel Power. 196
Occupied Bandwidth. 199
Spectrum Emission Mask 200
Spurious Emissions 202
Modulation Analysis 203
NB-IoT Modulation Analysis 205
C-V2X Modulation Analysis 206
In-Band Frequency Range 208
C-V2X Operating Band 208
NB-IoT Operating Band 208
LTE FDD Operating Band 208
LTE TDD Operating Band 209
20. Multi-Standard Radio Measurement Application
Measurements 212
Channel Power 212
Power Statistics CCDF 212
Occupied Bandwidth. 212
Spurious Emissions 212
Conformance EVM 213
In-Band Frequency Range 214

Contents

21. Noise Figure Measurement Application
General Specifications 216
Noise Figure 216
Gain 217
Noise Figure Uncertainty Calculator 218
Uncertainty versus Calibration Options 219
Nominal Instrument Noise Figure, Freq Option ≤ 526 219
Nominal Instrument Input VSWR, DC Coupled, Freq Option ≤ 526 220
22. Phase Noise Measurement Application General Specifications 222
Maximum Carrier Frequency 222
Measurement Characteristics 222
Measurement Accuracy 223
Offset Frequency 224
Amplitude Repeatability 224
Nominal Phase Noise at Different Center Frequencies 224
23. Short Range Communications Measurement Application ZigBee (IEEE 802.15.4) Measurement Application. 226
EVM (Modulation Accuracy) 226
Frequency Error 226
Z-Wave (ITU-T G.9959) Measurement Application 227
FSK Error 227
Frequency Error 227
24. Vector Modulation Analysis Application Frequency 230
Range. 230
Measurements 231
Modulation Analysis 231
Residual EVM 231
Residual EVM for MSK. 231
Residual EVM for VSB 231
25. W-CDMA Measurement Application
Measurements 234
Channel Power. 234
Adjacent Channel Power 235
Power Statistics CCDF. 237
Occupied Bandwidth 237
Spectrum Emission Mask 237
Spurious Emissions 238
Code Domain 239
QPSK EVM 240
Modulation Accuracy (Composite EVM) 241
Power Control 242
In-Band Frequency Range 243

Contents

26. WLAN Measurement Application Measurements 246
Channel Power 246
Power Statistics CCDF 250
Occupied Bandwidth 251
Power vs. Time 252
Spectrum Emission Mask 252
Spurious Emission 261
CCK 11Mbps 267
List Sequence Measurements 268268
Transmit Power 268
Transmit Output Transmit Output Spectrum 270
64QAM EVM 275
CCK 11Mbps 279
In-Band Frequency Range for Warranted Specifications 280

1 EXA Signal Analyzer

This chapter contains the specifications for the core signal analyzer. The specifications and characteristics for the measurement applications and options are covered in the chapters that follow.

Definitions and Requirements

This book contains signal analyzer specifications and supplemental information. The distinction among specifications, typical performance, and nominal values are described as follows.

Definitions

- Specifications describe the performance of parameters covered by the product warranty (temperature $=5$ to $55^{\circ} \mathrm{C}$ also referred to as "Full temperature range" or "Full range", unless otherwise noted).
- 95th percentile values indicate the breadth of the population $(\approx 2 \sigma)$ of performance tolerances expected to be met in 95\% of the cases with a 95\% confidence, for any ambient temperature in the range of 20 to $30^{\circ} \mathrm{C}$. In addition to the statistical observations of a sample of instruments, these values include the effects of the uncertainties of external calibration references. These values are not warranted. These values are updated occasionally if a significant change in the statistically observed behavior of production instruments is observed.
- Typical describes additional product performance information that is not covered by the product warranty. It is performance beyond specification that 80% of the units exhibit with a 95% confidence level over the temperature range 20 to $30^{\circ} \mathrm{C}$. Typical performance does not include measurement uncertainty.
- Nominal values indicate expected performance, or describe product performance that is useful in the application of the product, but is not covered by the product warranty.

Conditions Required to Meet Specifications

The following conditions must be met for the analyzer to meet its specifications.

- The analyzer is within its calibration cycle. See the General section of this chapter.
- Under auto couple control, except that Auto Sweep Time Rules = Accy.
- For signal frequencies < 10 MHz , DC coupling applied.
- Any analyzer that has been stored at a temperature range inside the allowed storage range but outside the allowed operating range must be stored at an ambient temperature within the allowed operating range for at least two hours before being turned on.
- The analyzer has been turned on at least 30 minutes with Auto Align set to Normal, or if Auto Align is set to Off or Partial, alignments must have been run recently enough to prevent an Alert message. If the Alert condition is changed from "Time and Temperature" to one of the disabled duration
choices, the analyzer may fail to meet specifications without informing the user. If Auto Align is set to Light, performance is not warranted, and nominal performance will degrade to become a factor of 1.4 wider for any specification subject to alignment, such as amplitude tolerances.

Certification

Keysight Technologies certifies that this product met its published specifications at the time of shipment from the factory. Keysight Technologies further certifies that its calibration measurements are traceable to the International System of Units (SI) via national metrology institutes (www.keysight.com/find/NMI) that are signatories to the CIPM Mutual Recognition Arrangement.

Frequency and Time

Description	Specifications		Supplemental Information
Frequency Range			
Maximum Frequency			
Option 503	3.6 GHz		
Option 507	7 GHz		
Option 513	13.6 GHz		
Option 526	26.5 GHz		
Option 532	32 GHz		
Option 544	44 GHz		
Preamp Option P03	3.6 GHz		
Preamp Option P07	7 GHz		
Preamp Option P13	13.6 GHz		
Preamp Option P26	26.5 GHz		
Preamp Option P32	32 GHz		
Preamp Option P44	44 GHz		
Minimum Frequency			
Preamp	AC Coupled ${ }^{\text {a }}$	DC Coupled	
Off	10 MHz	10 Hz	
On	10 MHz	100 kHz	
Band	Harmonic Mixing Mode	LO Multiple ($\mathbf{N}^{\text {b }}$)	Band Overlaps ${ }^{\text {c }}$
0 (10 Hz to 3.6 GHz)	1-	1	Options 503, 507, 513, 526, 532, 544
1 (3.5 GHz to 7 GHz)	1-	1	Option 507
1 (3.5 GHz to 8.4 GHz)	$1-$	1	Options 508, 513, 526
1 (3.5 GHz to 8.4 GHz)	1-	1	Options 513, 526, 532, 544
2 (8.3 GHz to 13.6 GHz)	1-	2	Options 513, 526, 532, 544
3 (13.5 to 17.1 GHz)	2-	2	Options 526, 532, 544
4 (17.0 to 26.5 GHz)	2-	4	Options 526, 532, 544
5 (26.4 GHz to 32 GHz)	2-	4	Option 532
5 (26.4 GHz to 34.5 GHz)	2-	4	Option 544

a. AC Coupled only applicable to Freq Options 503, 507, 513, and 526.
b. N is the LO multiplication factor. For negative mixing modes (as indicated by the "-" in the "Harmonic Mixing Mode" column), the desired 1st LO harmonic is higher than the tuned frequency by the 1st IF (5.1225 GHz for band $0,322.5 \mathrm{MHz}$ for all other bands).
c. In the band overlap regions, for example, 3.5 to 3.6 GHz , the analyzer may use either band for measurements, in this example Band 0 or Band 1 . The analyzer gives preference to the band with the better overall specifications (which is the lower numbered band for all frequencies below 26 GHz), but will choose the other band if doing so is necessary to achieve a sweep having minimum band crossings. For example, with $\mathrm{CF}=3.58 \mathrm{GHz}$, with a span of 40 MHz or less, the analyzer uses Band 0 , because the stop frequency is 3.6 GHz or less, allowing a span without band crossings in the preferred band. If the span is between 40 and 160 MHz , the analyzer uses Band 1 , because the start frequency is above 3.5 GHz , allowing the sweep to be done without a band crossing in Band 1 , though the stop frequency is above 3.6 GHz , preventing a Band 0 sweep without band crossing. With a span greater than 160 MHz , a band crossing will be required: the analyzer sweeps up to 3.6 GHz in Band 0 ; then executes a band crossing and continues the sweep in Band 1.
Specifications are given separately for each band in the band overlap regions. One of these specifications is for the preferred band, and one for the alternate band. Continuing with the example from the previous paragraph (3.58 GHz), the preferred band is band 0 (indicated as frequencies under 3.6 GHz) and the alternate band is band 1 (3.5 to 8.4 GHz). The specifications for the preferred band are warranted. The specifications for the alternate band are not warranted in the band overlap region, but performance is nominally the same as those warranted specifications in the rest of the band. Again, in this example, consider a signal at 3.58 GHz . If the sweep has been configured so that the signal at 3.58 GHz is measured in Band 1, the analysis behavior is nominally as stated in the Band 1 specification line (3.5 to 8.4 GHz) but is not warranted. If warranted performance is necessary for this signal, the sweep should be reconfigured so that analysis occurs in Band 0 . Another way to express this situation in this example Band 0/Band 1 crossing is this: The specifications given in the "Specifications" column which are described as "3.5 to 7.0 GHz " represent nominal performance from 3.5 to 3.6 GHz , and warranted performance from 3.6 to 7.0 GHz

Description	Specifications	Supplemental Information
Standard Frequency Reference		
Accuracy	$\pm[$ (time since last adjustment \times aging rate) + temperature stability + calibration accuracy $\left.{ }^{\text {a }}\right]$	
Temperature Stability		
20 to $30^{\circ} \mathrm{C}$	$\pm 2 \times 10^{-6}$	
Full temperature range	$\pm 2 \times 10^{-6}$	
Aging Rate	$\pm 1 \times 10^{-6} /$ year $^{\text {b }}$	
Achievable Initial Calibration Accuracy	$\pm 1.4 \times 10^{-6}$	
Settability	$\pm 2 \times 10^{-8}$	
Residual FM (Center Frequency $=1 \mathrm{GHz}$ 10 Hz RBW, 10 Hz VBW)		$\leq 10 \mathrm{~Hz} \times \mathrm{N}^{\mathrm{C}} \mathrm{p}$-p in 20 ms (nominal)

a. Calibration accuracy depends on how accurately the frequency standard was adjusted to 10 MHz . If the adjustment procedure is followed, the calibration accuracy is given by the specification "Achievable Initial Calibration Accuracy."
b. For periods of one year or more.
c. N is the LO multiplication factor.

Description	Specifications	Supplemental Information
Precision Frequency Reference (Option PFR) Accuracy	$\pm[($ time since last adjustment \times aging rate) + temperature stability + calibration accuracy ${ }^{\text {a }}{ }^{\text {b }}$	
Temperature Stability		
20 to $30^{\circ} \mathrm{C}$	$\pm 1.5 \times 10^{-8}$	Nominally linear ${ }^{\text {c }}$
Full temperature range	$\pm 5 \times 10^{-8}$	
Aging Rate		$\pm 5 \times 10^{-10} /$ day (nominal)
Total Aging		
1 Year	$\pm 1 \times 10^{-7}$	
2 Years	$\pm 1.5 \times 10^{-7}$	
Settability	$\pm 2 \times 10^{-9}$	
Warm-up and Retrace ${ }^{\text {d }}$		Nominal
300 s after turn on		$\pm 1 \times 10^{-7}$ of final frequency
900 s after turn on		$\pm 1 \times 10^{-8}$ of final frequency
Achievable Initial Calibration Accuracy ${ }^{\text {e }}$	$\pm 4 \times 10^{-8}$	
Standby power to reference oscillator		Not supplied
Residual FM (Center Frequency $=1$ GHz 10 Hz RBW, 10 Hz VBW)		$\leq 0.25 \mathrm{~Hz} \times \mathrm{N}^{f} \mathrm{p}-\mathrm{p}$ in 20 ms (nominal)

a. Calibration accuracy depends on how accurately the frequency standard was adjusted to 10 MHz . If the adjustment procedure is followed, the calibration accuracy is given by the specification "Achievable Initial Calibration Accuracy."
b. The specification applies after the analyzer has been powered on for four hours.
c. Narrow temperature range performance is nominally linear with temperature. For example, for $25 \pm 3^{\circ} \mathrm{C}$, the stability would be only three-fifths as large as the warranted $25 \pm 5^{\circ} \mathrm{C}$, thus $\pm 0.9 \times 10^{-8}$.
d. Standby mode does not apply power to the oscillator. Therefore warm-up applies every time the power is turned on. The warm-up reference is one hour after turning the power on. Retracing also occurs every time warm-up occurs. The effect of retracing is included within the "Achievable Initial Calibration Accuracy" term of the Accuracy equation.
e. The achievable calibration accuracy at the beginning of the calibration cycle includes these effects:

1) Temperature difference between the calibration environment and the use environment
2) Orientation relative to the gravitation field changing between the calibration environment and the use environment
3) Retrace effects in both the calibration environment and the use environment due to turning the instrument power off.
4) Settability
f. N is the LO multiplication factor.

Description	Specifications	Supplemental Information
Frequency Readout Accuracy	$\pm($ marker freq \times freq ref accy. $+0.25 \% \times$ span $+5 \% \times R B W^{a}+2 \mathrm{~Hz}+0.5 \times$ horizontal resolution $)$	Single detector only ${ }^{\text {b }}$
Example for EMC ${ }^{\text {d }}$		$\pm 0.0032 \%$ (nominal)

a. The warranted performance is only the sum of all errors under autocoupled conditions. Under non-autocoupled conditions, the frequency readout accuracy will nominally meet the specification equation, except for conditions in which the RBW term dominates, as explained in examples below. The nominal RBW contribution to frequency readout accuracy is 2% of RBW for RBWs from 1 Hz to $390 \mathrm{kHz}, 4 \%$ of RBW from 430 kHz through 3 MHz (the widest autocoupled RBW), and 30% of RBW for the (manually selected) 4, 5, 6 and 8 MHz RBWs.
First example: a 120 MHz span, with autocoupled RBW. The autocoupled ratio of span to RBW is $106: 1$, so the RBW selected is 1.1 MHz . The $5 \% \times$ RBW term contributes only 55 kHz to the total frequency readout accuracy, compared to 300 kHz for the $0.25 \% \times$ span term, for a total of 355 kHz . In this example, if an instrument had an unusually high RBW centering error of 7% of RBW (77 kHz) and a span error of 0.20% of span (240 kHz), the total actual error (317 kHz) would still meet the computed specification (355 kHz).
Second example: a 20 MHz span, with a 4 MHz RBW. The specification equation does not apply because the Span: RBW ratio is not autocoupled. If the equation did apply, it would allow 50 kHz of error (0.25%) due to the span and 200 kHz error (5%) due to the RBW. For this non-autocoupled RBW, the RBW error is nominally 30%, or 1200 kHz .
b. Horizontal resolution is due to the marker reading out one of the sweep points. The points are spaced by span/(Npts -1), where Npts is the number of sweep points. For example, with the factory preset value of 1001 sweep points, the horizontal resolution is span/1000. However, there is an exception: When both the detector mode is "normal" and the span $>0.25 \times($ Npts -1$) \times$ RBW, peaks can occur only in even-numbered points, so the effective horizontal resolution becomes doubled, or span/500 for the factory preset case. When the RBW is autocoupled and there are 1001 sweep points, that exception occurs only for spans $>750 \mathrm{MHz}$.
c. Specifications apply to traces in most cases, but there are exceptions. Specifications always apply to the peak detector. Specifications apply when only one detector is in use and all active traces are set to Clear Write. Specifications also apply when only one detector is in use in all active traces and the "Restart" key has been pressed since any change from the use of multiple detectors to a single detector. In other cases, such as when multiple simultaneous detectors are in use, additional errors of $0.5,1.0$ or 1.5 sweep points will occur in some detectors, depending on the combination of detectors in use.
d. In most cases, the frequency readout accuracy of the analyzer can be exceptionally good. As an example, Keysight has characterized the accuracy of a span commonly used for Electro-Magnetic Compatibility (EMC) testing using a source frequency locked to the analyzer. Ideally, this sweep would include EMC bands C and D and thus sweep from 30 to 1000 MHz . Ideally, the analysis bandwidth would be 120 kHz at -6 dB , and the spacing of the points would be half of this (60 kHz). With a start frequency of 30 MHz and a stop frequency of 1000.2 MHz and a total of 16168 points, the spacing of points is ideal. The detector used was the Peak detector. The accuracy of frequency readout of all the points tested in this span was with $\pm 0.0032 \%$ of the span. A perfect analyzer with this many points would have an accuracy of $\pm 0.0031 \%$ of span. Thus, even with this large number of display points, the errors in excess of the bucket quantization limitation were negligible.

Description	Specifications	Supplemental Information
Frequency Counter ${ }^{\mathrm{a}}$		See note ${ }^{\mathrm{b}}$
Count Accuracy	$\pm($ marker freq \times freq ref accy. $+0.100 \mathrm{~Hz})$	
Delta Count Accuracy	$\pm($ delta freq. \times freq ref accy. $+0.141 \mathrm{~Hz})$	
Resolution	0.001 Hz	

a. Instrument conditions: $\mathrm{RBW}=1 \mathrm{kHz}$, gate time $=$ auto $(100 \mathrm{~ms}), \mathrm{S} / \mathrm{N} \geq 50 \mathrm{~dB}$, frequency $=1 \mathrm{GHz}$
b. If the signal being measured is locked to the same frequency reference as the analyzer, the specified count accuracy is $\pm 0.100 \mathrm{~Hz}$ under the test conditions of footnote a. This error is a noisiness of the result. It will increase with noisy sources, wider RBWs, lower S / N ratios, and source frequencies $>1 \mathrm{GHz}$.

Description	Specifications	Supplemental Information
Frequency Span		
Range	$0 \mathrm{~Hz}, 10 \mathrm{~Hz}$ to 3.6 GHz	
Option 503	$0 \mathrm{~Hz}, 10 \mathrm{~Hz}$ to 7 GHz	
Option 507	$0 \mathrm{~Hz}, 10 \mathrm{~Hz}$ to 13.6 GHz	
Option 513	$0 \mathrm{~Hz}, 10 \mathrm{~Hz}$ to 26.5 GHz	
Option 526	$0 \mathrm{~Hz}, 10 \mathrm{~Hz}$ to 32 GHz	
Option 532	$0 \mathrm{~Hz}, 10 \mathrm{~Hz}$ to 44 GHz	
Option 544	2 Hz	
Resolution	$\pm\left(0.25 \% \times\right.$ span + horizontal resolution $\left.{ }^{\text {a }}\right)$	
Span Accuracy	$\pm(0.1 \% \times$ span + horizontal resolution $)$	
Swept		
FFT		

a. Horizontal resolution is due to the marker reading out one of the sweep points. The points are spaced by span/(Npts - 1), where Npts is the number of sweep points. For example, with the factory preset value of 1001 sweep points, the horizontal resolution is span/1000. However, there is an exception: When both the detector mode is "normal" and the span $>0.25 \times($ Npts -1$) \times$ RBW, peaks can occur only in even-numbered points, so the effective horizontal resolution becomes doubled, or span/500 for the factory preset case. When the RBW is auto coupled and there are 1001 sweep points, that exception occurs only for spans > 750 MHz .

Description	Specifications	Supplemental Information
Sweep Time and Trigger		
Sweep Time Range Span $=0 \mathrm{~Hz}$ Span $\geq 10 \mathrm{~Hz}$	$1 \mu \mathrm{sto} 6000 \mathrm{~s}$ 1 ms to 4000 s	
$\begin{aligned} & \text { Sweep Time Accuracy } \\ & \text { Span } \geq 10 \mathrm{~Hz} \text {, swept } \\ & \text { Span } \geq 10 \mathrm{~Hz} \text {, FFT } \\ & \text { Span }=0 \mathrm{~Hz} \end{aligned}$		$\pm 0.01 \%$ (nominal) $\pm 40 \%$ (nominal) $\pm 0.01 \%$ (nominal)
Sweep Trigger	Free Run, Line, Video, External 1, External 2, RF Burst, Periodic Timer	
Delayed Trigger ${ }^{\text {a }}$ Range		
Span $\geq 10 \mathrm{~Hz}$	-150 ms to 500 ms	
Span $=0 \mathrm{~Hz}$	-10 s to $+500 \mathrm{~ms}^{\text {b }}$	
Resolution	0.1 \%s	

a. Delayed trigger is available with line, video, RF burst and external triggers.
b. Prior to A. 19.28 software, zero span trigger delay was limited to -150 ms to 500 ms .

Description	Specifications	Supplemental Information
Line Selection	1 to 525, or 1 to 625, standard dependent	

a. The highest allowed mixer level depends on the IF Gain. It is nominally -10 dBm for Preamp Off and IF Gain = Low.
b. Noise will limit trigger level range at high frequencies, such as above 15 GHz .

Description	Specifications	Supplemental Information
Gated Sweep		
Gate Methods	Gated LO Gated Video Gated FFT	
Span Range	Any span	
Gate Delay Range	0 to 100.0 s	
Gate Delay Settability	4 digits, $\geq 100 \mathrm{~ns}$	
Gate Delay Jitter		33.3 ns p-p (nominal)
Gate Length Range (Except Method = FFT)	100 ns to 5.0 s	Gate length for the FFT method is fixed at 1.83/RBW, with nominally 2% tolerance.
Gated Frequency and Amplitude Errors		Nominally no additional error for gated measurements when the Gate Delay is greater than the MIN FAST setting
Gate Sources	External 1 External 2 Line RF Burst Periodic	Pos or neg edge triggered

Description	Specifications	Supplemental Information
Number of Frequency Sweep Points (buckets)		
Factory preset	1001	
Range	1 to 100,001	Zero and non-zero spans

Nominal Measurement Time vs. Span [Plot]

Description		Specifications	Supplemental Information
Resolution Bandwidth (RBW)			
Range (-3.01 dB bandwidth)		1 Hz to $10 \mathrm{MHz}^{\mathrm{a}}$ Bandwidths above 3 MHz are 4, 5, 6, 8 and $10 \mathrm{MHz}^{\mathrm{a}}$. Bandwidths 1 Hz to 3 MHz are spaced at 10% spacing using the E24 series (24 per decade): 1.0, 1.1, 1.2, 1.3, 1.5, 1.6, 1.8, 2.0, 2.2, 2.4, 2.7, 3.0, 3.3, 3.6, 3.9, $4.3,4.7,5.1,5.6,6.2,6.8,7.5,8.2,9.1$ in each decade.	
Power bandwidth accuracy ${ }^{\text {b }}$			
RBW Range	CF Range		
1 Hz to 750 kHz	All	$\pm 1.0 \%$ (0.044 dB)	
820 kHz to 1.2 MHz	<3.6 GHz	$\pm 2.0 \%$ (0.088 dB)	
1.3 to 2.0 MHz	$<3.6 \mathrm{GHz}$		$\pm 0.07 \mathrm{~dB}$ (nominal)
2.2 to 3 MHz	$<3.6 \mathrm{GHz}$		0 to -0.2 dB (nominal)
4 to $10 \mathrm{MHz}^{\text {a }}$	$<3.6 \mathrm{GHz}$		0 to -0.4 dB (nominal)
Noise BW to RBW ratio ${ }^{\text {c }}$			$1.056 \pm 2 \%$ (nominal)
Accuracy (-3.01 dB bandwidth) ${ }^{\text {d }}$			
1 Hz to 1.3 MHz RBW			$\pm 2 \%$ (nominal)
$\begin{aligned} & 1.5 \mathrm{MHz} \text { to } 3 \mathrm{MHz} \text { RBW } \\ & \mathrm{CF} \leq 3.6 \mathrm{GHz} \\ & \mathrm{CF}>3.6 \mathrm{GHz} \end{aligned}$			$\pm 7 \%$ (nominal) $\pm 8 \%$ (nominal)
$\begin{aligned} & \mathrm{CF} \leq 3.6 \mathrm{GHz} \\ & \mathrm{CF}>3.6 \mathrm{GHz} \end{aligned}$			$\pm 15 \%$ (nominal) $\pm 20 \%$ (nominal)
Selectivity ($-60 \mathrm{~dB} /-3 \mathrm{~dB}$)			4.1:1 (nominal)

a. The 10 MHz RBW setting is only available on analyzers with instrument software version \geq A. 30.05 and which also have option FS1 and one or more of options B40, DP2, or MPB installed. Otherwise, the maximum RBW setting is 8 MHz .
b. The noise marker, band power marker, channel power and ACP all compute their results using the power bandwidth of the RBW used for the measurement. Power bandwidth accuracy is the power uncertainty in the results of these measurements due only to bandwidth-related errors. (The analyzer knows this power bandwidth for each RBW with greater accuracy than the RBW width itself, and can therefore achieve lower errors.) The warranted specifications shown apply to the Gaussian RBW filters used in swept and zero span analysis. There are four different kinds of filters used in the spectrum analyzer: Swept Gaussian, Swept Flattop, FFT Gaussian and FFT Flattop. While the warranted performance only applies to the swept Gaussian filters, because only they are kept under statistical process control, the other filters nominally have the same performance.
c. The ratio of the noise bandwidth (also known as the power bandwidth) to the RBW has the nominal value and tolerance shown. The RBW can also be annotated by its noise bandwidth instead of this 3 dB bandwidth. The accuracy of this annotated value is similar to that shown in the power bandwidth accuracy specification.
d. Resolution Bandwidth Accuracy can be observed at slower sweep times than auto-coupled conditions. Normal sweep rates cause the shape of the RBW filter displayed on the analyzer screen to widen by nominally 6%. This widening declines to 0.6% nominal when the Swp Time Rules key is set to Accuracy instead of Normal. The true bandwidth, which determines the response to impulsive signals and noise-like signals, is not affected by the sweep rate.

Description	Specification	Supplemental information
Analysis Bandwidth ${ }^{\text {a }}$		
Standard	25 MHz	
With Option B40	40 MHz	

a. Analysis bandwidth is the instantaneous bandwidth available about a center frequency over which the input signal can be digitized for further analysis or processing in the time, frequency, or modulation domain.

Description	Specifications	Supplemental Information	
Preselector Bandwidth			
Mean Bandwidth at CF			
5 GHz		Freq option ≤ 526	Freq option >526
10 GHz	58 MHz	46 MHz	
15 GHz	57 MHz	52 MHz	
20 GHz	59 MHz	53 MHz	
25 GHz	64 MHz	55 MHz	
35 GHz	74 MHz	56 MHz	
44 GHz			62 MHz
Standard Deviation			70 MHz
-3 dB Bandwidth		9%	7%

a. The preselector can have a significant passband ripple. To avoid ambiguous results, the -4 dB bandwidth is characterized.

Description	Specifications	Supplemental Information
Video Bandwidth (VBW)		
Range	Same as Resolution Bandwidth range plus wide-open VBW (labeled 50 MHz)	$\pm 6 \%$ (nominal) Accuracy swept mode and zero span ${ }^{2}$

a. For FFT processing, the selected VBW is used to determine a number of averages for FFT results. That number is chosen to give roughly equivalent display smoothing to VBW filtering in a swept measurement. For example, if VBW $=0.1 \times$ RBW, four FFTs are averaged to generate one result.

Amplitude Accuracy and Range

Description	Specifications	Supplemental Information
Measurement Range		
Preamp Off	Displayed Average Noise Level to +23 dBm	
Preamp On	Displayed Average Noise Level to +23 dBm	Option P03, P07, P13, P26, P32, P44
Input Attenuation Range		
Standard	0 to 60 dB, in 10 dB steps	
With Option FSA	0 to 60 dB, in 2 dB steps	

Description	Specifications	Supplemental Information
Maximum Safe Input Level		Applies with or without preamp (Option P03, P07, P13, P26, P32, P44)
Average Total Power	$+30 \mathrm{dBm}(1 \mathrm{~W})$	
Peak Pulse Power		
$(\leq 10 \mu$ s pulse width,		
$\leq 1 \%$ duty cycle,		
input attenuation $\geq 30 \mathrm{~dB})$	$+50 \mathrm{dBm}(100 \mathrm{~W})$	
DC voltage		
DC Coupled	$\pm .2 \mathrm{Vdc}$	
AC Coupled	$\pm 100 \mathrm{Vdc}$	

Description	Specifications	Supplemental Information		
Display Range	Ten divisions displayed; 0.1 to $1.0 \mathrm{~dB} /$ division in 0.1 dB steps, and 1 to $20 \mathrm{~dB} /$ division in 1 dB steps			
Log Scale	Ten divisions		\quad	Linear Scale
:---				

Description	Specifications	Supplemental Information
Marker Readout		
Resolution		
Log (decibel) units	0.01 dB	
Trace Averaging Off, on-screen	0.001 dB	
Trace Averaging On or remote		$\leq 1 \%$ of signal level (nominal)

Frequency Response

a. Signal frequencies between 18 and 26.5 GHz are prone to additional response errors due to modes in the Type-N connector used with frequency Option 526. With the use of Type-N to APC 3.5 mm adapter part number 1250-1744, there are nominally six such modes. The effect of these modes with this connector are included within these specifications.
b. See the Electronic Attenuator (Option EA3) chapter for Frequency Response using the electronic attenuator.
c. For Sweep Type = FFT, add the RF flatness errors of this table to the IF Frequency Response errors. An additional error source, the error in switching between swept and FFT sweep types, is nominally $\pm 0.01 \mathrm{~dB}$ and is included within the "Absolute Amplitude Error" specifications.
d. Specifications apply with DC coupling at all frequencies. With AC coupling, specifications apply at frequencies of 50 MHz and higher. Statistical observations at 10 MHz show that most instruments meet the specifications, but a few percent of instruments can be expected to have errors exceeding 0.5 dB at 10 MHz at the temperature extreme. The effect at 20 to 50 MHz is negligible, but not warranted.
e. Specifications for frequencies > 3.5 GHz apply for sweep rates $\leq 100 \mathrm{MHz} / \mathrm{ms}$.
f. Preselector centering applied when preselector is not bypassed. Refer to Option MPB - Microwave Preselector Bypass chapter for performance affected by bypassing the preselector.

Description			Specifications	Supplemental Information			
IF Frequency Response ${ }^{\text {a }}$ (Demodulation and FFT response relative to the center frequency)			Max Error ${ }^{\text {d }}$ (Exception ${ }^{\text {e }}$)	Modes above 18 GHz ${ }^{\text {b }}$			
Center Freq (GHz)	$\begin{aligned} & \text { Span }^{\text {c }} \\ & (\mathrm{MHz}) \end{aligned}$	Preselector		Midwidth Error (95th Percentile)	$\begin{aligned} & \text { Slope (dB/MHz) } \\ & \text { (95th } \\ & \text { Percentile) } \end{aligned}$	RMS f (nominal)	
<3.6	≤ 10			$\pm 0.40 \mathrm{~dB}$	$\pm 0.12 \mathrm{~dB}$	± 0.10	0.04 dB
$\geq 3.6, \leq 26.5$	≤ 10	On				0.25 dB	
≥ 3.6	≤ 10	Off ${ }^{\text {a }}$	$\pm 0.45 \mathrm{~dB}$	$\pm 0.12 \mathrm{~dB}$	± 0.10	0.04 dB	
>26.5	≤ 10	On				0.35 dB	

a. The IF frequency response includes effects due to RF circuits such as input filters, that are a function of RF frequency, in addition to the IF passband effects.
b. Signal frequencies between 18 and 26.5 GHz are prone to additional response errors due to modes in the Type-N connector used with frequency Option 526. With the use of Type-N to APC 3.5 mm adapter part number 1250-1744, there are nominally six such modes. These modes cause nominally up to -0.35 dB amplitude change, with phase errors of nominally up to $\pm 1.2^{\circ}$.
c. This column applies to the instantaneous analysis bandwidth in use. In the Spectrum Analyzer Mode, this would be the FFT width.
d. The maximum error at an offset (f) from the center of the FFT width is given by the expression \pm [Midwidth Error $+(f \times$ Slope $)$, but never exceeds \pm Max Error. Here the Midwidth Error is the error at the center frequency for a given FFT span. Usually, the span is no larger than the FFT width in which case the center of the FFT width is the center frequency of the analyzer. When using the Spectrum Analyzer mode with an analyzer span is wider than the FFT width, the span is made up of multiple concatenated FFT results, and thus has multiple centers of FFT widths; in this case the f in the equation is the offset from the nearest center. Performance is nominally three times better at most center frequencies.
e. The specification does not apply for frequencies greater than 3.6 MHz from the center in FFT widths of 7.2 to 8 MHz.
f. The "rms" nominal performance is the standard deviation of the response relative to the center frequency, integrated across the span. This performance measure was observed at a center frequency in each harmonic mixing band, which is representative of all center frequencies; it is not the worst case frequency.
g. Option MPB is installed and enabled.

Description			Specifications	Supplemental Information	
IF Phase Linearity				Deviation from m Modes above 18	phase linearity
Center Freq (GHz)	Span (MHz)	Preselector		Peak-to-peak (nominal)	RMS (nominal) ${ }^{\text {b }}$
$\geq 0.02,<3.6$	≤ 10	n/a		$0.4{ }^{\circ}$	0.1°
≥ 3.6,	≤ 10	Off ${ }^{\text {c }}$		$0.4{ }^{\circ}$	0.1°
≥ 3.6 (Option ≤ 526)	≤ 10	On		1.0°	$0.2{ }^{\circ}$

a. Signal frequencies between 18 and 26.5 GHz are prone to additional response errors due to modes in the Type-N connector used with frequency Option 526 . With the use Type-N to APC 3.5 mm adapter part number 1250-1744, there are nominally six such modes. These modes cause nominally up to -0.35 dB amplitude change, with phase errors of nominally up to $\pm 1.2^{\circ}$.
b. The listed performance is the standard deviation of the phase deviation relative to the mean phase deviation from a linear phase condition, where the rms is computed across the span shown and over the range of center frequencies shown.
c. Option MPB is installed and enabled.

Description	Specifications	Supplemental Information
Absolute Amplitude Accuracy At $50 \mathrm{MHz}^{\mathrm{a}}$ 20 to $30^{\circ} \mathrm{C}$ Full temperature range At all frequencies ${ }^{\text {a }}$ 20 to $30^{\circ} \mathrm{C}$ Full temperature range 95th Percentile Absolute Amplitude Accuracy ${ }^{\text {b }}$ (Wide range of signal levels, RBWs, RLs, etc., 0.01 to 3.6 GHz , Atten $=10 \mathrm{~dB}$) Amplitude Reference Accuracy Preamp $0 n^{c}$	$\begin{aligned} & \pm 0.40 \mathrm{~dB} \\ & \pm 0.43 \mathrm{~dB} \\ & \\ & \pm(0.40 \mathrm{~dB} \text { + frequency response }) \\ & \pm(0.43 \mathrm{~dB}+\text { frequency response }) \end{aligned}$	$\pm 0.15 \mathrm{~dB}$ (95th percentile) $\pm 0.27 \mathrm{~dB}$ $\pm 0.05 \mathrm{~dB}$ (nominal) $\pm(0.39 \mathrm{~dB}+$ frequency response) (nominal)

EXA Signal Analyzer

Amplitude Accuracy and Range
a. Absolute amplitude accuracy is the total of all amplitude measurement errors, and applies over the following subset of settings and conditions: $1 \mathrm{~Hz} \leq$ RBW $\leq 1 \mathrm{MHz}$; Input signal -10 to -50 dBm (details below); Input attenuation 10 dB ; span $<5 \mathrm{MHz}$ (nominal additional error for span $\geq 5 \mathrm{MHz}$ is 0.02 dB); all settings auto-coupled except Swp Time Rules = Accuracy; combinations of low signal level and wide RBW use VBW $\leq 30 \mathrm{kHz}$ to reduce noise. When using FFT sweeps, the signal must be at the center frequency.
This absolute amplitude accuracy specification includes the sum of the following individual specifications under the conditions listed above: Scale Fidelity, Reference Level Accuracy, Display Scale Switching Uncertainty, Resolution Bandwidth Switching Uncertainty, 50 MHz Amplitude Reference Accuracy, and the accuracy with which the instrument aligns its internal gains to the 50 MHz Amplitude Reference.
The only difference between signals within the range ending at -50 dBm and those signals below that level is the scale fidelity. Our specifications show the possibility of increased errors below -80 dBm at the mixer, thus -70 dBm at the input. Therefore, one reasonably conservative approach to estimating the Absolute Amplitude Uncertainty below -70 dBm at the mixer would be to add an additional $\pm 0.10 \mathrm{~dB}$ (the difference between the above -80 dBm at the mixer scale fidelity at the lower level scale fidelity) to the Absolute Amplitude Uncertainty.
b. Absolute Amplitude Accuracy for a wide range of signal and measurement settings, covers the 95th percentile proportion with 95% confidence. Here are the details of what is covered and how the computation is made: The wide range of conditions of RBW, signal level, VBW, reference level and display scale are discussed in footnote a. There are 44 quasi-random combinations used, tested at a 50 MHz signal frequency. We compute the 95th percentile proportion with 95% confidence for this set observed over a statistically significant number of instruments. Also, the frequency response relative to the 50 MHz response is characterized by varying the signal across a large number of quasi-random verification frequencies that are chosen to not correspond with the frequency response adjustment frequencies. We again compute the 95th percentile proportion with 95% confidence for this set observed over a statistically significant number of instruments. We also compute the 95th percentile accuracy of tracing the calibration of the 50 MHz absolute amplitude accuracy to a national standards organization. We also compute the 95th percentile accuracy of tracing the calibration of the relative frequency response to a national standards organization. We take the root-sum-square of these four independent Gaussian parameters. To that rss we add the environmental effects of temperature variations across the 20 to $30^{\circ} \mathrm{C}$ range. These computations and measurements are made with the mechanical attenuator only in circuit, set to the reference state of 10 dB .
A similar process is used for computing the result when using the electronic attenuator under a wide range of settings: all even settings from 4 through 24 dB inclusive, with the mechanical attenuator set to 10 dB . Then the worst of the two computed 95th percentile results (they ere very close) is shown.
c. Same settings as footnote a, except that the signal level at the preamp input is -40 to -80 dBm . Total power at preamp (dBm) = total power at input (dBm) minus input attenuation (dB). This specification applies for signal frequencies above 100 kHz .

Description	Specifications	Supplemental Information
Input Attenuation Switching Uncertainty		Refer to the footnote for Band Overlaps on page 16 50 MHz (reference frequency) Attenuation > 2 dB , preamp off (Relative to 10 dB (reference setting)) 9 kHz to 3.6 GHz 3.5 to 7.0 GHz 7.0 to 13.6 GHz 13.5 to 26.5 GHz 26.5 to 44 GHz
0.20 dB		

a. The nominal SWR stated is at the worst case RF frequency in three representative instruments.

Description	Specifications	Supplemental Information
Resolution Bandwidth Switching Uncertainty		Relative to reference BW of 30 kHz, 1.0 Hz to 3 MHz RBW Manually selected wide RBWs: $4,5,6,8,10 \mathrm{MHz}^{\mathrm{b}}$
	$\pm 0.10 \mathrm{~dB}$	verified in low band

a. RBW switching uncertainty is verified at 50 MHz . It is consistent for all measurements made without the preselector, thus in Band 0 and also in higher bands with the Preselector Bypass option. In preselected bands, the slope of the preselector passband can interact with the RBW shape to make an apparent additional RBW switching uncertainty of nominally $\pm 0.05 \mathrm{~dB} / \mathrm{MHz}$ times the RBW.
b. The 10 MHz RBW setting is only available on analyzers with instrument software version \geq A. 30.05 and which also have option FS1 and one or more of options B40, DP2, or MPB installed. Otherwise, the maximum RBW setting is 8 MHz .

Description	Specifications	Supplemental Information
Reference Level		
Range		
Log Units	-170 to +23 dBm, in 0.01 dB steps	
Linear Units	Same as Log $(707 \mathrm{pV}$ to 3.16 V$)$	
Accuracy	$0 \mathrm{~dB}^{\text {a }}$	

a. Because reference level affects only the display, not the measurement, it causes no additional error in measurement results from trace data or markers.

Description	Specifications	Supplemental Information
Display Scale Switching Uncertainty		
Switching between Linear and Log	$0 \mathrm{~dB}^{a}$	
Log Scale Switching	$0 \mathrm{~dB}^{a}$	

a. Because Log/Lin and Log Scale Switching affect only the display, not the measurement, they cause no additional error in measurement results from trace data or markers.

Specifications
Linearity
$\pm 0.15 \mathrm{~dB}$
$\pm 0.25 \mathrm{~dB}$

Supplemental Information

Applies for mixer level ${ }^{\text {C }}$ range from -10 to -80 dBm, mechanical attenuator only, preamp off, and dither on.

Nominal
Up to $\pm 0.045 \mathrm{~dB}^{\mathrm{e}}$
Up to $\pm 0.018 \mathrm{~dB}$
From equation ${ }^{f}$
Up to $\pm 0.005 \mathrm{~dB}^{9}$
a. Supplemental information: The amplitude detection linearity specification applies at all levels below -10 dBm at the input mixer; however, noise will reduce the accuracy of low level measurements. The amplitude error due to noise is determined by the signal-to-noise ratio, S / N. If the S / N is large (20 dB or better), the amplitude error due to noise can be estimated from the equation below, given for the 3-sigma (three standard deviations) level.

$$
3 \sigma=3(20 d B) \log \left\langle 1+10^{-((S / N+3 d B) / 20 d B)}\right\rangle
$$

The errors due to S / N ratio can be further reduced by averaging results. For large $S / N(20 \mathrm{~dB}$ or better), the 3 -sigma level can be reduced proportional to the square root of the number of averages taken.
b. The scale fidelity is warranted with ADC dither set to Medium. Dither increases the noise level by nominally only 0.1 dB for the most sensitive case (preamp Off, best DANL frequencies). With dither Off, scale fidelity for low level signals, around -60 dBm or lower, will nominally degrade by 0.2 dB .
c. Mixer level = Input Level - Input Attenuation
d. The relative fidelity is the error in the measured difference between two signal levels. It is so small in many cases that it cannot be verified without being dominated by measurement uncertainty of the verification. Because of this verification difficulty, this specification gives nominal performance, based on numbers that are as conservatively determined as those used in warranted specifications. We will consider one example of the use of the error equation to compute the nominal performance.
Example: the accuracy of the relative level of a sideband around -60 dBm , with a carrier at -5 dBm , using attenuation $=10 \mathrm{~dB}, \mathrm{RBW}=3 \mathrm{kHz}$, evaluated with swept analysis. The high level term is evaluated with $\mathrm{P} 1=$ -15 dBm and $\mathrm{P} 2=-70 \mathrm{dBm}$ at the mixer. This gives a maximum error within $\pm 0.025 \mathrm{~dB}$. The instability term is $\pm 0.018 \mathrm{~dB}$. The slope term evaluates to $\pm 0.050 \mathrm{~dB}$. The prefilter term applies and evaluates to the limit of $\pm 0.005 \mathrm{~dB}$. The sum of all these terms is $\pm 0.098 \mathrm{~dB}$.
e. Errors at high mixer levels will nominally be well within the range of $\pm 0.045 \mathrm{~dB} \times\{\exp [(P 1-P r e f) /(8.69 \mathrm{~dB})]-$ $\exp [(P 2-\operatorname{Pref}) /(8.69 \mathrm{~dB})]\}$ (exp is the natural exponent function, $\left.\mathrm{e}^{\mathrm{x}}\right)$. In this expression, P 1 and P 2 are the powers of the two signals, in decibel units, whose relative power is being measured. Pref is $-10 \mathrm{dBm}(-10 \mathrm{dBm}$ is the highest power for which linearity is specified). All these levels are referred to the mixer level.
f. Slope error will nominally be well within the range of $\pm 0.0009 \times(\mathrm{P} 1-\mathrm{P} 2)$. P1 and P2 are defined in footnote e.
g. A small additional error is possible. In FFT sweeps, this error is possible for spans under 4.01 kHz . For non-FFT measurements, it is possible for RBWs of 3.9 kHz or less. The error is well within the range of $\pm 0.0021 \times(\mathrm{P} 1-$ P2) subject to a maximum of $\pm 0.005 \mathrm{~dB}$. (The maximum dominates for all but very small differences.) P1 and P2 are defined in footnote e.

Description	Specifications	Supplemental Information
Available Detectors	Normal, Peak, Sample, Negative Peak, Average	Average detector works on RMS, Voltage and Logarithmic scales

Dynamic Range

Gain Compression

Description		Specifications	Supplemental Information
1 dB Gain Compression Point (Two-tone) ${ }^{\text {abc }}$			Maximum power at mixer ${ }^{\text {d }}$ (nominal)
20 MHz to 26.5 GHz (Option ≤ 526)			+9 dBm (nominal)
20 MHz to 26.5 GHz (Option > 526)			+6 dBm (nominal)
26.5 to 44 GHz (Option > 526)			0 dBm (nominal)
Clipping (ADC Over-range)			
Any signal offset		$-10 \mathrm{dBm}$	Low frequency exceptions ${ }^{\text {e }}$
Signal offset > 5 times IF prefilter bandwidth and IF Gain set to Low			+12 dBm (nominal)
IF Prefilter Bandwidth			
Zero Span or	Sweep Type = FFT,		-3 dB Bandwidth
Swept ${ }^{\text {f }}$, RBW =	FFT Width $=$		(nominal)
$\leq 3.9 \mathrm{kHz}$	<4.01 kHz		8.9 kHz
4.3 to 27 kHz	$<28.81 \mathrm{kHz}$		79 kHz
30 to 160 kHz	<167.4 kHz		303 kHz
180 to 390 kHz	$<411.9 \mathrm{kHz}$		966 kHz
430 kHz to $10 \mathrm{MHz}^{9}$	$<7.99 \mathrm{MHz}$		10.9 MHz

a. Large signals, even at frequencies not shown on the screen, can cause the analyzer to incorrectly measure on-screen signals because of two-tone gain compression. This specification tells how large an interfering signal must be in order to cause a 1 dB change in an on-screen signal.
b. Specified at 1 kHz RBW with 100 kHz tone spacing. The compression point will nominally equal the specification for tone spacing greater than 5 times the prefilter bandwidth. At smaller spacings, ADC clipping may occur at a level lower than the 1 dB compression point.
c. Reference level and off-screen performance: The reference level (RL) behavior differs from some earlier analyzers in a way that makes this analyzer more flexible. In other analyzers, the RL controlled how the measurement was performed as well as how it was displayed. Because the logarithmic amplifier in these analyzers had both range and resolution limitations, this behavior was necessary for optimum measurement accuracy. The logarithmic amplifier in this signal analyzer, however, is implemented digitally such that the range and resolution greatly exceed other instrument limitations. Because of this, the analyzer can make measurements largely independent of the setting of the RL without compromising accuracy. Because the RL becomes a display function, not a measurement function, a marker can read out results that are off-screen, either above or below, without any change in accuracy. The only exception to the independence of RL and the way in which the measurement is performed is in the input attenuation setting: When the input attenuation is set to auto, the rules for the determination of the input attenuation include dependence on the reference level. Because the input attenuation setting controls the tradeoff between large signal behaviors (third-order intermodulation, compression, and display scale fidelity) and small signal effects (noise), the measurement results can change with RL changes when the input attenuation is set to auto.
d. Mixer power level $(\mathrm{dBm})=$ input power (dBm) - input attenuation (dB).
e. The ADC clipping level declines at low frequencies (below 50 MHz) when the LO feedthrough (the signal that appears at 0 Hz) is within 5 times the prefilter bandwidth (see table) and must be handled by the ADC. For example, with a 300 kHz RBW and prefilter bandwidth at 966 kHz , the clipping level reduces for signal frequencies below 4.83 MHz . For signal frequencies below 2.5 times the prefilter bandwidth, there will be additional reduction due to the presence of the image signal (the signal that appears at the negative of the input signal frequency) at the ADC.
f. This table applies without Option FS1 or FS2, fast sweep, enabled. Option FS1 or FS2 is only enabled if the license for FS1 or FS2 is present and one or more of the following options are also present:B40, MPB, or DP2. With Option FS1 or FS2, this table applies for sweep rates that are manually chosen to be the same as or slower than "traditional" sweep rates, instead of the much faster sweep rates, such as autocoupled sweep rates, available with FS1. Sweep rate is defined to be span divided by sweep time. If the sweep rate is ≤ 1.1 times RBW-squared, the table applies. Otherwise, compute an "effective RBW" $=$ Span / (SweepTime \times RBW). To determine the IF Prefilter Bandwidth, look up this effective RBW in the table instead of the actual RBW. For example, for RBW $=3 \mathrm{kHz}$, Span $=300 \mathrm{kHz}$, and Sweep time $=42 \mathrm{~ms}$, we compute that Sweep Rate $=7.1$ $\mathrm{MHz} / \mathrm{s}$, while RBW-squared is $9 \mathrm{MHz} / \mathrm{s}$. So the Sweep Rate is <1.1 times RBW-squared and the table applies; row 1 shows the IF Prefilter Bandwidth is nominally 8.9 kHz . If the sweep time is 1 ms , then the effective RBW computes to 100 kHz . This would result in an IF Prefilter Bandwidth from the third row, nominally 303 kHz .
g. The 10 MHz RBW setting is only available on analyzers with instrument software version \geq A. 30.05 and which also have option FS1 and one or more of options B40, DP2, or MPB installed. Otherwise, the maximum RBW setting is 8 MHz .

Description				Specifications		Supplemental Information
13.5 to 20 GHz	x			-137 dBm	-134 dBm	-142 dBm
13.5 to 20 GHz		x		-142 dBm	-140 dBm	-146 dBm
13.5 to 20 GHz			x	-145 dBm	-143 dBm	-148 dBm
20 to 26.5 GHz	x			-134 dBm	-130 dBm	-140 dBm
20 to 26.5 GHz		x		-139 dBm	-137 dBm	-143 dBm
20 to 26.5 GHz			x	-142 dBm	-140 dBm	-145 dBm
26.4 to 34 GHz		x		-137 dBm	-133 dBm	-142 dBm
26.4 to 34 GHz			x	-140 dBm	-136 dBm	-144 dBm
33.9 to 44 GHz		x		-131 dBm	-127 dBm	-137 dBm
33.9 to 44 GHz			x	-135 dBm	-131 dBm	-140 dBm
Additional DANL, IF Gain=Low ${ }^{\text {c }}$	x	x	x			-160.5 dBm (nominal)

a. DANL for zero span and swept is measured in a 1 kHz RBW and normalized to the narrowest available RBW, because the noise figure does not depend on RBW and 1 kHz measurements are faster.
b. DANL below 10 MHz is affected by phase noise around the LO feedthrough signal. Specifications apply with the best setting of the Phase Noise Optimization control, which is to choose the "Best Close-in ϕ Noise" for frequencies below 25 kHz , and "Best Wide Offset ϕ Noise" for frequencies above 25 kHz .
c. Setting the IF Gain to Low is often desirable in order to allow higher power into the mixer without overload, better compression and better third-order intermodulation. When the Swept IF Gain is set to Low, either by auto coupling or manual coupling, there is noise added above that specified in this table for the IF Gain = High case. That excess noise appears as an additional noise at the input mixer. This level has sub-decibel dependence on center frequency. To find the total displayed average noise at the mixer for Swept IF Gain = Low, sum the powers of the DANL for IF Gain $=$ High with this additional DANL. To do that summation, compute DANLtotal $=10 \times$ $\log \left(10^{\wedge}(\right.$ DANLhigh/10) + 10^(AdditionalDANL / 10)). In FFT sweeps, the same behavior occurs, except that FFT IF Gain can be set to autorange, where it varies with the input signal level, in addition to forced High and Low settings.

Spurious Responses

Description		Specifications		Supplemental Information
Spurious Responses (see Band Overlaps on page 16)		-100 dBm		Preamp Off ${ }^{\text {a }}$
Residual Responses ${ }^{\text {b }}$				
200 kHz to 8.4 GHz (swept) Zero span or FFT or other frequencies				-100
Image Responses				
Tuned Freq (f)	Excitation Freq	Mixer Level ${ }^{\text {c }}$	Response	
10 MHz to 26.5 GHz	f+ 45 MHz	-10 dBm	$-75 \mathrm{dBC}$	-99 dBc (typical)
10 MHz to 3.6 GHz	$\mathrm{f}+10245 \mathrm{MHz}$	-10 dBm	$-80 \mathrm{dBc}$	-103 dBc (typical)
10 MHz to 3.6 GHz	$\mathrm{f}+645 \mathrm{MHz}$	-10 dBm	$-80 \mathrm{dBC}$	-107 dBc (typical)
3.5 to 13.6 GHz	$\mathrm{f}+645 \mathrm{MHz}$	-10 dBm	$-75 \mathrm{dBC}$	-87 dBc (typical)
13.5 to 17.1 GHz	$\mathrm{f}+645 \mathrm{MHz}$	$-10 \mathrm{dBm}$	-71 dBC	-85 dBc (typical)
17.0 to 22 GHz	$\mathrm{f}+645 \mathrm{MHz}$	-10 dBm	-68 dBc	-82 dBc (typical)
22 to 26.5 GHz	$\mathrm{f}+645 \mathrm{MHz}$	-10 dBm	$-66 \mathrm{dBC}$	-78 dBc (typical)
26.5 to 34.5 GHz	$\mathrm{f}+645 \mathrm{MHz}$	-30 dBm	-70 dBc	-94 dBc (typical)
34.4 to 44 GHz	$\mathrm{f}+645 \mathrm{MHz}$	$-30 \mathrm{dBm}$	$-60 \mathrm{dBc}$	-79 dBc (typical)
Other Spurious Responses				
Carrier Frequency $\leq 26.5 \mathrm{GHz}$				
First RF Order ${ }^{\text {d }}$ ($f \geq 10 \mathrm{MHz}$ from carrier)		$-10 \mathrm{dBm}$	$\begin{aligned} & -68 \mathrm{dBc}+20 \\ & \times \log \left(N^{\mathrm{e}}\right) \end{aligned}$	Includes IF feedthrough, LO harmonic mixing responses
Higher RF Order ${ }^{f}$ ($f \geq 10 \mathrm{MHz}$ from carrier)		$-40 \mathrm{dBm}$	$\begin{aligned} & -80 \mathrm{dBc}+20 \\ & \times \log \left(\mathrm{N}^{\mathrm{e}}\right) \end{aligned}$	Includes higher order mixer responses
Carrier Frequency > 26.5 GHz				
First RF Order ${ }^{\text {d }}$ ($f \geq 10 \mathrm{MHz}$ from carrier)		$-30 \mathrm{dBm}$		-90 dBc (nominal)
Higher RF Order ${ }^{f}$ ($f \geq 10 \mathrm{MHz}$ from carrier)		$-30 \mathrm{dBm}$		-90 dBc (nominal)
LO-Related Spurious Responses ($\mathrm{f}>600 \mathrm{MHz}$ from carrier 10 MHz to 3.6 GHz)		$-10 \mathrm{dBm}$	$\begin{aligned} & -60 \mathrm{dBC}^{9}+ \\ & 20 \times \log \left(\mathrm{N}^{\mathrm{e}}\right) \end{aligned}$	$\begin{aligned} & -90 \mathrm{dBC}+20 \times \log (\mathrm{N}) \\ & \text { (typical) } \end{aligned}$

Description	Specifications	Supplemental Information
Sidebands, offset from CW signal		
$\leq 200 \mathrm{~Hz}$		$-70 \mathrm{dBc}^{9}$ (nominal)
200 Hz to 3 kHz	$-73 \mathrm{dBc}^{\mathrm{g}}$ (nominal)	
3 kHz to 30 kHz	-73 dBc (nominal)	
30 kHz to 10 MHz		-80 dBc (nominal)

a. The spurious response specifications only apply with the preamp turned off. When the preamp is turned on, performance is nominally the same as long as the mixer level is interpreted to be: Mixer Level = Input Level - Input Attenuation + Preamp Gain
b. Input terminated, 0 dB input attenuation.
c. Mixer Level = Input Level - Input Attenuation.
d. With first RF order spurious products, the indicated frequency will change at the same rate as the input, with higher order, the indicated frequency will change at a rate faster than the input.
e. N is the LO multiplication factor.
f. RBW=100 Hz. With higher RF order spurious responses, the observed frequency will change at a rate faster than the input frequency.
g. Nominally -40 dBc under large magnetic (0.38 Gauss rms) or vibrational (0.21 g rms) environmental stimuli.

Second Harmonic Distortion

a. $\mathrm{SHI}=$ second harmonic intercept. The SHI is given by the mixer power in dBm minus the second harmonic distortion level relative to the mixer tone in dBc.

Third Order Intermodulation

Description			Specifications	Supplemental Information
Third Order Intermodulation (Tone separation > 5 times IF Prefilter Bandwidth ${ }^{\text {a }}$ Verification conditions ${ }^{\text {b }}$)				Refer to the footnote for Band Overlaps on page 16.
mmW Option 532, or 544				
20 to $30^{\circ} \mathrm{C}$		∇	Intercept ${ }^{\text {c }}$	Intercept (typical)
10 to 100 MHz		x	+12 dBm	+17 dBm
100 to 400 MHz	x		+13 dBm	+17 dBm
400 MHz to 3.6 GHz	x		+14 dBm	+18 dBm
100 MHz to 3.95 GHz		x	+15 dBm	+19 dBm
3.6 to 13.6 GHz	x		+14 dBm	+18 dBm
3.95 to 8.4 GHz		x	+15 dBm	+18 dBm
8.3 to 13.6 GHz		x	+15 dBm	+18 dBm
13.6 to 26.5 GHz	x		+12 dBm	+16 dBm
13.5 to 17.1 GHz		x	+11 dBm	+17 dBm
17.0 to 26.5 GHz		x	+10 dBm	+17 dBm (nominal)
26.5 to 44 GHz		x		+13 dBm (nominal)
Full temperature range				
10 to 100 MHz		x	+10 dBm	
100 to 400 MHz	x		+10 dBm	
400 MHz to 3.6 GHz	x		+12 dBm	
100 MHz to 3.95 GHz		x	+13 dBm	
3.6 to 13.6 GHz	x		+12 dBm	
3.95 to 8.4 GHz		x	+13 dBm	
8.3 to 13.6 GHz		x	+13 dBm	

Description			Specifications	Supplemental Information
13.6 to 26.5 GHz	x		+10 dBm	
13.5 to 17.1 GHz		x	 17.0 to 26.5 dBm xdBm	

a. See the IF Prefilter Bandwidth table in the Gain Compression specifications on page 39. When the tone separation condition is met, the effect on TOI of the setting of IF Gain is negligible. TOI is verified with IF Gain set to its best case condition, which is IF Gain = Low.
b. TOI is verified with two tones, each at -18 dBm at the mixer, spaced by 100 kHz .
c. Intercept = TOI = third order intercept. The TOI is given by the mixer tone level (in dBm) minus (distortion/2) where distortion is the relative level of the distortion tones in dBc .

Nominal Dynamic Range vs. Offset Frequency vs. RBW for Freq Option ≤ 526 [Plot]

Nominal Dynamic Range at 1 GHz for Freq Option ≤ 526 [Plot]

Nominal Range at 1 GHz

———DANL (1 Hz RBW)

- - 2nd Harmonic Distortion
- - - 3rd Order Intermodulation

Nominal Dynamic Range Bands 1-4 for Freq Option ≤ 526 [Plot]

Phase Noise

a. The nominal performance of the phase noise at center frequencies different than the one at which the specifications apply (1 GHz) depends on the center frequency, band and the offset. For low offset frequencies, offsets well under 100 Hz , the phase noise increases by $20 \times \log [(f+0.3225) / 1.3225]$. For mid-offset frequencies such as 10 kHz , band 0 phase noise increases as $20 \times \log [(f+5.1225) / 6.1225]$. For mid-offset frequencies in other bands, phase noise changes as $20 \times \log [(f+0.3225) / 6.1225]$ except f in this expression should never be lower than 5.8. For wide offset frequencies, offsets above about 100 kHz , phase noise increases as $20 \times \log (\mathrm{N})$. N is the LO Multiple as shown on page $16 ; \mathfrak{f}$ is in GHz units in all these relationships; all increases are in units of decibels.
b. Noise sidebands for lower offset frequencies, for example, 10 kHz , apply with the phase noise optimization (PhNoise Opt) set to Best Close-in ϕ Noise. Noise sidebands for higher offset frequencies, for example, 1 MHz , as shown apply with the phase noise optimization set to Best Wide-offset ϕ Noise.
c. Specifications are given with the internal frequency reference. The phase noise at offsets below 100 Hz is impacted or dominated by noise from the reference. Thus, performance with external references will not follow the curves and specifications. The internal 10 MHz reference phase noise is about - $120 \mathrm{dBc} / \mathrm{Hz}$ at 10 Hz offset; external references with poorer phase noise than this will cause poorer performance than shown.

Power Suite Measurements

The specifications for this section apply only to instruments with Frequency Option 503, 507, 513, or 526. For instruments with higher frequency options, the performance is nominal only and not subject to any warranted specifications.

Description	Specifications	Supplemental Information
Channel Power		
Amplitude Accuracy		Absolute Amplitude Accuracy ${ }^{2}+$ Power Bandwidth Accuracy ${ }^{\text {bc }}$
Case: Radio Std = 3GPP W-CDMA, or IS-95		
Absolute Power Accuracy (20 to $30^{\circ} \mathrm{C}$, Attenuation $=10 \mathrm{~dB}$)	$\pm 1.04 \mathrm{~dB}$	$\pm 0.27 \mathrm{~dB}$ (95th percentile)

a. See "Absolute Amplitude Accuracy" on page 33.
b. See "Frequency and Time" on page 16.
c. Expressed in dB .

Description	Specifications	Supplemental Information
Occupied Bandwidth		
Frequency Accuracy		$\pm($ Span/1000) (nominal)

Description			Specifications	Supplemental Information	
Adjacent Channel Power (ACP)					
Case: Radio Std = None					
Accuracy of ACP Ratio (dBc)				Display Scale Fidelity ${ }^{\text {a }}$	
Accuracy of ACP Absolute Power (dBm or dBm/Hz)				Absolute Amplitude Accuracy ${ }^{\text {b }}+$ Power Bandwidth Accuracy ${ }^{\text {cd }}$	
Accuracy of Carrier Power (dBm), or Carrier Power PSD (dBm/Hz)				Absolute Amplitude Accuracy ${ }^{\text {b }}+$ Power Bandwidth Accuracy ${ }^{\text {cd }}$	
Passband Width ${ }^{\text {e }}$			$-3 \mathrm{~dB}$		
Case: Radio Std = 3GPP W-CDMA				(ACPR; ACLR) ${ }^{\text {f }}$	
Minimum power at RF Input				-36 dBm (nominal)	
ACPR Accuracy ${ }^{9}$				RRC weighted, 3.84 MHz noise bandwidth, method \neq RBW	
Radio	Offset Fre				
MS (UE)	5 MHz		$\pm 0.17 \mathrm{~dB}$	At ACPR range of mixer level ${ }^{\text {h }}$	$0-36 \mathrm{dBc}$
MS (UE)	10 MHz		$\pm 0.22 \mathrm{~dB}$	At ACPR range of mixer leveli	$0-46 \mathrm{dBC}$
BTS	5 MHz		$\pm 0.70 \mathrm{~dB}$	At ACPR range of mixer level	$0-48 \mathrm{dBC}$
BTS	10 MHz		$\pm 0.57 \mathrm{~dB}$	At ACPR range of mixer level ${ }^{\text {i }}$	$0-53 \mathrm{dBC}$
BTS	5 MHz		$\pm 0.29 \mathrm{~dB}$	At -48 dBc non-c	nt ACPR ${ }^{\text {k }}$
Dynamic Rang				RRC weighted, 3.8 bandwidth	z noise
Noise Correction	Offset Freq	Method		ACLR (typical) ${ }^{\text {l }}$	Optim (Nomin
Off	5 MHz	Filtered IBW		$-68 \mathrm{~dB}$	-8dBm
Off	5 MHz	Fast		$-67 \mathrm{~dB}$	-9 dBm
Off	10 MHz	Filtered IBW		$-74 \mathrm{~dB}$	-2 dBm
On	5 MHz	Filtered IBW		$-73 \mathrm{~dB}$	-8dBm
On	10 MHz	Filtered IBW		$-76 \mathrm{~dB}$	-2 dBm

Specifications
Supplemental Information

RRC Weighting Accuracy ${ }^{\text {n }}$

White noise in Adjacent Channel
TOI-induced spectrum
rms CW error
0.00 dB nominal
0.001 dB nominal 0.012 dB nominal
a. The effect of scale fidelity on the ratio of two powers is called the relative scale fidelity. The scale fidelity specified in the Amplitude section is an absolute scale fidelity with -35 dBm at the input mixer as the reference point. The relative scale fidelity is nominally only 0.01 dB larger than the absolute scale fidelity.
b. See Amplitude Accuracy and Range section.
c. See Frequency and Time section.
d. Expressed in decibels.
e. An ACP measurement measures the power in adjacent channels. The shape of the response versus frequency of those adjacent channels is occasionally critical. One parameter of the shape is its 3 dB bandwidth. When the bandwidth (called the Ref BW) of the adjacent channel is set, it is the 3 dB bandwidth that is set. The passband response is given by the convolution of two functions: a rectangle of width equal to Ref BW and the power response versus frequency of the RBW filter used. Measurements and specifications of analog radio ACPs are often based on defined bandwidths of measuring receivers, and these are defined by their -6 dB widths, not their -3 dB widths. To achieve a passband whose -6 dB width is x, set the Ref BW to be $\mathrm{x}-0.572 \times$ RBW.
f. Most versions of adjacent channel power measurements use negative numbers, in units of dBc , to refer to the power in an adjacent channel relative to the power in a main channel, in accordance with ITU standards. The standards for W-CDMA analysis include ACLR, a positive number represented in dB units. In order to be consistent with other kinds of ACP measurements, this measurement and its specifications will use negative dBC results, and refer to them as ACPR, instead of positive dB results referred to as ACLR. The ACLR can be determined from the ACPR reported by merely reversing the sign.
g. The accuracy of the Adjacent Channel Power Ratio will depend on the mixer drive level and whether the distortion products from the analyzer are coherent with those in the UUT. These specifications apply even in the worst case condition of coherent analyzer and UUT distortion products. For ACPR levels other than those in this specifications table, the optimum mixer drive level for accuracy is approximately -37 dBm - (ACPR/3), where the ACPR is given in (negative) decibels.
h. To meet this specified accuracy when measuring mobile station (MS) or user equipment (UE) within 3 dB of the required -33 dBc ACPR, the mixer level (ML) must be optimized for accuracy. This optimum mixer level is -22 dBm , so the input attenuation must be set as close as possible to the average input power $-(-22 \mathrm{dBm})$. For example, if the average input power is -6 dBm , set the attenuation to 16 dB . This specification applies for the normal 3.5 dB peak-to-average ratio of a single code. Note that, if the mixer level is set to optimize dynamic range instead of accuracy, accuracy errors are nominally doubled.
i. ACPR accuracy at 10 MHz offset is warranted when the input attenuator is set to give an average mixer level of -14 dBm .
j. In order to meet this specified accuracy, the mixer level must be optimized for accuracy when measuring node B Base Transmission Station (BTS) within 3 dB of the required -45 dBc ACPR. This optimum mixer level is -19 dBm , so the input attenuation must be set as close as possible to the average input power - (-19 dBm). For example, if the average input power is -7 dBm , set the attenuation to 12 dB . This specification applies for the normal 10 dB peak-to-average ratio (at 0.01% probability) for Test Model 1 . Note that, if the mixer level is set to optimize dynamic range instead of accuracy, accuracy errors are nominally doubled.
k. Accuracy can be excellent even at low ACPR levels assuming that the user sets the mixer level to optimize the dynamic range, and assuming that the analyzer and UUT distortions are incoherent. When the errors from the UUT and the analyzer are incoherent, optimizing dynamic range is equivalent to minimizing the contribution of analyzer noise and distortion to accuracy, though the higher mixer level increases the display scale fidelity errors. This incoherent addition case is commonly used in the industry and can be useful for comparison of analysis equipment, but this incoherent addition model is rarely justified. This derived accuracy specification is based on a mixer level of -14 dBm .
l. Keysight measures 100% of the signal analyzers for dynamic range in the factory production process. This measurement requires a near-ideal signal, which is impractical for field and customer use. Because field verification is impractical, Keysight only gives a typical result. More than 80% of prototype instruments met this "typical" specification; the factory test line limit is set commensurate with an on-going 80% yield to this typical.
The ACPR dynamic range is verified only at 2 GHz , where Keysight has the near-perfect signal available. The dynamic range is specified for the optimum mixer drive level, which is different in different instruments and different conditions. The test signal is a 1 DPCH signal.
The ACPR dynamic range is the observed range. This typical specification includes no measurement uncertainty.
m . ML is Mixer Level, which is defined to be the input signal level minus attenuation.
n. 3GPP requires the use of a root-raised-cosine filter in evaluating the ACLR of a device. The accuracy of the passband shape of the filter is not specified in standards, nor is any method of evaluating that accuracy. This footnote discusses the performance of the filter in this instrument. The effect of the RRC filter and the effect of the RBW used in the measurement interact. The analyzer compensates the shape of the RRC filter to accommodate the RBW filter. The effectiveness of this compensation is summarized in three ways:

- White noise in Adj Ch: The compensated RRC filter nominally has no errors if the adjacent channel has a spectrum that is flat across its width.
- TOI-induced spectrum: If the spectrum is due to third-order intermodulation, it has a distinctive shape. The computed errors of the compensated filter are -0.001 dB for the 100 kHz RBW used for UE testing with the IBW method. It is 0.000 dB for the 27 kHz RBW filter used for BTS testing with the Filtered IBW method. The worst error for RBWs between 27 and 390 kHz is 0.05 dB for a 330 kHz RBW filter.
- rms CW error: This error is a measure of the error in measuring a CW-like spurious component. It is evaluated by computing the root of the mean of the square of the power error across all frequencies within the adjacent channel. The computed rms error of the compensated filter is 0.012 dB for the 100 kHz RBW used for UE testing with the IBW method. It is 0.000 dB for the 27 kHz RBW filter used for BTS testing. The worst error for RBWs between 27 kHz and 470 kHz is 0.057 dB for a 430 kHz RBW filter.

Description	Specifications	Supplemental Information
Power Statistics CCDF		
Histogram Resolution $^{\text {a }}$	0.01 dB	

a. The Complementary Cumulative Distribution Function (CCDF) is a reformatting of a histogram of the power envelope. The width of the amplitude bins used by the histogram is the histogram resolution. The resolution of the CCDF will be the same as the width of those bins.

Description	Specifications	Supplemental Information
Burst Power Methods Results	Power above threshold Power within burst width Output power, average Output power, single burst Maximum power Minimum power within burst Burst width	
Description	Specifications	Supplemental Information
TOI (Third Order Intermodulation) Results	Relative IM tone powers (dBc) Absolute tone powers (dBm) Intercept (dBm)	Measures TOI of a signal with two dominant tones
Description	Specifications	Supplemental Information
Harmonic Distortion Maximum harmonic number Results	10th Fundamental Power (dBm) Relative harmonics power (dBc) Total harmonic distortion (\%, dBc)	

Description	Specifications	Supplemental Information
Spurious Emissions		Table-driven spurious signals; search across regions
Case: Radio Std = 3GPP W-CDMA		
Dynamic Rangea (1 to 3.6 GHz)	80.4 dB	82.9 dB (typical) (RBW=1 MHz)
Sensitivity ${ }^{\text {b }}$, absolute (RBW=1 MHz)		
(1 to 3.6 GHz)	-82.5 dBm	-86.5 dBm (typical)
Accuracy		Attenuation = 10 dB
9 kHz to 3.6 GHz		$\pm 0.38 \mathrm{~dB}$ (95th percentile)
3.5 to 8.4 GHz	$\pm 1.22 \mathrm{~dB}$ (95th percentile)	
8.3 to 13.6 GHz		$\pm 1.59 \mathrm{~dB}$ (95th percentile)

a. The dynamic range is specified at 12.5 MHz offset from center frequency with mixer level of 1 dB compression point, which will degrade accuracy 1 dB .
b. The sensitivity is specified at far offset from carrier, where phase noise does not contribute. You can derive the dynamic range at far offset from 1 dB compression mixer level and sensitivity.

Description	Specifications	Supplemental Information
Spectrum Emission Mask		Table-driven spurious signals; measurement near carriers
Case: Radio Std = cdma2000		
Dynamic Range, relative (750 kHz offset ${ }^{\text {ab }}$)	76.2 dB	82.8 dB (typical)
Sensitivity, absolute (750 kHz offset ${ }^{\text {C }}$)	-97.7 dBm	-101.7 dBm (typical)
Accuracy (750 kHz offset)		
Relative ${ }^{\text {d }}$	$\pm 0.12 \mathrm{~dB}$	
Absolute ${ }^{e}$ (20 to $30^{\circ} \mathrm{C}$)	$\pm 1.15 \mathrm{~dB}$	$\pm 0.31 \mathrm{~dB}$ (95th percentile $\approx 2 \sigma$)
Case: Radio Std = 3GPP W-CDMA		
Dynamic Range, relative (2.515 MHz offset ${ }^{\text {ad }}$)	79.3 dB	84.9 dB (typical)
Sensitivity, absolute (2.515 MHz offset ${ }^{\text {C }}$)	-97.7 dBm	-101.7 dBm (typical)
Accuracy (2.515 MHz offset)		
Relative ${ }^{\text {d }}$	$\pm 0.15 \mathrm{~dB}$	
$\begin{aligned} & \text { Absolute } \\ & \left(20 \text { to } 30^{\circ} \mathrm{C}\right) \end{aligned}$	$\pm 1.15 \mathrm{~dB}$	$\pm 0.31 \mathrm{~dB}$ (95th percentile $\approx 2 \sigma$)

a. The dynamic range specification is the ratio of the channel power to the power in the offset specified. The dynamic range depends on the measurement settings, such as peak power or integrated power. Dynamic range specifications are based on default measurement settings, with detector set to average, and depend on the mixer level. Default measurement settings include 30 kHz RBW.
b. This dynamic range specification applies for the optimum mixer level, which is about -18 dBm . Mixer level is defined to be the average input power minus the input attenuation.
c. The sensitivity is specified with 0 dB input attenuation. It represents the noise limitations of the analyzer. It is tested without an input signal. The sensitivity at this offset is specified in the default 30 kHz RBW, at a center frequency of 2 GHz .
d. The relative accuracy is a measure of the ratio of the power at the offset to the main channel power. It applies for spectrum emission levels in the offsets that are well above the dynamic range limitation.
e. The absolute accuracy of SEM measurement is the same as the absolute accuracy of the spectrum analyzer. See "Absolute Amplitude Accuracy" on page 33 for more information. The numbers shown are for 0 to 3.6 GHz , with attenuation set to 10 dB .

Options

The following options and applications affect instrument specifications.

Option 503:	Frequency range, 10 Hz to 3.6 GHz
Option 507:	Frequency range, 10 Hz to 7 GHz
Option 513:	Frequency range, 10 Hz to 13.6 GHz
Option 526:	Frequency range, 10 Hz to 26.5 GHz
Option 532:	Frequency range, 10 Hz to 32 GHz
Option 544:	Frequency range, 10 Hz to 44 GHz
Option B25:	Analysis bandwidth, 25 MHz
Option B40:	Analysis bandwidth, 40 MHz
Option CR3:	Connector Rear, second IF Out
Option CRP:	Connector Rear, arbitrary IF Out
Option EA3:	Electronic attenuator, 3.6 GHz
Option EMC:	Precompliance EMC Features
Option ESC:	External source control
Option EXM:	External mixing
Option FSA:	2 dB fine step attenuator
Option MPB:	Preselector bypass
Option NFE:	Noise floor extension, instrument alignment
Option P03:	Preamplifier, 3.6 GHz
Option PO7:	Preamplifier, 7 GHz
Option P13:	Preamplifier, 13.6 GHz
Option P26:	Preamplifier, 26.5 GHz
Option P32:	Preamplifier, 32 GHz
Option P44:	Preamplifier, 44 GHz
Option PC4:	Upgrade to dual core processor with removable solid state drive
Option PFR:	Precision frequency reference
Option YAS:	Y-Axis Screen Video output
N9063EMOE:	Analog Demodulation measurement application
N9067EM0E:	Pulse measurement software
N9068EMOE:	Phase Noise measurement application

N9069EMOE:	Noise Figure measurement application
N9071EMOE:	GSM/EDGE/EDGE Evolution measurement application
N9073EMOE:	W-CDMA/HSPA/HSPA+ measurement application
N9080EMOE:	LTE-Advanced FDD measurement application
N9081EM0E:	Bluetooth measurement application
N9082EMOE:	LTE-Advanced TDD measurement application
N9084EMOE:	Short Range Communications measurement application

General

Description	Specifications	Supplemental Information
Calibration Cycle	2 years	
Description	Specifications	Supplemental Information
Environmental Indoor use Temperature Range Operating Altitude $\leq 2,300 \mathrm{~m}$ Altitude $=4,600 \mathrm{~m}$ Derating ${ }^{\text {a }}$ Storage Altitude Humidity Relative humidity	0 to $55^{\circ} \mathrm{C}$ 0 to $47^{\circ} \mathrm{C}$ -40 to $+70^{\circ} \mathrm{C}$ 4,600 m (approx 15,000 feet)	95% to temperatures up to $40^{\circ} \mathrm{C}$, decreasing linearly to 45% at $55^{\circ} \mathrm{C}$ (non-condensing)b

a. The maximum operating temperature derates linearly from altitude of $4,600 \mathrm{~m}$ to $2,300 \mathrm{~m}$.
b. From $40^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$, the maximum $\%$ relative humidity follows the line of constant dew point.

Description	Specifications	Supplemental Information
Environmental and Military Specifications		Samples of this product have been type tested in accordance with the Keysight Environmental Test Manual and verified to be robust against the environmental stresses of Storage, Transportation and End-use; those stresses include but are not limited to temperature, humidity, shock, vibration, altitude and power line conditions. Test Methods are aligned with IEC 60068-2 and levels are similar to MIL-PRF-28800F Class 3.

Description	Specification	Supplemental Information
Acoustic Noise		Values given are per ISO 7779 standard in the "Operator Sitting" position
Ambient Temperature		Nominally under 55 dBA Sound Pressure. 55 dBA is generally considered suitable for use in quiet office environments.
$\geq 40^{\circ} \mathrm{C}$	Nominally under 65 dBA Sound Pressure. 65 dBA is generally considered suitable for use in noisy office environments. (The fan speed, and thus the noise level, increases with increasing ambient temperature.)	

Description	Specification	Supplemental Information
Power Requirements ${ }^{\text {a }}$		
Low Range	$100 \backslash 120 \mathrm{~V}$	
Voltage	$50 / 60 / 400 \mathrm{~Hz}$	
Frequency		
High Range	$220 / 240 \mathrm{~V}$	
Voltage	$50 / 60 \mathrm{~Hz}$	
Frequency	465 W	Maximum
Power Consumption, On	20 W	Standby power is not supplied to
Power Consumption, Standby		Poequency reference oscillator.
Typical instrument configuration		176 W
Base 3.6 GHz instrument (N9010B-503)		179 W
Base 8.4 GHz instrument (N9010B-508)		183 W
Base 13 GHz instrument (N9010B-513)		194 W
Base 26.5 GHz instrument (N9010B-526)		225 W
Base 32/44 GHz instrument (N9010B-532/544)		

a. Mains supply voltage fluctuations are not to exceed 10 percent of the nominal supply voltage.

Description	Supplemental Information	
Measurement Speed ${ }^{\text {a }}$	Nominal	
	Standard	$\mathrm{W} /$ Option PC4
Local measurement and display update rate ${ }^{\text {bc }}$	$11 \mathrm{~ms}(90 / \mathrm{s})$	$4 \mathrm{~ms}(250 / \mathrm{s})$
Remote measurement and LAN transfer rate ${ }^{\text {bc }}$	$6 \mathrm{~ms}(167 / \mathrm{s})$	$5 \mathrm{~ms}(200 / \mathrm{s})$
Marker Peak Search	5 ms	1.5 ms
Center Frequency Tune and Transfer (RF)	22 ms	20 ms
Center Frequency Tune and Transfer ($\mu \mathrm{W})$	49 ms	47 ms
Measurement/Mode Switching	75 ms	39 ms
Measurement Time vs. Span	See page 25	

a. Sweep Points $=101$.
b. Factory preset, fixed center frequency, RBW $=1 \mathrm{MHz}, 10 \mathrm{MHz}$ < span $\leq 600 \mathrm{MHz}$, stop frequency $\leq 3.6 \mathrm{GHz}$, Auto Align Off.
c. Phase Noise Optimization set to Fast Tuning, Display Off, 32 bit integer format, markers Off, single sweep, measured with IBM compatible PC with 2.99 GHz Pentium® 4 with 2 GB RAM running Windows® XP, Keysight I/0 Libraries Suite Version 14.1, one meter GPIB cable, National Instruments PCI-GPIB Card and NI-488.2 DLL.

Description	Specifications	Supplemental Information
Display $^{\mathrm{a}}$		
Resolution	1280×800	Capacitive multi-touch screen
Size		269 mm (10.6 in) diagonal (nominal)

a. The LCD display is manufactured using high precision technology. However, if a static image is displayed for a lengthy period of time (~ 2 hours) you might encounter "image sticking" that may last for approximately 2 seconds. This is normal and does not affect the measurement integrity of the product in any way.

Description	Specifications	Supplemental Information
Data Storage		
Standard		
Internal Total		Removable solid state drive $(\geq 120 \mathrm{~GB})$
Internal User		$\geq 9 \mathrm{~GB}$ available for user data

Description	Specifications	Supplemental Information
Weight		Weight without options
Net		$18 \mathrm{~kg}(40 \mathrm{lbs})$ (nominal)
Shipping		$30 \mathrm{~kg}(66 \mathrm{lbs})$ (nominal)
Cabinet Dimensions		Cabinet dimensions exclude front and rear
Height	$177 \mathrm{~mm}(7.0 \mathrm{in})$	protrusions.
Width	$426 \mathrm{~mm}(16.8 \mathrm{in})$	
Length	$368 \mathrm{~mm}(14.5 \mathrm{in})$	

Inputs/Outputs

Front Panel

Description	Specifications	Supplemental Information
RF Input		
Connector		
Standard	Type-N female	Frequency Option 503, 507, 513, and 526
	2.4 mm male	Frequency Option 532 and 544
Impedance		50Ω (nominal)

Description	Specifications	Supplemental Information
Probe Power		
Voltage/Current		$+15 \mathrm{Vdc}, \pm 7 \%$ at 0 to 150 mA (nominal)
		$-12.6 \mathrm{Vdc}, \pm 10 \%$ at 0 to 150 mA (nominal)
		GND

Description	Specifications	Supplemental Information
USB Ports		
Host (3 ports)	Compliant with USB 2.0	
Connector		
Output Current	USB Type "A" female	
Port marked with Lightning Bolt, if any Port not marked with Lightning Bolt	0.5 A	1.2 A (nominal)

Description	Specifications	Supplemental Information
Headphone Jack		
Connector	miniature stereo audio jack	3.5 mm (also known as " $1 / 8$ inch")
Output Power		90 mW per channel into 16Ω (nominal)

Rear Panel

Description	Specifications	Supplemental Information
$\mathbf{1 0} \mathbf{~ M H z ~ O u t ~}$	BNC female	
Connector		50Ω (nominal)
Impedance		$\geq 0 \mathrm{dBm}$ (nominal)
Output Amplitude	AC coupled, sinusoidal	
Output Configuration	$10 \mathrm{MHz} \times$ Frequency	$(1+$ frequency reference accuracy)

Description	Specifications	Supplemental Information
Ext Ref In	BNC female	Note: Analyzer noise sidebands and spurious response performance may be affected by the quality of the external reference used. See footnote c in the Phase Noise specifications within the Dynamic Range section on page 48.
Impedance	50Ω (nominal)	
Input Amplitude Range sine wave square wave		-5 to +10 dBm (nominal) Input Frequency
Lock range	0.2 to 1.5 V peak-to-peak (nominal) 10 MHz (nominal)	

Description	Specifications	Supplemental Information
Sync Connector	BNC female	Reserved for future use

Description	Specifications	Supplemental Information
Trigger Inputs		Either trigger source may be selected
\quad (Trigger 1 In , Trigger 2 In)		
Connector	BNC female	
Impedance		$10 \mathrm{k} \Omega$ (nominal)
Trigger Level Range	-5 to +5 V	1.5 V (TTL) factory preset

Description	Specifications	Supplemental Information
Trigger Outputs (Trigger 1 Out, Trigger 2 Out) Connector		
Impedance	BNC female	
Level		50Ω (nominal)

Description	Specifications	Supplemental Information
Monitor Output 1		
VGA compatible	15-pin mini D-SUB	
Connector		XGA (60 Hz vertical sync rates, non-interlaced)
Format		Analog RGB
Monitor Output 2		
Mini Display Port		

Description	Specifications	Supplemental Information
Analog Out		Refer to Chapter 15, "Option YAS - Y-Axis Screen Video Output", on page 147 for more details.
Connector Impedance	BNC female	50Ω (nominal)

Description	Specifications	Supplemental Information
Noise Source Drive $\mathbf{+ 2 8} \mathbf{V}$ (Pulsed)		
Connector	BNC female	
Output voltage on	$28.0 \pm 0.1 \mathrm{~V}$	60 mA maximum current
Output voltage off	$<1.0 \mathrm{~V}$	

Description	Specs	Supplemental Information
SNS Series Noise Source		For use with Keysight/Agilent Technologies SNS Series noise sources

Description	Specifications	Supplemental Information
Digital Bus Connector	MDR-80	This port is intended for use with the Agilent/Keysight N5105 and N5106 products only. It is not available for general purpose use.

Description	Specifications	Supplemental Information
USB Ports		
Host, Super Speed	USB 3.0	2 ports
Compatibility	USB Type "A" (female)	
Connector	0.9 A	
Output Current	USB 2.0	1 port
Host, stacked with LAN	USB Type "A" (female)	
Compatibility	0.5 A	
Connector		1 port
Output Current	USB 3.0	
Device	USB Type "B" (female)	
Compatibility		
Connector		

Description	Specifications	Supplemental Information
GPIB Interface		
Connector	IEEE-488 bus connector	
GPIB Codes		SH1, AH1, T6, SR1, RL1, PPO, DC1, C1, C2, C3 and
Mode		C28, DT1, L4, C0

Description	Specifications	Supplemental Information
LAN TCP/IP Interface	RJ45 Ethertwist	1000BaseT

Regulatory Information

This product is designed for use in Installation Category II and Pollution Degree 2 per IEC 61010 3rd ed, and 664 respectively.

This product has been designed and tested in accordance with accepted industry standards, and has been supplied in a safe condition. The instruction documentation contains information and warnings which must be followed by the user to ensure safe operation and to maintain the product in a safe condition.

This product is intended for indoor use.
\(\left.\begin{array}{ll}The CE mark is a registered trademark of the European Community (if accompanied

by a year, it is the year when the design was proven). This product complies with all

relevant directives.\end{array}\right]\)| The UK conformity mark is a UK government owned mark. Products showing this |
| :--- |
| mark comply with all applicable UK regulations. |

EMC: Complies with the essential requirements of the European EMC Directive and the UK Electromagnetic Compatibility Regulations 2016 as well as current editions of the following standards (dates and editions are cited in the Declaration of Conformity):

- IEC/EN 61326-1
- CISPR 11, Group 1, Class A
- AS/NZS CISPR 11
- ICES/NMB-001

This ISM device complies with Canadian ICES-001.
Cet appareil ISM est conforme a la norme NMB-001 du Canada.
This is a sensitive measurement apparatus by design and may have some performance loss (up to 25 dBm above the Spurious Responses, Residual specification of -100 dBm) when exposed to ambient continuous electromagnetic phenomenon in the range of $80 \mathrm{MHz}-2.7 \mathrm{GHz}$ when tested per IEC 61000-4-3.

South Korean Class A EMC declaration:

This equipment has been conformity assessed for use in business environments. In a residential environment this equipment may cause radio interference.
This EMC statement applies to the equipment only for use in business environment.

※ 사용자 안내문은 "언무용 빵송롱신기자재"에만 적용한다.
SAFETY: Complies with the essential requirements of the European Low Voltage Directive as well as current editions of the following standards (dates and editions are cited in the Declaration of Conformity):

- IEC/EN 61010-1
- Canada: CSA C22.2 No. 61010-1
- USA: UL std no. 61010-1

Acoustic statement: (European Machinery Directive)
Acoustic noise emission
LpA < 70 dB
Operator position
Normal operation mode per ISO 7779
To find a current Declaration of Conformity for a specific Keysight product, go to: http://www.keysight.com/go/conformity

EXA Signal Analyzer
Regulatory Information

This chapter contains specifications for the I/Q Analyzer measurement application (Basic Mode).

Specifications Affected by I/Q Analyzer

Specification Name	Information
Number of Frequency Display Trace Points (buckets)	Does not apply.
Resolution Bandwidth	See "Frequency" on page 75 in this chapter.
Clipping-to-Noise Dynamic Range	Not available.
Resolution Bandwidth Switching Uncertainty	See "Clipping-to-Noise Dynamic Range" on page 76 in this chapter.
Available Detectors	Not specified because it is negligible. Spurious Responses Does not apply.
IF Amplitude Flatness	The "Spurious Responses" on page 43 of core specifications still apply. Addditional bandwidth-option-dependent spurious responses are given in the Analysis Bandwidth chapter for any optional bandwidths in use.
See "IF Frequency Response" on page 32 of the core	
specifications for the 10 MHz bandwidth. Specifications for wider	
bandwidths are given in the Analysis Bandwidth chapter for any	
optional bandwidths in use.	

Frequency

Description	Specifications	Supplemental Information
Frequency Span		
Standard	10 Hz to 25 MHz	
Option B40	10 Hz to 40 MHz	
Resolution Bandwidth (Spectrum Measurement) Range		
Overall	100 mHz to 3 MHz	
Span $=1 \mathrm{MHz}$	50 Hz to 1 MHz	
Span $=10 \mathrm{kHz}$	1 Hz to 10 kHz	
Span $=100 \mathrm{~Hz}$	100 mHz to 100 Hz	
Window Shapes	Flat Top, Uniform, Hanning, Hamming, Gaussian, Blackman, Blackman-Harris, Kaiser Bessel ($K-B 70 \mathrm{~dB}, \mathrm{~K}-\mathrm{B} 90 \mathrm{~dB}$ \& $\mathrm{K}-\mathrm{B} 110 \mathrm{~dB}$)	
Analysis Bandwidth (Span) (Waveform Measurement)		
Standard	10 Hz to 25 MHz	
Option B40	10 Hz to 40 MHz	

Clipping-to-Noise Dynamic Range

Description	Specifications	Supplemental Information
Clipping-to-Noise Dynamic Range ${ }^{\text {a }}$		Excluding residuals and spurious responses
Clipping Level at Mixer		Center frequency $\geq 20 \mathrm{MHz}$ IF Gain = Low IF Gain = High
Noise Density at Mixer at center frequency	-8 dBm (nominal)	

a. This specification is defined to be the ratio of the clipping level (also known as "ADC Over Range") to the noise density. In decibel units, it can be defined as clipping_level [dBm] - noise_density [dBm/Hz]; the result has units of $\mathrm{dBFS} / \mathrm{Hz}$ (fs is "full scale").
b. The noise density depends on the input frequency. It is lowest for a broad range of input frequencies near the center frequency, and these specifications apply there. The noise density can increase toward the edges of the span. The effect is nominally well under 1 dB .
c. The primary determining element in the noise density is the "Displayed Average Noise Level (DANL)" on page 41.
d. DANL is specified with the IF Gain set to High, which is the best case for DANL but not for Clipping-to-noise dynamic range. The core specifications "Displayed Average Noise Level (DANL)" on page 41, gives a line entry on the excess noise added by using IF Gain = Low, and a footnote explaining how to combine the IF Gain noise with the DANL.
e. DANL is specified for log averaging, not power averaging, and thus is 2.51 dB lower than the true noise density. It is also specified in the narrowest RBW, 1 Hz , which has a noise bandwidth slightly wider than 1 Hz . These two effects together add up to 2.25 B .
f. As an example computation, consider this: For the case where DANL $=-151 \mathrm{dBm}$ in 1 Hz , IF Gain is set to low, and the "Additional DANL" is -160 dBm , the total noise density computes to $-148.2 \mathrm{dBm} / \mathrm{Hz}$ and the Clip-ping-to-noise ratio for a -10 dBm clipping level is $-138.2 \mathrm{dBFS} / \mathrm{Hz}$.

Data Acquisition

Description	Specifications	Supplemental Information
Time Record Length (IQ pairs) IQ Analyzer		
Option DP2, B40, or MPB	32,000,001 IQ sample pairs ${ }^{\text {a }}$	
None of the above	5,000,000 IQ sample pairs	
Sample Rate		
At ADC		
Option DP2, B40, or MPB	$100 \mathrm{MSa} / \mathrm{s}$	IF Path $\leq 25 \mathrm{MHz}$
Option B40	$200 \mathrm{MSa} / \mathrm{s}$	IF Path $=40 \mathrm{MHz}$
None of the above	$90 \mathrm{MSa} / \mathrm{s}$	
IQ Pairs		Integer submultiple of 15 Mpairs/s depending on the span for spans of 8 MHz or narrower.
ADC Resolution		
Option DP2, B40, or MPB	16 bits	IF Path $\leq 25 \mathrm{MHz}$
Option B40	12 bits	IF Path $=40 \mathrm{MHz}$
None of the above	14 bits	

a. Requires instrument software version >=A.31.00. Otherwise, IQ Sample Pairs is limited to 8,000,001.

I/Q Analyzer
Data Acquisition

3 Option B25-25 MHz Analysis Bandwidth

This chapter contains specifications for the Option B25 25 MHz Analysis Bandwidth, and are unique to this IF Path.

Specifications Affected by Analysis Bandwidth

The specifications in this chapter apply when the 25 MHz path is in use. In IQ Analyzer, this will occur when the IF Path is set to 25 MHz , whether by Auto selection (depending on Span) or manually.

Specification Name	Information
IF Frequency Response	See specifications in this chapter.
IF Phase Linearity	See specifications in this chapter.
Spurious and Residual Responses	The "Spurious Responses" on page 43 still apply. Further, bandwidth-option-dependent spurious responses are contained within this chapter.
Displayed Average Noise Level, Third-Order Intermodulation and Phase Noise	The performance of the analyzer will degrade by an unspecified extent when using this bandwidth option. This extent is not substantial enough to justify statistical process control.

Other Analysis Bandwidth Specifications

Description				Specifications	Supplemental Information
IF Spurious Response ${ }^{\text {a }}$					Preamp Off ${ }^{\text {b }}$
IF Second Harmonic					
Apparent Freq	Excitation Freq	Mixer Level ${ }^{\text {c }}$	IF Gain		
Any on-screen f	$(\mathrm{f}+\mathrm{fc}+22.5 \mathrm{MHz}) / 2$	-15dBm	Low		-54 dBc (nominal)
		-25dBm	High		-54 dBc (nominal)
IF Conversion Image					
Apparent Freq	Excitation Freq	Mixer Level ${ }^{\text {c }}$	IF Gain		
Any on-screen f	$2 \times \mathrm{fc}-\mathrm{f}+45 \mathrm{MHz}$	-10 dBm	Low		-70 dBc (nominal)
		-20 dBm	High		-70 dBc (nominal)

a. The level of these spurs is not warranted. The relationship between the spurious response and its excitation is described in order to make it easier for the user to distinguish whether a questionable response is due to these mechanisms. f is the apparent frequency of the spurious signal, fc is the measurement center frequency.
b. The spurious response specifications only apply with the preamp turned off. When the preamp is turned on, performance is nominally the same as long as the mixer level is interpreted to be Mixer Level = Input Level - Input Attenuation - Preamp Gain.
c. Mixer Level = Input Level - Input Attenuation.

\left.| Description | | Specifications | | | Supplemental Information | |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: |$\right]$

a. The IF frequency response includes effects due to RF circuits such as input filters, that are a function of RF frequency, in addition to the IF passband effects.
b. Signal frequencies between 18 and 26.5 GHz are prone to additional response errors due to modes in the Type-N connector used with frequency Option 526. With the use of Type-N to APC 3.5 mm adapter part number 1250-1744, there are nominally six such modes. These modes cause nominally up to -0.35 dB amplitude change, with phase errors of nominally up to $\pm 1.2^{\circ}$.
c. This column applies to the instantaneous analysis bandwidth in use. In the Spectrum analyzer Mode, this would be the FFT width. For Span $<10 \mathrm{MHz}$. see "IF Frequency Response" on page 32.
d. The maximum error at an offset (f) from the center of the FFT width is given by the expression \pm [Midwidth Error + ($f \times$ Slope)], but never exceeds \pm Max Error. Here the Midwidth Error is the error at the center frequency for the given FFT span. Usually, the span is no larger than the FFT width in which case the center of the FFT width is the center frequency of the analyzer. In the Spectrum Analyzer mode, when the analyzer span is wider than the FFT width, the span is made up of multiple concatenated FFT results, and thus has multiple centers of FFT widths so the f in the equation is the offset from the nearest center. These specifications include the effect of RF frequency response as well as IF frequency response at the worst case center frequency. Performance is nominally three times better at most center frequencies.
e. The specification does not apply for frequencies greater than 3.6 MHz from the center in FFT widths of 7.2 to 8 MHz .
f. The "RMS" nominal performance is the standard deviation of the response relative to the center frequency, integrated across the span. This performance measure was observed at a center frequency in each harmonic mixing band, which is representative of all center frequencies; it is not the worst case frequency.
g. For information on the preselector which affects the passband for frequencies above 3.6 GHz when Option MPB is not in use, see "Preselector Bandwidth" on page 27.
h. Option MPB is installed and enabled.

Description			Specifications	Supplemental Information	
IF Phase Linearity				Deviation from me Modes above 18	phase linearity z^{a}
Center Freq (GHz)	Span (MHz)	Preselector		Peak-to-peak (nominal)	RMS (nominal) ${ }^{\text {b }}$
$\geq 0.02,<3.6$	≤ 25	n / a		$0.6{ }^{\circ}$	$0.14{ }^{\circ}$
≥ 3.6	≤ 25	Off ${ }^{\text {c }}$		1.9°	0.42°
≥ 3.6 (Option ≤ 526)	≤ 25	On		$4.5{ }^{\circ}$	1.2°

a. Signal frequencies between 18 and 26.5 GHz are prone to additional response errors due to modes in the Type-N connector used with frequency Option 526. With the use of Type-N to APC 3.5 mm adapter part number 1250-1744, there are nominally six such modes. These modes cause nominally up to -0.35 dB amplitude change, with phase errors of nominally up to $\pm 1.2^{\circ}$.
b. The listed performance is the standard deviation of the phase deviation relative to the mean phase deviation from a linear phase condition, where the RMS is computed across the span shown.
c. Option MPB is installed and enabled.

Description

Specification

Supplemental Information

Full Scale (ADC Clipping) ${ }^{\text {a }}$

Default settings, signal at CF
(IF Gain = Low)

Band 0
Band 1 through 4
High Gain setting, signal at CF
(IF Gain = High)
Band 0

Band 1 through 6

Effect of signal frequency $\neq C F$
-8 dBm mixer level ${ }^{\mathrm{b}}$ (nominal)
-7 dBm mixer level ${ }^{\mathrm{b}}$ (nominal)
-18 dBm mixer level ${ }^{\mathrm{b}}$ (nominal), subject to gain limitations ${ }^{\text {C }}$
-17 dBm mixer level ${ }^{\mathrm{b}}$ (nominal), subject to gain limitations ${ }^{\text {c }}$ up to $\pm 3 \mathrm{~dB}$ (nominal)
a. This table is meant to help predict the full-scale level, defined as the signal level for which ADC overload (clipping) occurs. The prediction is imperfect, but can serve as a starting point for finding that level experimentally. A SCPI command is also available for that purpose.
b. Mixer level is signal level minus input attenuation.
c. The available gain to reach the predicted mixer level will vary with center frequency. Combinations of high gains and high frequencies will not achieve the gain required, increasing the full scale level.

Data Acquisition

a. Requires instrument software version >=A.31.00. Otherwise, IQ Sample Pairs is limited to 8,000,001.

Option B25-25 MHz Analysis Bandwidth
Data Acquisition

This chapter contains specifications for the Option B40 40 MHz Analysis Bandwidth, and are unique to this IF Path.

Specifications Affected by Analysis Bandwidth

The specifications in this chapter apply when the 40 MHz path is in use. In IQ Analyzer, this will occur when the IF Path is set to 40 MHz , whether by Auto selection (depending on Span) or manually.

Specification Name	Information
IF Frequency Response	See specifications in this chapter.
IF Phase Linearity	See specifications in this chapter. There are three effects of the use of Option B40 on spurious responses. Most of the warranted elements of the ""purious Responses" on page 43 still apply without changes, but the revised-version of the table on page 43, modified to reflect the effect of Option B B0, is shown in its place in this chapter. The image responses part of that table have the same warranted limits, but apply at different frequencies as shown in the table. The "higher order RF spurs" line is slightly degraded. Also, spurious-free dynamic range specifications are given in this chapter, as well as IF Residuals. Spurious Responses performance of the analyzer will degrade by an unspecified extent when using wideband analysis. This extent is not substantial enough to justify statistical process control.
Phase Noise	Nominally 0.5 dB degradation from base instrument absolute amplitude accuracy. (Refer to Absolute Amplitude Accuracy on page 33.)
Absolute Amplitude Accuracy	Specifications on this bandwidth only apply with center frequencies of F0 MHz and higher.
Frequency Range Over Which	
Specifications Apply	

Other Analysis Bandwidth Specifications

Description		Specifications	Supplemental Information
Spurious Responses ${ }^{\text {a }}$ (see Band Overlaps on page 16)			Preamp Off ${ }^{\text {b }}$
Residual Responses ${ }^{\text {c }}$			-100 dBm (nominal)
Image Responses ${ }^{\text {d }}$			
Tuned Freq (f)	Excitation Freq		Response
10 MHz to 3.6 GHz	$f+10100 \mathrm{MHz}$		-119 dBc (nominal)
10 MHz to 3.6 GHz	$f+500 \mathrm{MHz}$		-121 dBc (nominal)
3.5 to 13.6 GHz	$\mathrm{f}+500 \mathrm{MHz}$		-89 dBc (nominal)
13.5 to 17.1 GHz	$\mathrm{f}+500 \mathrm{MHz}$		-83 dBc (nominal)
17.0 to 22 GHz	$f+500 \mathrm{MHz}$		-82 dBc (nominal)
22 to 26.5 GHz	$\mathrm{f}+500 \mathrm{MHz}$		-79 dBc (nominal)
>26.5 GHz	$\mathrm{f}+500 \mathrm{MHz}$		-79 dBC (nominal)
Other Spurious Responses			
Carrier Frequency $\leq 26.5 \mathrm{GHz}$			
First RF Ordere ($\mathrm{f} \geq 10 \mathrm{MHz}$ from carrier)		$-10 \mathrm{dBm}$	-112 dBC (nominal)
Higher RF Order ${ }^{f}$ $\mathrm{f} \geq 10 \mathrm{MHz}$ from carrier		-40 dBm	-100 dBc (nominal)
Carrier Frequency $>26.5 \mathrm{GHz}$			
First RF Order ${ }^{\text {e }}$ ($f \geq 10 \mathrm{MHz}$ from carrier)		$-30 \mathrm{dBm}$	-100 dBC (nominal)
Higher RF Order ${ }^{9}$ ($\mathrm{f} \geq 10 \mathrm{MHz}$ from carrier)		$-30 \mathrm{dBm}$	-100 dBC (nominal)
LO-Related Spurious Response $\mathrm{f}>600 \mathrm{MHz}$ from carrier 10 MHz to 3.6 GHz		$-10 \mathrm{dBm}$	$\begin{aligned} & -90 \mathrm{dBC}+20 \times \log (\mathrm{N}) \\ & (\text { nominal) } \end{aligned}$
Sidebands, offset from CW signal			
$\leq 200 \mathrm{~Hz}$			$-70 \mathrm{dBc}^{9}$ (nominal)
200 Hz to 3 kHz			$-73 \mathrm{dBC}{ }^{\text {g }}$ (nominal)
3 kHz to 30 kHz			-73 dBc (nominal)
30 kHz to 10 MHz			-80 dBc (nominal)

a. Preselector enabled for frequencies $>3.6 \mathrm{GHz}$.
b. The spurious response specifications only apply with the preamp turned off. When the preamp is turned on, performance is nominally the same as long as the mixer level is interpreted to be: Mixer Level = Input Level - Input Attenuation - Preamp Gain
c. Input terminated, 0 dB input attenuation.
d. Mixer Level is -10 dBm for all except $>26.5 \mathrm{GHz}$, which is -30 dBm .
e. With first RF order spurious products, the indicated frequency will change at the same rate as the input, with higher order, the indicated frequency will change at a rate faster than the input.
f. RBW=100 Hz. With higher RF order spurious responses, the observed frequency will change at a rate faster than the input frequency.
g. Nominally -40 dBc under large magnetic (0.38 Gauss rms) or vibrational (0.21 g rms) environmental stimuli.

Description			Specifications	Supplemental Information	
IF Frequency	sponse ${ }^{\text {a }}$			Relative to Modes abov	frequency $\mathrm{GHz} \mathrm{z}^{\mathrm{b}}$
Center Freq (GHz)	Span (MHz)	Preselector		Nominal	RMS (nominal) ${ }^{\text {c }}$
$\geq 0.03,<3.6$	≤ 40	n/a		± 0.3 dB	0.08 dB
$>3.6, \leq 26.5$	≤ 40	Off ${ }^{\text {d }}$		$\pm 0.25 \mathrm{~dB}$	0.08 dB
>26.5	≤ 40	Off ${ }^{\text {d }}$		$\pm 0.25 \mathrm{~dB}$	0.12 dB
≥ 3.6	≤ 40	On		See footnot	

a. The IF frequency response includes effects due to RF circuits such as input filters, that are a function of RF frequency, in addition to the IF passband effects.
b. Signal frequencies above 18 GHz are prone to additional response errors due to modes in the Type-N connector used. With the use Type-N to APC 3.5 mm adapter part number 1250-1744, there are nominally six such modes. These modes cause nominally up to -0.35 dB amplitude change, with phase errors of nominally up to $\pm 1.2^{\circ}$.
c. The listed performance is the rms of the amplitude deviation from the mean amplitude response of a span/CF combination. 50% of the combinations of prototype instruments, center frequencies and spans had performance better than the listed values.
d. Option MPB is installed and enabled.
e. The passband shape will be greatly affected by the preselector. See "Preselector Bandwidth" on page 27.

Description			Specifications	Supplemental Information	
IF Phase Linearity				Deviation from mean phase linearity Modes above $18 \mathrm{GHz}^{\mathrm{a}}$	
Center Freq (GHz)	Span (MHz)	Preselector		Peak-to-peak (nominal)	RMS (nominal) ${ }^{\text {b }}$
$\geq 0.02,<3.6$	40	n/a		0.2°	0.05°
≥ 3.6	40	Off ${ }^{\text {c }}$		5°	$1.4{ }^{\circ}$

a. Signal frequencies above 18 GHz are prone to additional response errors due to modes in the Type- N connector used. With the use Type-N to APC 3.5 mm adapter part number 1250-1744, there are nominally six such modes. These modes cause nominally up to -0.35 dB amplitude change, with phase errors of nominally up to $\pm 1.2^{\circ}$.
b. The listed performance is the standard deviation of the phase deviation relative to the mean phase deviation from a linear phase condition, where the RMS is computed across the span shown.
c. Option MPB is installed and enabled.

Description	Specification	Supplemental Information
Full Scale (ADC Clipping) ${ }^{\text {a }}$		
Default settings, signal at CF		
(IF Gain = Low; IF Gain Offset = 0 dB)		
Band 0		-8 dBm mixer level ${ }^{\text {b }}$ (nominal)
Band 1 through 6		-7 dBm mixer level ${ }^{\text {b }}$ (nominal)
High Gain setting, signal at CF		
(IF Gain = High; IF Gain Offset = 0 dB)		
Band 0		-18 dBm mixer level ${ }^{\mathbf{b}}$ (nominal), subject to gain limitations ${ }^{\text {C }}$
Band 1 through 6		-17 dBm mixer level ${ }^{\mathbf{b}}$ (nominal), subject to gain limitations ${ }^{\text {C }}$
IF Gain Offset $\neq 0 \mathrm{~dB}$, signal at CF		See formula ${ }^{\text {d }}$, subject to gain limitations $^{\text {c }}$
Effect of signal frequency \neq CF		up to $\pm 3 \mathrm{~dB}$ (nominal)

a. This table is meant to help predict the full-scale level, defined as the signal level for which ADC overload (clipping) occurs. The prediction is imperfect, but can serve as a starting point for finding that level experimentally. A SCPI command is also available for that purpose.
b. Mixer level is signal level minus input attenuation.
c. The available gain to reach the predicted mixer level will vary with center frequency. Combinations of high gains and high frequencies will not achieve the gain required, increasing the full scale level.
d. The mixer level for ADC clipping is nominally given by that for the default settings, minus IF Gain Offset, minus 10 dB if IF Gain is set to High.

Description	Specification	Supplemental Information
EVM		
(EVM measurement floor for an 802.11 g OFDM signal, MCS7, using 89600 VSA software equalization on channel estimation sequence and data, pilot tracking on)		
2.4 GHz		0.35% (nominal)
5.8 GHz with Option MPB		0.50% (nominal)

Description	Specification	Supplemental Information
Signal to Noise Ratio		Ratio of clipping level ${ }^{a}$ to noise level
Example: 1.8 GHz		$134 \mathrm{dBc} / \mathrm{Hz}$, IF Gain = Low, IF Gain Offset = 0 dB

a. For the clipping level, see the table above, "Full Scale." Note that the clipping level is not a warranted specification, and has particularly high uncertainty at high microwave frequencies.

Data Acquisition

Description	Specifications		Supplemental Information
Time Record Length			
IQ Analyzer	32,000,001 IQ sample pairs ${ }^{\text {a }}$		
Advanced Tools	Data Packing		89600 VSA software
	32-bit	64-bit	
Length (IQ sample pairs)	$536 \mathrm{MSa}\left(2^{29} \mathrm{Sa}\right)$	268 MSa ($2^{28} \mathrm{Sa}$)	2 GB total memory
Length (time units)			Samples/(Span $\times 1.28$)
Sample Rate			
At ADC	$200 \mathrm{MSa} / \mathrm{s}$		
IQ Pairs			Span dependent
ADC Resolution	12 bits		

a. Requires instrument software version >=A.31.00. Otherwise, IQ Sample Pairs is limited to 8,000,001.

Capture Time [Plot]

NOTE This plot is based on the full access to the 2 GB deep capture memory, which requires 89600 VSA software.

Option B40-40 MHz Analysis Bandwidth
Data Acquisition

5 Option CR3 - Connector Rear, 2nd IF Output

This chapter contains specifications for Option CR3, Connector Rear, 2nd IF Output.

Specifications Affected by Connector Rear, 2nd IF Output

No other analyzer specifications are affected by the presence or use of this option. New specifications are given in the following page.

Other Connector Rear, 2nd IF Output Specifications

Aux IF Out Port

Description	Specifications	Supplemental Information
Connector	SMA female	Shared with other options 50Ω (nominal)

Second IF Out

Description	Specifications	Supplemental Information
Second IF Out		
Output Center Frequency		322.5 MHz
SA Mode		322.5 MHz
I/Q Analyzer Mode		250 MHz
IF Path $\leq 25 \mathrm{MHz}$	300 MHz	
IF Path 40 MHz	-1 to +4 dB (nominal) plus RF frequency response ${ }^{\text {a }}$	
IF Path 160 MHz		
Conversion Gain at 2nd IF output		
center frequency		
Bandwidth Low band High band With preselector Preselector bypassed (Option MPB)		Up to 160 MHz (nominal) ${ }^{\text {b }}$
Residual Output Signals		Depends on RF center frequency ${ }^{\text {c }}$

a. "Conversion Gain" is defined from RF input to IF Output with 0 dB mechanical attenuation and the electronic attenuator off. The nominal performance applies in zero span.
b. The passband width at -3 dB nominally extends from IF frequencies of 230 to 370 MHz . The passband width is thus maximum and symmetric when using 300 MHz as the IF output center frequency. When the IF path in use is centered at a frequency different from 300 MHz , the passband will be asymmetric.
c. The YIG-tuned preselector bandwidth nominally varies from 55 MHz for a center frequencies of 3.6 GHz through 57 MHz at 15 GHz to 75 MHz at 26.5 GHz . The preselector effect will dominate the passband width.
d. The passband width at -6 dB nominally extends from 100 to 800 MHz . Thus, the maximum width is not centered around the IF output center frequency. Expandable to 900 MHz with Corrections.

6 Option CRP - Connector Rear, Arbitrary IF Output

This chapter contains specifications for Option CRP, Connector Rear, Arbitrary IF Output.

Option CRP - Connector Rear, Arbitrary IF Output
Specifications Affected by Connector Rear, Arbitrary IF Output
Specifications Affected by Connector Rear, Arbitrary IF Output
No other analyzer specifications are affected by the presence or use of this option. New specifications are given in the following page.

Other Connector Rear, Arbitrary IF Output Specifications

Aux IF Out Port

Description	Specifications	Supplemental Information
Connector	SMA female	Shared with other options Impedance

Arbitrary IF Out

Description	Specifications	Supplemental Information
Arbitrary IF Out		
IF Output Center Frequency		
Range	10 to 75 MHz	
Resolution	0.5 MHz	
Conversion Gain at the RF Center Frequency		-1 to +4 dB (nominal) plus RF frequency response ${ }^{\text {a }}$
Bandwidth		
Highpass corner frequency		5 MHz (nominal) at -3 dB
Lowpass corner frequency		120 MHz (nominal) at -3 dB
Output at 70 MHz center		
Low band; also, high band with preselector bypassed		100 MHz (nominal) ${ }^{\text {b }}$
Preselected bands		Depends on RF center frequency ${ }^{\text {c }}$
Lower output frequencies		Subject to folding ${ }^{\text {d }}$
Phase Noise		Added noise above analyzer noise ${ }^{\text {e }}$
Residual Output Signals		-88 dBm or lower (nominal) ${ }^{\text {f }}$

a. "Conversion Gain" is defined from RF input to IF Output with 0 dB mechanical attenuation and the electronic attenuator off. The nominal performance applies with zero span.
b. The bandwidth shown is in non-preselected bands. The combination with preselection (see footnote c) will reduce the bandwidth.
c. See "Preselector Bandwidth" on page 27.
d. As the output center frequency declines, the lower edge of the passband will fold around zero hertz. This phenomenon is most severe for output frequencies around and below 20 MHz . For more information on frequency folding, refer to X-Series Spectrum Analyzer User's and Programmer's Reference.
e. The added phase noise in the conversion process of generating this IF is nominally $-88,-106$, and $-130 \mathrm{dBc} / \mathrm{Hz}$ at offsets of 10,100 , and 1000 kHz respectively.
f. Measured from 1 MHz to 150 MHz .

7 Option EA3 - Electronic Attenuator, 3.6 GHz

This chapter contains specifications for the Option EA3 Electronic Attenuator, 3.6 GHz.

Specifications Affected by Electronic Attenuator

Specification Name	Information
Frequency Range	See "Range (Frequency and Attenuation)" on page 105.
1 dB Gain Compression Point	See "Distortions and Noise" on page 106.
Displayed Average Noise Level	See "Distortions and Noise" on page 106.
Frequency Response	See "Frequency Response" on page 107.
Attenuator Switching Uncertainty	The recommended operation of the electronic attenuator is with the reference setting (10 dB) of the mechanical attenuator. In this operating condition, the Attenuator Switching Uncertainty specification of the mechanical attenuator in the core specifications does not apply, and any switching uncertainty of the electronic attenuator is included within the "Electronic Attenuator Switching Uncertainty" on page 108. See ."Absolute Amplitude Accuracy" on page 107.
Absolute Amplitude Accuracy,	See "Distortions and Noise" on page 106.
Second Harmonic Distortion	
Third Order Intermodulation Distortion "Distortions and Noise" on page 106.	

Other Electronic Attenuator Specifications

Description	Specifications	Supplemental Information
Range (Frequency and Attenuation)	10 Hz to 3.6 GHz	
Frequency Range	0 to $24 \mathrm{~dB}, 1 \mathrm{~dB}$ steps	Electronic attenuator is calibrated with 10 dB mechanical attenuation Range Electronic Attenuator Range Calibrated Range
Full Attenuation Range	0 to $24 \mathrm{~dB}, 2 \mathrm{~dB}$ steps	
mechanical attenuation		

Description	Specifications	Supplemental Information
Distortions and Noise		When using the electronic attenuator, the mechanical attenuator is also in-circuit. The full mechanical attenuator range is available ${ }^{a}$.
1 dB Gain Compression Point		The 1 dB compression point will be nominally higher with the electronic attenuator "Enabled" than with it not Enabled by the loss, ${ }^{\text {b }}$ except with high settings of electronic attenuation ${ }^{\mathrm{c}}$.
Displayed Average Noise Level		Instrument Displayed Average Noise Level will nominally be worse with the electronic attenuator "Enabled" than with it not Enabled by the loss ${ }^{\text {b }}$.
Second Harmonic Distortion		Instrument Second Harmonic Distortion will nominally be better in terms of the second harmonic intercept (SHI) with the electronic attenuator "Enabled" than with it not Enabled by the loss ${ }^{\text {b }}$.
Third-order Intermodulation Distortion		Instrument TOI will nominally be better with the electronic attenuator "Enabled" than with it not Enabled by the loss ${ }^{\text {b }}$ except for the combination of high attenuation setting and high signal frequency ${ }^{\mathrm{d}}$.

a. The electronic attenuator is calibrated for its frequency response only with the mechanical attenuator set to its preferred setting of 10 dB .
b. The loss of the electronic attenuator is nominally given by its attenuation plus its excess loss. That excess loss is nominally 2 dB from $0-500 \mathrm{MHz}$ and increases by nominally another $1 \mathrm{~dB} / \mathrm{GHz}$ for frequencies above 500 MHz.
c. An additional compression mechanism is present at high electronic attenuator settings. The mechanism gives nominally 1 dB compression at +20 dBm at the internal electronic attenuator input. The compression threshold at the RF input is higher than that at the internal electronic attenuator input by the mechanical attenuation. The mechanism has negligible effect for electronic attenuations of 0 through 14 dB .
d. The TOI performance improvement due to electronic attenuator loss is limited at high frequencies, such that the TOI reaches a limit of nominally +45 dBm at 3.6 GHz , with the preferred mechanical attenuator setting of 10 dB , and the maximum electronic attenuation of 24 dB . The TOI will change in direct proportion to changes in mechanical attenuation.

Description	Specifications		Supplemental Information
Frequency Response			Mech atten set to default/calibrated setting of 10 dB .
(Maximum error relative to reference condition (50 MHz))			
	20 to $30^{\circ} \mathrm{C}$	Full Range	95th Percentile ($\sim 2 \sigma$)
Attenuation $=4$ to 24 dB , even steps			
9 kHz to 10 MHz	$\pm 0.75 \mathrm{~dB}$	$\pm 0.90 \mathrm{~dB}$	$\pm 0.32 \mathrm{~dB}$
10 MHz to 50 MHz	$\pm 0.65 \mathrm{~dB}$	$\pm 0.69 \mathrm{~dB}$	$\pm 0.27 \mathrm{~dB}$
Option ≤ 526			
50 MHz to 2.2 GHz	$\pm 0.48 \mathrm{~dB}$	$\pm 0.60 \mathrm{~dB}$	$\pm 0.19 \mathrm{~dB}$
2.2 to 3.6 GHz	$\pm 0.55 \mathrm{~dB}$	$\pm 0.67 \mathrm{~dB}$	$\pm 0.20 \mathrm{~dB}$
Option > 526			
50 MHz to 2.2 GHz	$\pm 0.48 \mathrm{~dB}$	$\pm 0.70 \mathrm{~dB}$	$\pm 0.19 \mathrm{~dB}$
2.2 to 3.6 GHz	$\pm 0.55 \mathrm{~dB}$	$\pm 0.70 \mathrm{~dB}$	$\pm 0.22 \mathrm{~dB}$
Attenuation $=0,1,2$ and odd steps, 3 to 23 dB			
10 MHz to 3.6 GHz			$\pm 0.30 \mathrm{~dB}$

Description	Specifications	Supplemental Information
Absolute Amplitude Accuracy		
At $50 \mathrm{MHz}^{\mathrm{a}}$		
20 t $30^{\circ} \mathrm{C}$	$\pm 0.44 \mathrm{~dB}$	
Full temperature range	$\pm 0.47 \mathrm{~dB}$	
At all frequencies		
20 to $30^{\circ} \mathrm{C}$	$\pm(0.44 \mathrm{~dB}+$ frequency response $)$	
Full temperature range	$\pm(0.47 \mathrm{~dB}+$ frequency response $)$	

a. Absolute amplitude accuracy is the total of all amplitude measurement errors, and applies over the following subset of settings and conditions: $1 \mathrm{~Hz} \leq R B W \leq 1 \mathrm{MHz}$; Input signal -10 to -50 dBm ; Input attenuation 10 dB ; all settings auto-coupled except Swp Time Rules = Accuracy; combinations of low signal level and wide RBW use VBW $\leq 30 \mathrm{kHz}$ to reduce noise. When using FFT sweeps, the signal must be at the center frequency. This absolute amplitude accuracy specification includes the sum of the following individual specifications under the conditions listed above: Scale Fidelity, Reference Level Accuracy, Display Scale Switching Uncertainty, Resolution Bandwidth Switching Uncertainty, 50 MHz Amplitude Reference Accuracy, and the accuracy with which the instrument aligns its internal gains to the 50 MHz Amplitude Reference.

Description	Specifications	Supplemental Information
Electronic Attenuator Switching		
Uncertainty		
(Error relative to reference		
condition: $50 \mathrm{MHz}, 10 \mathrm{~dB}$ mechanical		
attenuation, 10 dB electronic		
attenuation)		
Attenuation $=0$ to 24 dB		
9 kHz to 3.6 GHz	See note $^{\mathrm{a}}$	

a. The specification is $\pm 0.14 \mathrm{~dB}$. Note that this small relative uncertainty does not apply in estimating absolute amplitude accuracy. It is included within the absolute amplitude accuracy for measurements done with the electronic attenuator. (Measurements made without the electronic attenuator are treated differently; the absolute amplitude accuracy specification for these measurements does not include attenuator switching uncertainty.)

8 Option EMC - Precompliance EMI Features

This chapter contains specifications for the Option EMC precompliance EMI features.

Frequency

Description	Specifications	Supplemental information
Frequency Range		10 Hz to $3.6,7,13.6,26.5,32$, or 44 GHz depending on the frequency option.
EMI Resolution Bandwidths		See "CISPR Preset Settings" on page 111 and "MIL-STD 461D/E/F Frequency Ranges and Bandwidths" on page 111 for CISPR and MIL-STD frequency ranges.
CISPR		Available when the EMC Standard is CISPR.
$200 \mathrm{~Hz}, 9 \mathrm{kHz}, 120 \mathrm{kHz}, 1 \mathrm{MHz}$		As specified by CISPR 16-1-1, -6 dB bandwidths, subject to masks
Non-CISPR bandwidths	$\begin{aligned} & 10,30,100,300 \mathrm{~Hz}, 1,3,30 \text {, } \\ & 300 \mathrm{kHz}, 3,10 \mathrm{MHz} \end{aligned}$	-6 dB bandwidths
MIL STD		Available when the EMC Standard is MIL
$10,100 \mathrm{~Hz}, 1,10,100 \mathrm{kHz}, 1 \mathrm{MHz}$		As specified by MIL-STD-461, -6 dB bandwidths
Non-MIL STD bandwidths	$\begin{aligned} & 30,300 \mathrm{~Hz}, 3,30,300 \mathrm{kHz}, 3 \text {, } \\ & 10 \mathrm{MHz} \end{aligned}$	-6 dB bandwidths

Table 8-1 CISPR Preset Settings

CISPR Band	Frequency Range	CISPR RBW	Data Points
Band A	9 to 150 kHz	200 Hz	1413
Band B	150 kHz to 30 MHz	9 kHz	6637
Band C	30 to 300 MHz	120 kHz	4503
Band D	300 MHz to 1 GHz	120 kHz	11671
Band C/D	30 MHz to 1 GHz	120 kHz	16171
Band E	1 to 18 GHz	1 MHz	34001

Table 8-2
MIL-STD 461D/E/F Frequency Ranges and Bandwidths

Frequency Range	6 dB Bandwidth	Minimum Measurement Time
30 Hz to 1 kHz	10 Hz	$0.015 \mathrm{~s} / \mathrm{Hz}$
1 kHz to 10 kHz	100 Hz	$0.15 \mathrm{~s} / \mathrm{kHz}$
10 kHz to 150 kHz	1 kHz	$0.015 \mathrm{~s} / \mathrm{kHz}$
150 kHz to 30 MHz	10 kHz	$1.5 \mathrm{~s} / \mathrm{MHz}$
30 MHz to 1 GHz	100 kHz	$0.15 \mathrm{~s} / \mathrm{MHz}$
Above 1 GHz	1 MHz	$15 \mathrm{~s} / \mathrm{GHz}$

Amplitude

Description	Specifications	Supplemental Information
EMI Average Detector		Used for CISPR specified average measurements and, with 1 MHz RBW, for frequencies above 1 GHz
Default Average Type		All filtering is done on the linear (voltage) scale even when the display scale is log.
Quasi-Peak Detector		Used with CISPR specified RBWs, for frequencies $\leq 1 \mathrm{GHz}$
Absolute Amplitude Accuracy for reference spectral intensities		As specified by CISPR 16-1-1
Relative amplitude accuracy versus pulse repetition rate		As specified by CISPR 16-1-1
Quasi-Peak to average response ratio		As specified by CISPR 16-1-1
Dynamic range		
Pulse repetition rates $\geq 20 \mathrm{~Hz}$		As specified by CISPR 16-1-1
Pulse repetition rates $\leq 10 \mathrm{~Hz}$		Does not meet CISPR standards in some cases with DC pulse excitation.
RMS Average Detector		As specified by CISPR 16-1-1

9 Option ESC - External Source Control

This chapter contains specifications for the Option ESC, External Source Control.

General Specifications

Description	Specification	Supplemental Information
Frequency Range		
SA Operating range		
N9010B-503	10 Hz to 3.6 GHz	
N9010B-507	10 Hz to 7 GHz	
N9010B-513	10 Hz to 13.6 GHz	
N9010B-526	10 Hz to 26.5 GHz	
N9010B-532	10 Hz to 32 GHz	
N9010B-544	10 Hz to 44 GHz	
Source Operating range		
N5171B-501	9 kHz to 1 GHz	
N5171B/72B/81B/82B-503	9 kHz to 3 GHz	
N5171B/72B/81B/82B-506	9 kHz to 6 GHz	
N5161A/N5162A/N5181A/N5182A-503	100 kHz to 3 GHz	
N5161A/N5162A/N5181A/N5182A-506	100 kHz to 6 GHz	
N5183A-520	100 kHz to 20 GHz	
N5183A-532	100 kHz to 31.8 GHz	
N5183A-540	100 kHz to 40 GHz	operating range
N5173B/N5183B-513	9 kHz to 13 GHz	
N5173B/N5183B-520	9 kHz to 20 GHz	
S5173B/N5183B-532	9 kHz to 31.8 GHz	
Sweep offset setting range offset setting resolution	9 kHz to 40 GHz	
N5173B/N5183B-540	250 kHz to 20 GHz	
E8257C/E8257D-520	250 kHz to 31.8 GHz	
E8257D-532	250 kHz to 40 GHz	
E8257N-340	250 kHz to 40 GHz	
E8257C/E8257D-540	250 kHz to 50 GHz	
E8257D/E8257N-550	250 kHz to 67 GHz	
E8257D-567	250 kHz to 20 GHz	
E8267C/E8267D-520	250 kHz to 31.8 GHz	
E8267D-532	250 kHz to 44 GHz	
E8267D-544		

Description	Specification	Supplemental Information
Harmonic Sweep		
Harmonic sweep setting range ${ }^{\text {a }}$		$\mathrm{N}=1$ to 1000
Multiplier numerator		$\mathrm{N}=1$ to 1000
Multiplier denominator		Normal, Reversed
Sweep Direction		

a. Limited by the frequency range of the source to be controlled.
b. The analyzer always sweeps in a positive direction, but the source may be configured to sweep in the opposite direction. This can be useful for analyzing negative mixing products in a mixer under test, for example.

Description		Specification		Supplemental Information
Dynamic Ra				Dynamic Range =
(10 MHz to 3 detector, avera	$\begin{aligned} & \text { ut terminated, sample } \\ & =\log , 20 \text { to } 30^{\circ} \mathrm{C} \text {) } \end{aligned}$			-10 dBm - DANL - 10xlog(RBW) ${ }^{\text {a }}$
SA span	SA RBW	Option ≤ 526	Option >526	
1 MHz	2 kHz	101.0 dB	104.0 dB	
10 MHz	6.8 kHz	95.7 dB	98.0 dB	
100 MHz	20 kHz	91.0 dB	94.0 dB	
$1000 \mathrm{MHz}$ $68 \mathrm{kHz}$ Amplitude Accuracy		85.7 dB	88.0 dB	
Amplitude Accuracy				Multiple contributors ${ }^{\text {b }}$
		Linearity ${ }^{\text {c }}$		
		Source and Analyzer Flatness ${ }^{\text {d }}$		
		YTF Instability ${ }^{\text {e }}$		
		VSWR effects ${ }^{\dagger}$		

a. The dynamic range is given by this computation: $-10 \mathrm{dBm}-$ DANL $-10 \times \log ($ RBW $)$ where DANL is the displayed average noise level specification, normalized to 1 Hz RBW, and the RBW used in the measurement is in hertz units. The dynamic range can be increased by reducing the RBW at the expense of increased sweep time.
b. The following footnotes discuss the biggest contributors to amplitude accuracy.
c. One amplitude accuracy contributor is the linearity with which amplitude levels are detected by the analyzer. This is called "scale fidelity" by most spectrum analyzer users, and "dynamic amplitude accuracy" by most network analyzer users. This small term is documented in the Amplitude section of the Specifications Guide. It is negligibly small in most cases.
d. The amplitude accuracy versus frequency in the source and the analyzer can contribute to amplitude errors. This error source is eliminated when using normalization in low band (0 to 3.6 GHz). In high band the gain instability of the YIG-tuned prefilter in the analyzer keeps normalization errors nominally in the 0.25 to 0.5 dB range.
e. In the worst case, the center frequency of the YIG-tuned prefilter can vary enough to cause very substantial errors, much higher than the nominal 0.25 to 0.5 dB nominal errors discussed in the previous footnote. In this case, or as a matter of good practice, the prefitter should be centered. See the user's manual for instructions on centering the preselector.
f. VSWR interaction effects, caused by RF reflections due to mismatches in impedance, are usually the dominant error source. These reflections can be minimized by using 10 dB or more attenuation in the analyzer, and using well-matched attenuators in the measurement configuration.

Description	Specification	Supplemental Information
Power Sweep Range		Limited by source amplitude range

a. These measurement times were observed with a span of 100 MHz , RBW of 20 kHz , and the point triggering method being set to Ext Trigger1. The measurement times will not change significantly with span when the RBW is automatically selected. If the RBW is decreased, the sweep time increase would be approximately 23.8 times Npoints/RBW.
b. Based on MXG firmware version A.01.80 and Option UNZ installed.
c. Based on PSG firmware version C.06.15 and Option UNZ installed.

Description	Specification	Supplemental Information
Supported External Sources ${ }^{\text {a }}$		
Agilent/Keysight EXG		N5171B/72B/73B
Agilent/Keysight MXG		N5161A/62A
		N5181A/82A/83A
Agilent/Keysight PSG		E8218/82B/83B
		E8257D/67C
IO interface connection		
between EXG/MXG and SA		
between PSG and SA		

a. Firmware revision A. 19.50 or later is required for the signal analyzer.

10 Option EXM - External Mixing

This chapter contains specifications for the Option EXM External Mixing.

Specifications Affected by External mixing

Specification Name	Information		
RF-Related Specifications, such as TOI, DANL, SHI, Amplitude Accuracy, and so forth.	Specifications do not apply; some related specifications are contained in IF Input in this chapter		
IF-Related Specifications, such as RBW			
range, RBW accuracy, RBW switching			
uncertainty, and so forth.		\quad	Specifications unchanged, except IF Frequency Response - see
:---			
specifications in this chapter.	\quad	New specifications:	
:---			
IF Input			
Mixer Bias			
LO Output			

Other External Mixing Specifications

Description	Specifications	Supplemental Information
Connection Port EXT MIXER Connector Impedance Functions	SMA, female	
Description	Triplexed for Mixer Bias, IF Input and LO output	50Ω (nominal) at IF and LO frequencies
Mixer Bias Bias Current Range Resolution Accuracy Output impedance Bias Voltage Range	Specifications	Supplemental Information

Description		Specifications		Supplemental Information
IF Input				
Maximum Safe Level		+7 dBm		
Center Frequency				
Standard (or Option B25l)		322.5 MHz		
Option B40		250.0 MHz		
Bandwidth				Supports all optional IFs
ADC Clipping Level ${ }^{\text {a }}$				$-14.5 \pm 1.5 \mathrm{dBm}$ (nominal)
1 dB Gain Compression ${ }^{\text {a }}$				-2 dBm (nominal)
Gain Accuracy ${ }^{\text {b }}$		20 to $30^{\circ} \mathrm{C}$	Full Range	
Standard (or Option B25)		$\pm 1.2 \mathrm{~dB}$	$\pm 2.5 \mathrm{~dB}$	Swept and narrowband
Option B40				$\pm 1.2 \mathrm{~dB}$ (nominal)
IF Frequency Response				RMS (nominal)
CF	Width			
322.5 MHz	$\pm 5 \mathrm{MHz}$			0.05 dB
322.5 MHz	$\pm 12.5 \mathrm{MHz}$			0.07 dB
250 MHz	$\pm 20 \mathrm{MHz}$			0.15 dB
Noise Figure (322.5 MHz, swept operation)				9 dB (nominal)
VSWR				1.3:1 (nominal)

a. These specifications apply at the IF input port. The on-screen and mixer-input levels scale with the conversion loss and corrections values.
b. The amplitude accuracy of a measurement includes this term and the accuracy with which the settings of corrections model the loss of the external mixer.

Description	Specifications	Supplemental Information	
LO Output	3.75 to 14.1 GHz		
Frequency Range	$\mathbf{2 0 ~ t o ~} \mathbf{3 0 ^ { \circ } \mathbf { C }}$	Full Range	
Output Power ${ }^{\text {a }}$	+15.0 to 18.0 dBm	+14.5 to 18.5 dBm	
3.75 to $7.0 \mathrm{GHz}^{\mathrm{b}}$	+15.0 to 18.0 dBm	+13.5 to 18.8 dBm	
7.0 to $8.72 \mathrm{GHz}^{\mathrm{b}}$	+14.0 to 18.5 dBm	Not specified	
7.8 to $14.1 \mathrm{GHz}^{\mathrm{C}}$			-20 dB (nominal)
Second Harmonic		-15 dB (nominal)	
Fundamental Feedthrough and		$<2.2: 1$ (nominal)	
Undesired Harmonics			
VSWR			

a. The LO output port power is compatible with Agilent/Keysight M1970 and 11970 Series mixers except for the $11970 K$. The power is specified at the connector. Cable loss will affect the power available at the mixer. With non-Agilent/Keysight mixer units, supplied loss calibration data may be valid only at a specified LO power that may differ from the power available at the mixer. In such cases, additional uncertainties apply.
b. LO Doubler $=$ Off settings.
c. LO Doubler $=$ On setting. Fundamental frequency $=3.9$ to 7.0 GHz .

Option EXM - External Mixing
Other External Mixing Specifications

Specification Guide

11 Option MPB - Microwave Preselector Bypass

This chapter contains specifications for the Option MPB, Microwave Preselector Bypass.

The preselector eliminates image frequencies and unwanted signals outside the preselector passband. Using option MPB to bypass the preselector will improve measurement repeatability and amplitude accuracy, since the preselector can drift over time. With the preselector bypassed, the measurement speed will be improved and attenuator cycles reduced, because Preselector Centering is no longer required before making a measurement. The reduction in attenuator cycles will extend the life of the mechanical attenuators in the instrument.

Specifications Affected by Microwave Preselector Bypass

Specification Name	Information
Displayed Average Noise Level	For analyzers with frequency Option $526(26.5 \mathrm{GHz})$ or lower: Performance is not identical, but nominally the same, as without Option MPB. For analyzers with frequency option higher than Option $526(26.5 \mathrm{GHz}):$ Performance is nominally 3 dB better than without Option MPB.
IF Frequency Response and IF Phase Linearity	See "IF Frequency Response" on page 32 and "IF Phase Linearity" on page 33 for the standard 10 MHz analysis bandwidth; also, see the associated "Analysis Bandwidth" chapter for any optional bandwidths.
Frequency Response	
VSWR	See specifications in this chapter. The magnitude of the mismatch over the range of frequencies will be very similar between MPB and non-MPB operation, but the details, such as the frequencies of the peaks and valleys, will shift.
Additional Spurious Responses	In addition to the "Spurious Responses" on page 43 of the core specifications, "Additional Spurious Responses" on page 128 of this chapter also apply.

Other Microwave Preselector Bypass Specifications

Description	Specifications		Supplemental Information
Frequency Response (Maximum error relative to reference condition (50 MHz) Swept operation ${ }^{\text {a }}$, Attenuation 10 dB)			Refer to the footnote for Band Overlaps on page 16. Modes above 18 GHz ${ }^{\text {b }}$
	20 to $30^{\circ} \mathrm{C}$	Full Range	95th Percentile ($\sim 2 \sigma$)
3.5 to 8.4 GHz	$\pm 0.9 \mathrm{~dB}$	$\pm 1.5 \mathrm{~dB}$	$\pm 0.42 \mathrm{~dB}$
8.3 to 13.6 GHz	$\pm 1.0 \mathrm{~dB}$	$\pm 2.0 \mathrm{~dB}$	$\pm 0.50 \mathrm{~dB}$
13.5 to 17.1 GHz	$\pm 1.3 \mathrm{~dB}$	$\pm 2.0 \mathrm{~dB}$	$\pm 0.50 \mathrm{~dB}$
17.0 to 22.0 GHz	$\pm 1.3 \mathrm{~dB}$	$\pm 2.0 \mathrm{~dB}$	$\pm 0.53 \mathrm{~dB}$
22.0 to 26.5 GHz	$\pm 2.0 \mathrm{~dB}$	$\pm 2.8 \mathrm{~dB}$	$\pm 0.66 \mathrm{~dB}$
26.4 to 34.5 GHz	$\pm 2.0 \mathrm{~dB}$	$\pm 3.0 \mathrm{~dB}$	$\pm 0.80 \mathrm{~dB}$
34.4 to 44 GHz	$\pm 3.1 \mathrm{~dB}$	$\pm 4.8 \mathrm{~dB}$	$\pm 1.21 \mathrm{~dB}$

a. For Sweep Type = FFT, add the RF flatness errors of this table to the IF Frequency Response errors. An additional error source, the error in switching between swept and FFT sweep types, is nominally $\pm 0.01 \mathrm{~dB}$ and is included within the "Absolute Amplitude Error" specifications.
b. Signal frequencies between 18 and 26.5 GHz are prone to additional response errors due to modes in the Type-N connector used with frequency Option 526. With the use Type-N to APC 3.5 mm adapter part number 1250-1744, there are nominally six such modes. The effect of these modes with this connector are included within these specifications.

Description		Specifications	Supplemental Information
Additional Spurious Responses ${ }^{\text {a }}$			
Tuned Frequency (f)	Excitation		
Image Response			
3.5 to 26.5 GHz	$f+f 1 F^{\text {b }}$		0 dBc (nominal), High Band Image Suppression is lost with Option MPB.
LO Harmonic and Subharmonic Responses			
3.5 to 8.4 GHz	$N(f+f \mid F) \pm f \mid F^{\text {b }}$		-10 dBc (nominal), $\mathrm{N}=2,3$
8.3 to 26.5 GHz	$[\mathrm{N}(\mathrm{f}+\mathrm{flF}) / 2] \pm \mathrm{fl} \mathrm{F}^{\mathrm{b}}$		-10 dBc (nominal), $\mathrm{N}=1,3,4$
Second Harmonic Response			
3.5 to 13.6 GHz	$f / 2$		-72 dBc (nominal) for -40 dBm mixer level
13.5 to 26.5 GHz			-68 dBc (nominal) for -40 dBm mixer level
IF Feedthrough Response			
3.5 to 13.6 GHz	$f 1 \mathrm{~F}^{\text {b }}$		-100 dBC (nominal)
13.5 to 26.5 GHz	$f 1 F^{\text {b }}$		-90 dBc (nominal)

a. Dominate spurious responses are described here. Generally, other Option MPB-specific spurious responses will be substantially lower than those listed here, but may exceed core specifications.
b. $\mathrm{fIF}=322.5 \mathrm{MHz}$ except $\mathrm{fIF}=250 \mathrm{MHz}$ with Option B 40 and the 40 MHz IF path enabled.

12 Option NF2 - Noise Floor Extension, Instrument Alignment

This chapter contains specifications for Option NF2, Noise Floor Extension, Instrument Alignment.

Specifications Affected by Noise Floor Extension

The only analyzer specifications affected by the presence or use of this option are noise specifications when the option is used. The additional specifications are given in the following pages.

Displayed Average Noise Level

a. This statement on the improvement in DANL is based on a statistical observation of the effective noise floor across the entire band. The improvement actually measured and specified at the specific frequencies in "Examples of Effective DANL" usually meet these limits as well, but the percentage confidence will be higher in some cases and lower in others. NFE calibrations and verifications are done with 10 dB attenuation. Attenuations from 2 dB through the maximum show the expected effects from the attenuation.
b. Unlike other 95th percentiles, these table values do not include delta environment effects. NFE is aligned in the factory at room temperature. For best performance, in an environment that is different from room temperature, such as an equipment rack with other instruments, we recommend running the "Characterize Noise Floor" operation after the first time the analyzer has been installed in the environment, and given an hour to stabilize.
c. DANL of the preamp is specified with a 50Ω source impedance. Like all amplifiers, the noise varies with the source impedance. When NFE compensates for the noise with an ideal source impedance, the variation in the remaining noise level with the actual source impedance is greatly multiplied in a decibel sense.
d. NFE does not apply to the low frequency sensitivity. At frequencies below about 2 MHz , the sensitivity is dominated by phase noise surrounding the LO feedthrough. The NFE is not designed to improve that performance. At frequencies between 2 and 20 MHz the NFE effectiveness increases from nearly none to near its maximum.
e. Improvement in the uncertainty of measurement due to amplitude errors and variance of the results is modestly improved by using NFE. The nominal improvement shown was evaluated for a 2 dB error with 250 traces averaged. For extreme numbers of averages, the result will be as shown in the "Improvement for Noise-like Signals" and DANL sections of this table.
f. Pulsed-RF signals are usually measured with peak detection. Often, they are also measured with many "max hold" traces. When the measurement time in each display point is long compared to the reciprocal of the RBW, or the number of traces max held is large, considerable variance reduction occurs in each measurement point. When the variance reduction is large, NFE can be quite effective; when it is small, NFE has low effectiveness. For example, in Band 0 with 100 pulses per trace element, in order to keep the error within $\pm 3 \mathrm{~dB}$ error 95% of the time, the signal can be 10.8 dB lower with NFE than without NFE.

Description			Specifications	Supplemental Information	
Displayed Average Noise Level with Noise Floor Extension				95th Percentile ($\approx 2 \sigma)^{\text {a }}$	
mmW (Option 532 or 544) without Option B40, DP2, or MPB					
mmW (Option 532 or 544) with Option B40, DP2, or MPB					
RF/uW (Option 503, 507, 513, or 526		∇		Preamp Off	Preamp On ${ }^{\text {bc }}$
Band 0, f $>20 \mathrm{MHz}^{\text {d }}$	x			-158 dBm	-172 dBm
Band $0, \mathrm{f}>20 \mathrm{MHz}^{\text {d }}$	x			-163 dBm	-174 dBm
Band $0, \mathrm{f}>20 \mathrm{MHz}{ }^{\text {d }}$		x		-163 dBm	-174 dBm
Band 1	x			-157 dBm	-174 dBm
Band 1	x			-158 dBm	-174 dBm
Band 1		x		-160 dBm	-172 dBm
Band 2	x			-157 dBm	-174 dBm
Band 2	x			-159 dBm	-172 dBm
Band 2		x		-161 dBm	$-173 \mathrm{dBm}$
Band 3	x			-151 dBm	-172 dBm
Band 3	x			-160 dBm	-174 dBm
Band 3		x		-161 dBm	-174 dBm
Band 4	x			-144 dBm	-167 dBm
Band 4	x			-156 dBm	-170 dBm
Band 4		x		-157 dBm	-171 dBm
Band 5	x			-154 dBm	-168 dBm
Band 5		x		-156 dBm	-169 dBm
Band 6	x			-150 dBm	-163 dBm
Band 6		x		-152 dBm	-165dBm

a. Unlike other 95th percentiles, these table values do not include delta environment effects. NFE is aligned in the factory at room temperature. For best performance, in an environment that is different from room temperature, such as an equipment rack with other instruments, we recommend running the "Characterize Noise Floor" operation after the first time the analyzer has been installed in the environment, and given an hour to stabilize.
b. DANL of the preamp is specified with a 50Ω source impedance. Like all amplifiers, the noise varies with the source impedance. When NFE compensates for the noise with an ideal source impedance, the variation in the remaining noise level with the actual source impedance is greatly multiplied in a decibel sense.
c. NFE performance can give results below theoretical levels of noise in a termination resistor at room temperature, about $-174 \mathrm{dBm} / \mathrm{Hz}$. this is intentional and usually desirable. NFE is not designed to report the noise at the input of the analyzer; it reports how much more noise is at the input of the analyzer than was present in its alignment. And its alignment includes the noise of a termination at room temperature. So it can often see the added noise below the theoretical noise. Furthermore, DANL is defined with log averaging in a 1 Hz RBW , which is about 2.3 dB lower than the noise density (power averaged) in a 1 Hz noise bandwidth.
d. NFE does not apply to the low frequency sensitivity. At frequencies below about 2 MHz , the sensitivity is dominated by phase noise surrounding the LO feedthrough. The NFE is not designed to improve that performance. At frequencies between 2 and 20 MHz the NFE effectiveness increases from nearly none to near its maximum.

13 Option P03, P07, P13, P26, P32 and P44 - Preamplifier

This chapter contains specifications for the EXA Signal Analyzer Option P03, P07, P13, P26, P32 and P44 preamplifiers.

Specifications Affected by Preamp

Specification Name	Information
Nominal Dynamic Range vs. Offset Frequency vs. RBW	The graphic from the core specifications does not apply with Preamp On.
Measurement Range	The measurement range depends on displayed average noise level (DANL). See "Amplitude Accuracy and Range" on page 29.
Gain Compression	See specifications in this chapter.
DANL without Option NF2 or NFE Off	See specifications in this chapter.
DANL with Option NF2 and NFE On	See "Displayed Average Noise Level with Noise Floor Extension Improvement" on page 131
Displayed Average Noise Level with Option MPB for Option 532 or 544	Performance is nominally 3 dB worse than without Option MPB.
Frequency Response	See specifications in this chapter.
Absolute Amplitude Accuracy	See "Absolute Amplitude Accuracy" on page 33 of the core specifications.
RF Input VSWR	See plot in this chapter.
Display Scale Fidelity	See Display Scale Fidelity on page 37 of the core specifications. Then, adjust the mixer levels given downward by the preamp gain given in this chapter.
Second Harmonic Distortion	SHI with preamplifiers is not specified.
Third Order Intermodulation Distortion	See specifications in this chapter.
Other Input Related Spurious	See "Spurious Responses" on page 43 of the core specifications. Preamp performance is not warranted but is nominally the same as non-preamp performance.
Dynamic Range	See plot in this chapter.
Gain	See "Preamp" specifications in this chapter.
Noise Figure	See "Preamp" specifications in this chapter.

Other Preamp Specifications

Description	Specifications	Supplemental Information
Preamp (Options P03, P07, P13, P26, P32 and P44) ${ }^{\text {a }}$		
Gain		Maximum ${ }^{\text {b }}$
100 kHz to 3.6 GHz		+20 dB (nominal)
3.6 to 26.5 GHz		+35 dB (nominal)
26.5 to 44 GHz		+40 dB (nominal)
Noise figure		
100 kHz to 3.6 GHz		8 to 12 dB (proportional to frequency) (nominal) Note on DC coupling ${ }^{\text {c }}$
3.6 to 8.4 GHz		9 dB (nominal)
8.4 to 13.6 GHz		10 dB (nominal)
13.6 to 44 GHz		Noise Figure is DANL + 176.24 dB (nominal) ${ }^{\text {d }}$

a. The preamp follows the input attenuator, $A C / D C$ coupling switch, and precedes the input mixer. In low-band, it follows the 3.6 GHz low-pass filter. In high-band, it precedes the preselector.
b. Preamp Gain directly affects distortion and noise performance, but it also affects the range of levels that are free of final IF overload. The user interface has a designed relationship between input attenuation and reference level to prevent on-screen signal levels from causing final IF overloads. That design is based on the maximum preamp gains shown. Actual preamp gains are modestly lower, by up to nominally 5 dB for frequencies from 100 kHz to 3.6 GHz, and by up to nominally 10 dB for frequencies from 3.6 to 44 GHz .
c. The effect of AC coupling is negligible for frequencies above 40 MHz . Below 40 MHz , DC coupling is recommended for the best measurements. The instrument NF nominally degrades by 0.2 dB at 30 MHz and 1 dB at 10 MHz with AC coupling.
d. Nominally, the noise figure of the spectrum analyzer is given by

$$
N F=D-(K-L+N+B)
$$

where, D is the DANL (displayed average noise level) specification (Refer to page 139 for DANL with Preamp), K is $\mathrm{kTB}(-173.98 \mathrm{dBm}$ in a 1 Hz bandwidth at 290 K$)$,
L is 2.51 dB (the effect of log averaging used in DANL verifications)
N is 0.24 dB (the ratio of the noise bandwidth of the RBW filter with which DANL is specified to an ideal noise bandwidth)
B is ten times the base- 10 logarithm of the RBW (in hertz) in which the DANL is specified. B is 0 dB for the 1 Hz RBW.
The actual NF will vary from the nominal due to frequency response errors.

Description	Specifications	Supplemental Information
$\mathbf{1 d B}$ Gain Compression Point		
(Two-tone) $^{\text {a }}$		
(Preamp On (Option P03, P07, P13, P26, P32, P44) $^{\text {Maximum power at the preamp }{ }^{\mathrm{b}} \text { for } 1 \mathrm{~dB} \text { gain }}$ compression) 10 MHz to 3.6 GHz 3.6 to 26.5 GHz Tone spacing 100 kHz to 20 MHz Tone spacing > 70 MHz $>26.5 \mathrm{GHz}$		-14 dBm (nominal)

a. Large signals, even at frequencies not shown on the screen, can cause the analyzer to mismeasure on-screen signals because of two-tone gain compression. This specification tells how large an interfering signal must be in order to cause a 1 dB change in an on-screen signal.
b. Total power at the preamp $(\mathrm{dBm})=$ total power at the input $(\mathrm{dBm})-$ input attenuation (dB).

Option P03, P07, P13, P26, P32 and P44-Preamplifier

Description				Specifications		Supplemental Information
20 to 26.5. GHz	x			-150 dBm	-147 dBm	-156 dBm
20 to 26.5 GHz		x		-157 dBm	-155 dBm	-159 dBm
20 to 26.5 GHz			x	-158 dBm	-156 dBm	-160 dBm
26.4 to 32 GHz		x		-155 dBm	-152 dBm	-158 dBm
26.4 to 32 GHz			x	-156 dBm	-153 dBm	-159 dBm
Option P44						
32 to 34 GHz		x		-155 dBm	-152 dBm	-158 dBm
32 to 34 GHz			x	-156 dBm	-153 dBm	-159 dBm
33.9 to 40 GHz		x		-152 dBm	-148 dBm	-154 dBm
33.9 to 40 GHz			x	-153 dBm	-150 dBm	-155 dBm
40 to 44 GHz		x		-148 dBm	-144 dBm	-152 dBm
40 to 44 GHz			x	-149 dBm	-146 dBm	-153 dBm

a. DANL is measured in a 1 kHz RBW and normalized to the narrowest available RBW, because the noise figure does not depend on RBW and 1 kHz measurements are faster.
b. Specifications apply only when the Phase Noise Optimization control is set to "Best Wide-offset Phase Noise."

Description	Specifications	Supplemental Information
Frequency Response - Preamp On (Options P03, P07, P13, P26, P32, P44)		
(Maximum error relative to reference condition (50 MHz , with 10 dB attenuation) Input attenuation 0 dB Swept operation ${ }^{\text {a }}$)		
100 kHz to $3.6 \mathrm{GHz}{ }^{\text {b }}$		$\pm 0.28 \mathrm{~dB}$ (nominal)
3.5 to 8.4 GHz		$\pm 0.67 \mathrm{~dB}$ (nominal)
8.3 to 26.5 GHz		$\pm 0.8 \mathrm{~dB}$ (nominal)
26.4 to 44 GHz		$\pm 0.8 \mathrm{~dB}$ (nominal)

a. For Sweep Type = FFT, add the RF flatness errors of this table to the IF Frequency Response errors. An additional error source, the error in switching between swept and FFT sweep types, is nominally $\pm 0.01 \mathrm{~dB}$ and is included within the "Absolute Amplitude Error" specifications.
b. Electronic attenuator (Option EA3) may not be used with preamp on.

a. X-Series analyzers have a reflection coefficient that is excellently modeled with a Rayleigh probability distribution. Keysight recommends using the methods outlined in Application Note 1449-3 and companion Average Power Sensor Measurement Uncertainty Calculator to compute mismatch uncertainty. Use this 95th percentile VSWR information and the Rayleigh model (Case C or E in the application note) with that process.

Nominal VSWR - Preamp On, Freq Option ≤ 526 [Plot]

VSWR vs. Frequency, 3 Units, Preamp On, 0 dB Atten, Option 503

a. See the IF Prefilter Bandwidth table in the specifications for "Gain Compression" on page 39. When the tone separation condition is met, the effect on TOI of the setting of IF Gain is negligible.
b. Preamp Level = Input Level - Input Attenuation.
c. $\mathrm{TOI}=$ third order intercept. The TOI is given by the preamplifier input tone level (in dBm) minus (distortion/2) where distortion is the relative level of the distortion tones in dBc .

Nominal Dynamic Range at 1 GHz , Preamp On, Freq Option ≤ 526 [Plot]

Nominal Dynamic Range at 1 GHz

——DANL (1 Hz RBW)
——3rd Order Intermodulation

14 Option PFR - Precision Frequency Reference

This chapter contains specifications for the Option PFR, Precision Frequency Reference.

Specifications Affected by Precision Frequency Reference

Specification Name	Information
Precision Frequency Reference	See "Precision Frequency Reference" on page 19 in the core specifications.

Keysight X-Series Signal Analyzer
N9010B
Specification Guide

15 Option YAS - Y-Axis Screen Video Output

This chapter contains specifications for Option YAS, Y-Axis Screen Video Output.

Specifications Affected by Y-Axis Screen Video Output
No other analyzer specifications are affected by the presence or use of this option. New specifications are given in the following pages.

Other Y-Axis Screen Video Output Specifications

General Port Specifications

Description	Specifications	Supplemental Information
Connector	BNC female	Shared with other options $<140 \Omega$ (nominal)
Impedance		

Screen Video

Description	Specifications	Supplemental Information
Amplitude Range		Range of represented signals
Minimum	Bottom of screen	
Maximum	Top of Screen + Overrange	
Overrange		Smaller of 2 dB or 1 division, (nominal)
Output Scaling ${ }^{\text {a }}$	0 to 1.0 V open circuit, representing bottom to top of screen respectively	
Offset		$\pm 1 \%$ of full scale (nominal)
Gain accuracy		$\pm 1 \%$ of output voltage (nominal)
Delay		BaseDelay $^{\text {b }}+$ RBWDelay $^{\text {c }}+0.159 /$ VBW
RF Input to Analog Out		

a. The errors in the output can be described as offset and gain errors. An offset error is a constant error, expressed as a fraction of the full-scale output voltage. The gain error is proportional to the output voltage. Here's an example. The reference level is -10 dBm , the scale is log, and the scale is $5 \mathrm{~dB} /$ division. Therefore, the top of the display is -10 dBm , and the bottom is -60 dBm . Ideally, a -60 dBm signal gives 0 V at the output, and -10 dBm at the input gives 1 V at the output. The maximum error with a -60 dBm input signal is the offset error, $\pm 1 \%$ of full scale, or $\pm 10 \mathrm{mV}$; the gain accuracy does not apply because the output is nominally at 0 V . If the input signal is -20 dBm , the nominal output is 0.8 V . In this case, there is an offset error $(\pm 10 \mathrm{mV})$ plus a gain error $(\pm 1 \%$ of 0.8 V , or $\pm 8 \mathrm{mV}$), for a total error of $\pm 18 \mathrm{mV}$.
b. For instruments with none of Options B40, DP2, or MPB:1.67 $\mu \mathrm{s}$; otherwise with Option FS1 or Option FS2, $114 \mu \mathrm{~s}$; otherwise, $71.7 \mu \mathrm{~s}$.
c. For instruments with none of Options B40, DP2, or MPB: 2.56/RBW; otherwise, with RBW $>100 \mathrm{kHz}$ and either Option FS1 or Option FS2, 5.52/RBW; otherwise 2.56/RBW.

Continuity and Compatibility

Description	Specifications	Supplemental Information
Continuity and Compatibility		
Output Tracks Video Level		
During sweep	Yes	Except band breaks in swept spans
Between sweeps	See supplemental information	Before sweep interruption ${ }^{\text {a }}$ Alignments ${ }^{\mathrm{b}}$ Auto Align = Partial ${ }^{\text {ld }}$
External trigger, no trigger ${ }^{\text {d }}$	Yes	
HP 8566/7/8 Compatibility ${ }^{\text {e }}$		Recorder output labeled "Video"
Continuous output		Alignment differences ${ }^{\dagger}$
Output impedance		Two variants ${ }^{9}$
Gain calibration		LL and UR not supported ${ }^{\text {h }}$
RF Signal to Video Output Delay		See footnote ${ }^{\text {i }}$

a. There is an interruption in the tracking of the video output before each sweep. During this interruption, the video output holds instead of tracks for a time period given by approximately 1.8/RBW.
b. There is an interruption in the tracking of the video output during alignments. During this interruption, the video output holds instead of tracking the envelope of the RF input signal. Alignments may be set to prevent their interrupting video output tracking by setting Auto Align to Off.
c. Setting Auto Align to Off usually results in a warning message soon thereafter. Setting Auto Align to Partial results in many fewer and shorter alignment interruptions, and maintains alignments for a longer interval.
d. If video output interruptions for Partial alignments are unacceptable, setting the analyzer to External Trigger without a trigger present can prevent these from occurring, but will prevent there being any on-screen updating. Video output is always active even if the analyzer is not sweeping.
e. Compatibility with the Keysight 8560 and 8590 families, and the ESA and PSA, is similar in most respects.
f. This section of specifications shows compatibility of the Screen Video function with HP 8566-Series analyzers. Compatibility with ESA and PSA analyzers is similar in most respects.
g. Early HP 8566-family spectrum analyzers had a 140Ω output impedance; later ones had 190Ω. The specification was $<475 \Omega$. The Analog Out port has a 50Ω impedance if the analyzer has Option B40, DP2, or MPB. Otherwise, the Analog Out port impedance is nominally 140Ω.
h. The HP 8566 family had LL (lower left) and UR (upper right) controls that could be used to calibrate the levels from the video output circuit. These controls are not available in this option.
i. The delay between the RF input and video output shown in Delay on page 150 is much higher than the delay in the HP 8566 family spectrum analyzers. The latter has a delay of approximately $0.554 / \mathrm{RBW}+0.159 / \mathrm{VBW}$.

Specification Guide

16 Analog Demodulation Measurement Application

This chapter contains specifications for the N9063EM0E Analog Demodulation Measurement Application.

Additional Definitions and Requirements

The warranted specifications shown apply to Band 0 operation (up to 3.6 GHz), unless otherwise noted, for all analyzers. The application functions, with nominal (non-warranted) performance, at any frequency within the frequency range set by the analyzer frequency options (see table). In practice, the lowest and highest frequency of operation may be further limited by AC coupling; by "folding" near 0 Hz ; by DC feedthrough; and by Channel BW needed. Phase noise and residual FM generally increase in higher bands.

Warranted specifications shown apply when Channel BW $\leq 1 \mathrm{MHz}$, unless otherwise noted. (Channel BW is an important user-settable control.) The application functions, with nominal (non-warranted) performance, at any Channel BW up to the analyzer's bandwidth options (see table). The Channel BW required for a measurement depends on: the type of modulation (AM, FM, PM); the rate of modulation; the modulation depth or deviation; and the spectral contents (e.g. harmonics) of the modulating tone. Many specifications require that the Channel BW control is optimized: neither too narrow nor too wide.

Many warranted specifications (rate, distortion) apply only in the case of a single, sinusoidal modulating tone without excessive harmonics, non-harmonics, spurs, or noise. Harmonics, which are included in most distortion results, are counted up to the 10th harmonic of the dominant tone, or as limited by SINAD BW or post-demod filters. Note that SINAD will include Carrier Frequency Error (the "DC term") in FM by default; it can be eliminated with a HPF or Auto Carrier Frequency feature.

Warranted specifications apply to results of the software application; the hardware demodulator driving the Analog Out line is described separately.

Warranted specifications apply over an operating temperature range of 20 to $30^{\circ} \mathrm{C}$; and mixer level -24 to -18 dBm (mixer level = Input power level Attenuation). Additional conditions are listed at the beginning of the FM, AM, and PM sections, in specification tables, or in footnotes.

See "Definitions of terms used in this chapter" on page 154.

Definitions of Let $P_{\text {signal }}(S)=$ Power of the signal; $P_{\text {noise }}(N)=$ Power of the noise; $P_{\text {distortion }}$ terms used in this chapter
$(\mathrm{D})=$ Power of the harmonic distortion $\left(\mathrm{P}_{\mathrm{H} 2}+\mathrm{P}_{\mathrm{H} 3}+\ldots+\mathrm{P}_{\mathrm{Hi}}\right.$ where Hi is the $\mathrm{i}^{\text {th }}$ harmonic up to $\mathrm{i}=10$);
$P_{\text {total }}=$ Total power of the signal, noise and distortion components.

Term	Short Hand	Definition
Distortion	N+D	$\left(P_{\text {total }}-P_{\text {signal }}\right)^{1 / 2} /\left(P_{\text {total }}\right)^{1 / 2} \times 100 \%$
	$S+N+D$	
THD	$\frac{D}{S}$	$\left(P_{\text {distortion }}\right)^{1 / 2} /\left(P_{\text {signal }}\right)^{1 / 2} \times 100 \%$ where THD is the total harmonic distortion
SINAD	$\frac{S+N+D}{N+D}$	$20 \times \log 10\left[1 /\left(\mathrm{P}_{\text {distortion }}\right)\right]^{1 / 2}=20 \times \log 10\left[\left(\mathrm{P}_{\text {tota }}\right)^{1 / 2} /\left(\mathrm{P}_{\text {total }}-\mathrm{P}_{\text {signal }}\right)^{1 / 2}\right]$ where SINAD is Signal-to-Noise-And-Distortion ratio
SNR	$\frac{S+N+D}{N}$	$P_{\text {signal }} / P_{\text {noise }} \sim\left(P_{\text {signal }}+P_{\text {noise }}+P_{\text {distortion }}\right) / P_{\text {noise }}$ where SNR is the Signal-to-Noise Ratio. The approximation is per the implementations defined with the HP/Agilent/Keysight 8903A.

NOTE

$P_{\text {noise }}$ must be limited to the bandwidth of the applied filters.
The harmonic sequence is limited to the $10^{\text {th }}$ harmonic unless otherwise indicated.
$P_{\text {noise }}$ includes all spectral energy that is not near harmonic frequencies, such as spurious signals, power line interference, etc.

RF Carrier Frequency and Bandwidth

Description	Specifications	Supplemental Information
Carrier Frequency		
Maximum Frequency Option 503	3.6 GHz	$\mathrm{RF} / \mu \mathrm{W}$ frequency option
Option 507	7 GHz	$\mathrm{RF} / \mu \mathrm{W}$ frequency option
Option 513	13.6 GHz	$\mathrm{RF} / \mu \mathrm{W}$ frequency option
Option 526	26.5 GHz	$\mathrm{RF} / \mu \mathrm{W}$ frequency option
Option 532	32 GHz	mmW frequency option
Option 544	44 GHz	mmW frequency option
Minimum Frequency		
AC Coupled ${ }^{\text {a }}$ DC Coupled	$\begin{aligned} & 10 \mathrm{MHz} \\ & 9 \mathrm{kHz} \end{aligned}$	In practice, limited by the need to keep modulation sidebands from folding, and by the interference from LO feedthrough.
Maximum Information Bandwidth (Info BW) ${ }^{\text {b }}$		
Option B25 (Standard)	25 MHz	
Option B40	40 MHz	
Capture Memory	3.6 MSa	Each sample is an I/Q pair.
(Sample Rate \times Acq Time)		See note ${ }^{\text {c }}$

a. AC Coupled is only applicable to frequency Options 503, 507, 513, and 526.
b. The maximum Info BW indicates the maximum operational BW, which depends on the analysis BW option equipped with the analyzer. However, the demodulation specifications only apply to the Channel BW indicated in the following sections.
c. Sample rate is set indirectly by the user, with the Span and Channel BW controls (viewed in RF Spectrum). The Info BW (also called Demodulation BW) is based on the larger of the two; specifically, Info BW = max [Span, Channel BW]. The sample interval is $1 /(1.25 \times$ Info BW); e.g. if Info BW $=200 \mathrm{kHz}$, then sample interval is 4 us. The sample rate is $1.25 \times$ Info BW, or $1.25 \times \max$ [Span, Channel BW]. These values are approximate, to estimate memory usage. Exact values can be queried via SCPI while the application is running. Acq Time (acquisition time) is set by the largest of 4 controls:
Acq Time $=\max [2.0 /($ RF RBW), $2.0 /(A F R B W), 2.2 \times$ Demod Wfm Sweep Time, Demod Time]

Post-Demodulation

Description	Specifications	Supplemental Information
Maximum Audio Frequency Span		1/2 \times Channel BW
Filters		
High Pass	20 Hz	2-Pole Butterworth
	50 Hz	2-Pole Butterworth
	300 Hz	2-Pole Butterworth
	400 Hz	10-Pole Butterworth; used to attenuate sub-audible signaling tones
Low Pass	300 Hz	5-Pole Butterworth
	3 kHz	5-Pole Butterworth
	15 kHz	5-Pole Butterworth
	30 kHz	3-Pole Butterworth
	80 kHz	3-Pole Butterworth
	300 kHz	3-Pole Butterworth
	100 kHz (>20 kHz Bessel)	9-Pole Bessel; provides linear phase response to reduce distortion of square-wave modulation, such as FSK or BPSK
	Manual	Manually tuned by user, range 300 Hz to 20 MHz ; 5-Pole Butterworth; for use with high modulation rates
Band Pass	CCITT	ITU-T 0.41, or ITU-T P.53; known as "psophometric"
	A-Weighted	ANSI IEC rev 179
	C-Weighted	Roughly equivalent to 50 Hz HPF with 10 kHz LPF
	C-Message	IEEE 743, or BSTM 41004; similar in shape to CCITT, sometimes called "psophometric"
	CCIR-1k Weighted ${ }^{\text {a }}$	ITU-R 468, CCIR 468-2 Weighted, or DIN 45405
	CCIR-2k Weighted ${ }^{\text {a }}$	ITU 468 ARM or CCIR/ARM (Average Responding Meter), commonly referred to as "Dolby" filter
	CCIR Unweighted	ITU-R 468 Unweighted ${ }^{\text {a }}$

Description	Specifications	Supplemental Information
De-emphasis (FM only)	25μ s	Equivalent to 1-pole LPF at 6366 Hz
	50μ s	Equivalent to 1-pole LPF at 3183 Hz ; broadcast FM for most of world
	$75 \mu \mathrm{~s}$	Equivalent to 1-pole LPF at 2122 Hz ; broadcast FM for U.S.
	$750 \mu \mathrm{~s}$	Equivalent to 1-pole LPF at 212 Hz ; 2-way mobile FM radio.
SINAD Notch ${ }^{\text {b }}$		Tuned automatically by application to highest AF response, for use in SINAD, SNR, and Distortion calculations; complies with TI-603 and IT-0.132; stop bandwidth is $\pm 13 \%$ of tone frequency.
Signaling Notch ${ }^{\text {b }}$		FM only; manually tuned by user, range 50 to 300 Hz ; used to eliminate CTCSS or CDCSS signaling tone; complies with TIA-603 and ITU-0.132; stop bandwidth is $\pm 13 \%$ of tone frequency.

a. ITU standards specify that CCIR-1 k Weighted and CCIR Unweighted filters use Quasi-Peak-Detection (QPD). However, the implementation in N9063C is based on true-RMS detection, scaled to respond as QPD. The approximation is valid when measuring amplitude of Gaussian noise, or SINAD of a single continuous sine tone (e.g. 1 kHz), with harmonics, combined with Gaussian noise. The results may not be consistent with QPD if the input signal is bursty, clicky, or impulsive; or contains non-harmonically related tones (multi-tone, intermods, spurs) above the noise level. Use the AF Spectrum trace to validate these assumptions. Consider using Agilent/Keysight U8903A Audio Analyzer if true QPD is required.
b. The Signaling Notch filter does not visibly affect the AF Spectrum trace.

Frequency Modulation

Conditions required to meet specification

- Peak deviation ${ }^{1}: \geq 200 \mathrm{~Hz}$ to 400 kHz
- Modulation index (ModIndex) = PeakDeviation/Rate = Beta: 0.2 to 2000
- Channel BW: $\leq 1 \mathrm{MHz}$
- Rate: 20 Hz to 50 kHz
- SINAD bandwidth: (Channel BW) / 2
- Single tone - sinusoid modulation
- Center Frequency (CF): 2 MHz to 3.5 GHz , DC coupled for CF $<20 \mathrm{MHz}$

Description	Specifications	Supplemental Information
FM Deviation Accuracy ${ }^{\text {abc }}$		$\pm(0.4 \% \times$ (Deviation + Rate) (nominal)
FM Rate Accuracy ${ }^{\text {d }}$		$\pm(0.01 \% \times$ Reading) (nominal)
Carrier Frequency Error		$\pm 0.2 \mathrm{~Hz}$ (nominal)
(ModIndex $\leq 100)$		Same as Absolute Amplitude Accuracy at all frequencies (nominal).
Carrier Power		

a. This specification applies to the result labeled "(Pk-Pk)/2".
b. For optimum measurement, ensure that the Channel BW is set wide enough to capture the significant RF energy. Setting the Channel BW too wide will result in measurement errors.
c. Reading is a measured frequency peak deviation in Hz , and rate is a modulation rate in Hz .
d. Reading is a measured modulation rate in Hz .

1. Peak deviation, modulation index ("beta"), and modulation rate are related by PeakDeviation $=$ Modlndex \times Rate. Each of these has an allowable range, but all conditions must be satisfied at the same time. For example,
PeakDeviation $=80 \mathrm{kHz}$ at Rate $=20 \mathrm{~Hz}$ is not allowed, since ModIndex $=$ PeakDeviation/Rate would be 4000, but Modlndex is limited to 2000. In addition, all significant sidebands must be contained in Channel BW. For FM, an approximate rule-of-thumb is $2 \times$ [PeakDeviation + Rate] < Channel BW; this implies that PeakDeviation might be large if the Rate is small, but both cannot be large at the same time.

Frequency Modulation

Description	Specifications	Supplemental Information
Post-Demod Distortion Residual ${ }^{\text {a }}$		
Distortion (SINAD) ${ }^{\text {b }}$		0.30\% (nominal)
THD		0.35\% / (Modlndex) ${ }^{1 / 2}$ (nominal)
Post-Demod Distortion Accuracy (Rate: 1 to 10 kHz , ModIndex: 0.2 to 100)		
Distortion (SINAD) ${ }^{\text {b }}$		$\pm(2 \% \times \text { Reading + DistResidual })^{\text {c }}$
THD		$\pm(2 \% \times \text { Reading + DistResidual })^{\text {c }}$
Distortion Measurement Range		
Distortion (SINAD) ${ }^{\text {b }}$		Residual to 100\% (nominal)
THD ${ }^{\text {d }}$		Residual to 100\% (nominal)
AM Rejection ${ }^{\text {e }}$ (50 Hz HPF, 3 kHz LPF, 15 kHz Channel BW)		Applied AM signal Rate $=1 \mathrm{kHz}$, Depth $=50 \%$ 4.0 Hz FM peak
Residual FM^{f}		
(50 Hz HPF, 3 kHz LPF, any Channel BW)		4.0 Hz rms (nominal)
(50 Hz HPF, 3 kHz LPF, 15 kHz Channel BW)		2.0 Hz rms (nominal)
Hum \& Noise		
(50 Hz HPF, 3 kHz LPF, 15 kHz Channel BW, $750 \mu \mathrm{~S}$ de-emph; relative to 3 kHz pk deviation)		72 dB (nominal)

a. For optimum measurement, ensure that the Channel BW is set wide enough to capture the significant RF energy. Setting the Channel BW too wide will result in measurement errors.
b. SINAD [dB] can be derived by $20 \times \log 10(1 /$ Distortion).
c. The DistResidual term of the Distortion Accuracy specification can increase the reading, but cannot reduce the reading.
d. The measurement includes at most the 10th harmonic.
e. AM rejection describes the instrument's FM reading for an input that is strongly AMed (with no FM); this specification includes contributions from residual FM.
f. Residual FM describes the instrument's FM reading for an input that has no FM and no AM; this specification includes contributions from FM deviation accuracy.

Amplitude Modulation

Conditions required to meet specification

- Depth: 1\% to 99\%
- Channel BW: $\leq 1 \mathrm{MHz}$
- Rate: 50 Hz to 100 kHz
- SINAD bandwidth: (Channel BW) / 2
- Single tone - sinusoid modulation
- Center Frequency (CF): 2 MHz to 3.5 GHz , DC coupled for CF $<20 \mathrm{MHz}$

Description	Specifications	Supplemental Information
AM Depth Accuracy ${ }^{\text {abc }}$		$\pm(0.2 \%+0.002 \times$ Reading) (vo $\mu \mathrm{v} \boldsymbol{\alpha} \alpha \lambda)$
AM Rate Accuracy		
(Rate: 1 kHz to 1 MHz)		$\pm 0.05 \mathrm{~Hz}$ (nominal)
Carrier Power		Same as "Absolute Amplitude Accuracy" on page 33 at all frequencies (nominal)

a. This specification applies to the result labeled "(Pk-Pk)/2".
b. For optimum measurement, ensure that the channel bandwidth is set wide enough to capture the significant RF energy. Setting the channel bandwidth too wide will result in measurement errors.
c. Reading is a measured modulation depth in $\%$.

Amplitude Modulation

Description	Specifications	Supplemental Information
Post-Demod Distortion Residual $^{\text {a }}$		
Distortion (SINAD)		
THD		0.3% (nominal)
Post-Demod Distortion Accuracy		0.16% (nominal)
(Rate: 1 to $10 \mathrm{kHz},$Depth: 5 to 90%)		
Distortion (SINAD)		
THD		$\pm(1 \% \times$ Reading + Residual) (nominal)
Distortion Measurement Range		$\pm(1 \% \times$ Reading + Residual) (nominal)
Distortion (SINAD)		Residual to 100\% (nominal)
THD		Residual to 100\% (nominal)
FM Rejection ${ }^{\text {c }}$		0.5% (nominal)
Residual AM ${ }^{\text {d }}$		0.2% (nominal)

a. Channel BW is set to 15 times of Rate (Rate $\leq 50 \mathrm{kHz}$) or 10 times the Rate ($50 \mathrm{kHz}<$ Rate $\leq 100 \mathrm{\kappa H} \zeta$).
b. SINAD [dB] can be derived by $20 \times \log 10(1 /$ Distortion).
c. FM rejection describes the instrument's AM reading for an input that is strongly FMed (and no AM); this specification includes contributions from residual AM.
d. Residual AM describes the instrument's AM reading for an input that has no AM and no FM; this specification includes contributions from AM depth accuracy.

Phase Modulation

Conditions required to meet specification

- Peak deviation ${ }^{1}$: 0.2 to 100 rad
- Channel BW: $\leq 1 \mathrm{MHz}$
- Rate: 50 Hz to 50 kHz
- SINAD bandwidth: (Channel BW)/2
- Single tone - sinusoid modulation
- Center Frequency (CF): 2 MHz to 3.5 GHz , DC coupled for CF < 20 MHz

Description	Specifications	Supplemental Information
PM Deviation Accuracy ${ }^{\text {ab }}$		
(Rate: 1 to 20 kHz		
Deviation: 0.2 to 6 rad)		$\pm(1 \mathrm{rad} \times(0.005+$ (Rate $/ 1 \mathrm{MHz}))$
PM Rate Accuracy		
(Rate: 1 to 10 kHz)		$\pm 0.2 \mathrm{~Hz}$ (nominal)
Carrier Frequency Error ${ }^{\text {b }}$		$\pm 0.02 \mathrm{~Hz}$ (nominal)
Carrier Power		Same as "Absolute Amplitude
		Accuracy" on page 33 at all
frequencies (nominal).		

a. This specification applies to the result labeled "(Pk-Pk)/2".
b. For optimum measurement, ensure that the channel bandwidth is set wide enough to capture the significant RF energy. Setting the channel bandwidth too wide will result in measurement errors.

1. PeakDeviation (for phase, in rads) and Rate are jointly limited to fit within the Channel BW. For PM, an approximate rule-of-thumb is $2 \times[$ PeakDeviation +1$] \times$ Rate < Channel BW, such that most of the sideband energy is within the Channel BW.

Phase Modulation

Description	Specifications	Supplemental Information
Post-Demod Distortion Residual $^{\text {a }}$		
Distortion (SINAD) ${ }^{\text {b }}$		0.8% (nominal)
THD		0.1% (nominal)
Post-Demod Distortion Accuracy ${ }^{\text {c }}$		
(Rate: 1 to 10 kHz, Deviation: 0.2 to 100 rad) Distortion (SINAD) THD		$\pm(2 \% \times$ Reading + DistResidual)
Distortion Measurement Range		Residual to 100\% (nominal)
Distortion (SINAD)		Residual to 100\% (nominal)
THD		4 mrad peak (nominal)
AM Rejection ${ }^{\text {d }}$		4 mrad rms (nominal)
Residual PM ${ }^{\text {e }}$		

a. For optimum measurement, ensure that the Channel BW is set wide enough to capture the significant RF energy. Setting the Channel BW too wide will result in measurement errors.
b. SINAD $[\mathrm{dB}]$ can be derived by $20 \times \log 10(1 /$ Distortion) .
c. Reading is the measured peak deviation in radians.
d. AM rejection describes the instrument's PM reading for an input that is strongly AMed (with no PM); this specification includes contributions from residual PM.
e. Residual PM describes the instrument's PM reading for an input that has no PM and no AM; this specification includes contributions from PM deviation accuracy.

Analog Out

The "Analog Out" connector (BNC) is located at the analyzer's rear panel. It is a multi-purpose output, whose function depends on options and operating mode (active application). When the N9063C Analog Demod application is active, this output carries a voltage waveform reconstructed by a real-time hardware demodulator (designed to drive the "Demod to Speaker" function for listening). The processing path and algorithms for this output are entirely separate from those of the N9063C application itself; the Analog Out waveform is not necessarily identical the application's Demod Waveform.
Condition of "Open Circuit" is assumed for all voltage terms such as "Output range".

Description	Specifications	Supplemental Information	
PM scaling			
PM scaling factor		$(1 / 2 \pi) \mathrm{V} /$ rad (nominal)	$(1 / \pi) \mathrm{V} /$ rad (nominal)
PM scaling tolerance		$\pm 10 \%$ (nominal)	$\pm 10 \%$ (nominal)
PM offset		0.5 V corresponds to mean phase	0 V corresponds to mean phase

a. For AM, the output is the "RF envelope" waveform. For FM, the output is proportional to frequency deviation; note that Carrier Frequency Error (a constant frequency offset) is included as a deviation from the analyzer's tuned center frequency, unless a HPF is used. For PM, the output is proportional the phase-deviation; note that PM is limited to excursions of \pm pi, and requires a HPF on to enable a phase-ramp-tracking circuit.
Most controls in the N9063C application do not affect Analog Out. The few that do are:
-choice of AM, FM, or PM (FM Stereo not supported)

- tuned Center Freq
-Channel BW (affects IF filter, sample rate, and FM scaling)
-some post-demod filters and de-emphasis (the hardware demodulator has limited filter choices;
it will attempt to inherit the filter settings in the app, but with constraints and approximations)
These nominal characteristics apply for software revision A.14.5x.xx and above. Prior software revisions are functionally similar, but may have instabilities and discontinuities that make this output unusable for many applications.
b. For AM, the reference "unmodulated" carrier level is determined by a single "invisible" power measurement, of 2 ms duration, taken at setup. "Setup" occurs whenever a core parameter is changed, such as Center Frequency, modulation type, Demod Time, etc. Ideally, the RF input signal should be un-modulated at this time. However, if the AM modulating (audio) waveform is evenly periodic in 2 ms (i.e. multiples of 500 Hz , such as 1 kHz), the reference power measurement can be made with modulation applied. Likewise, if the AM modulating period is very short compared to 2 ms (e.g. >5000 Hz), the reference power measurement error will be small.

FM Stereo/Radio Data System (RDS) Measurements ${ }^{1}$

Description	Specifications	Supplemental Information
FM Stereo Modulation Analysis Measurements		
MXP view	RF Spectrum, AF Spectrum, Demod Waveform, FM Deviation (Hz) (Peak +, Peak-, (Pk-Pk)/2, RMS), Carrier Power (dBm), Carrier Frequency Error (Hz), SINAD (dB), Distortion (\% or dB)	MPX consists of FM signal multiplexing with the mono signal ($L+R$), stereo signal (L-R), pilot signal (at 19 kHz) and optional RDS signal (at 57 kHz). - SINAD MPX BW, default 53 kHz , range from 1 kHz to 58 kHz. - Reference Deviation, default 75 kHz, range from 15 kHz to 150 kHz.
Mono (L+R) / Stereo (L-R) view	Demod Waveform, AF Spectrum, Carrier Power (dBm), Carrier Frequency Error (Hz), Modulation Rate	Mono Signal is Left + Right Stereo Signal is Left - Right
Left / Right view	Demod Waveform, AF Spectrum, Carrier Power (dBm), Carrier Frequency Error (Hz), Modulation Rate, SINAD (dB), Distortion (\% or dB), THD (\% or dB)	Post-demod settings: - Highpass filter: 20, 50, or 300 Hz - Lowpass filter: $300 \mathrm{~Hz}, 3,15$, 80 , or 300 kHz - Bandpass filter: A-Weighted, CCITT - De-Emphasis: 25, 50, 75 and $750 \mu \mathrm{~s}$
RDS / RBDS Decoding Results view	BLER basic tuning and switching information, radio text, program item number and slow labeling codes, clock time and date	BLER Block Count default 1E+8, range from 1 to $1 \mathrm{E}+16$
Numeric Result view	MPX, Mono, Stereo, Left, Right, Pilot and RDS with FM Deviation result (Hz) of Peak+, (Pk-Pk/2, RMS, Modulation Rate (Hz), SINAD (\% or dB), THD (\% or dB), Left to Right (dB), Mono to Stereo (dB), RF Carrier Power (dBm), RF Carrier Frequency Error (Hz), 38 kHz Carrier Phase Error (deg)	

1. Requires Option N9063C-3FP, which in turn requires that the instrument also has Option N9063C-2FP installed and licensed.

Description	Specifications	Supplemental Information
FM Stereo Modulation Analysis Measurements		FM Stereo with 67.5 kHz audio deviation at 1 kHz modulation rate plus 6.75 kHz pilot deviation.
SINAD (with A-Weighted filter) SINAD (with CCITT filter)	61 dB (nominal)	
Left to Right Ratio (with A-Weighted filter) Left to Right Ratio (with CCITT filter)	68 dB (nominal)	

17 Bluetooth Measurement Application

This chapter contains specifications for N9081EM0E-2FP Bluetooth measurement application. Three standards, Bluetooth 2.1-basic rate, Bluetooth 2.1-EDR and Bluetooth 2.1-low energy are supported.

Three power classes, class 1 , class 2 and class 3 are supported. Specifications for the three standards above are provided separately.

Additional Definitions and
Requirements
Because digital communications signals are noise-like, all measurements will have variations. The specifications apply only with adequate averaging to remove those variations. The specifications apply in the frequency range documented in In-Band Frequency Range.
The specifications apply in the frequency range documented in In-Band Frequency Range.
The specifications for this chapter apply only to instruments with Frequency Option 503, 507, 513 or 526. For Instruments with higher frequency options, the performance is nominal only and not subject to any warranted specifications.

Basic Rate Measurements

Description	Specifications	Supplemental Information
Output Power		This measurement is a Transmit Analysis measurement and supports average and peak power in conformance with Bluetooth RF test specification 2.1.E.-..5.1.3.
Packet Type		DH1, DH3, DH5, HV3
Payload		PRBS9, BSO0, BSFF, BS0F, BS55
Synchronization		RF Burst or Preamble
Trigger		External, RF Burst, Periodic Timer, Free Run, Video
Supported measurements		Average power, peak power
Range ${ }^{\text {a }}$		+30 dBm to -70 dBm
Absolute Power Accuracy ${ }^{\text {b }}$ (20 to $30^{\circ} \mathrm{C}$, Atten $=10 \mathrm{~dB}$)		$\pm 0.29 \mathrm{~dB}$ (95th percentile)
Measurement floor		-70 dBm (nominal)

a. When the input signal level is lower than -40 dBm , the analyzer's preamp should be turned on and the attenuator set to 0 dB .
b. Absolute power accuracy includes all error sources for in-band signals except mismatch errors and repeatability due to incomplete averaging. It applies when the mixer level is high enough that measurement floor contribution is negligible.

Description	Specifications	Supplemental Information
Modulation Characteristics		This measurement is a Transmit Analysis measurement and supports average and peak power in conformance with Bluetooth RF test specification 2.1.E.0.5.1.9.
Packet Type		DH1, DH3, DH5, HV3
Payload		BSOF, BS55
Synchronization		Preamble
Trigger		External, RF Burst, Periodic Timer, Free Run, Video
Supported measurements		Min/max $\Delta f 1$ avg $\min \Delta f 2 \max (\mathrm{kHz})$ total $\Delta f 2 \max >\Delta f 2$ max lower limit (\%) min of min $\Delta f 2 a v g / m a x \Delta f a v g$ pseudo frequency deviation ($\Delta \mathrm{f} 1$ and $\Delta f 2$)
RF input level range ${ }^{\text {a }}$		+30 dBm to -70 dBm
Deviation range		$\pm 250 \mathrm{kHz}$ (nominal)
Deviation resolution		100 Hz (nominal)
Measurement Accuracy ${ }^{\text {b }}$		$\pm 100 \mathrm{~Hz}+\mathrm{tfa}^{\mathrm{c}}$ ((${ }^{\text {aminal }}$

a. When the input signal level is lower than -40 dBm , the analyzer's preamp should be turned on and the attenuator set to 0 dB .
b. Example, using 1 ppm as frequency reference accuracy of the analyzer, at frequency of 2.402 GHz , frequency accuracy would be in the range of $\pm(2.402 \mathrm{GHz} \times 1 \mathrm{ppm}) \mathrm{Hz} \pm 100 \mathrm{~Hz}= \pm 2402 \mathrm{~Hz} \pm 100 \mathrm{~Hz}= \pm 2502 \mathrm{~Hz}$.
c. $\mathrm{tfa}=$ transmitter frequency \times frequency reference accuracy.

Description	Specifications	Supplemental Information
Initial Carrier Frequency Tolerance		This measurement is a Transmit Analysis measurement and supports average and peak power in conformance with Bluetooth RF test specification 2.1.E.0.5.1.10.
Packet Type		DH1, DH3, DH5, HV3
Payload		PRBS9, BS00, BSFF, BS0F, BS55
Synchronization		Preamble
Trigger		External, RF Burst, Periodic Timer, Free Run, Video
RF input level range ${ }^{\text {a }}$		+30 dBm to -70 dBm
Measurement range		Nominal channel freq $\pm 100 \mathrm{kHz}$ (nominal)
Measurement Accuracy ${ }^{\text {b }}$		$\pm 100 \mathrm{~Hz}+\mathrm{tfa}^{\mathrm{C}}$ (nominal)

a. When the input signal level is lower than -40 dBm , the analyzer's preamp should be turned on and the attenuator set to 0 dB .
b. Example, using 1 ppm as frequency reference accuracy of the analyzer, at frequency of 2.402 GHz , frequency accuracy would be in the range of $\pm(2.402 \mathrm{GHz} \times 1 \mathrm{ppm}) \mathrm{Hz} \pm 100 \mathrm{~Hz}= \pm 2402 \mathrm{~Hz} \pm 100 \mathrm{~Hz}= \pm 2502 \mathrm{~Hz}$.
c. $\mathrm{tfa}=$ transmitter frequency \times frequency reference accuracy.

Description	Specifications	Supplemental Information
Carrier Frequency Drift		This measurement is a Transmit Analysis measurement and supports average and peak power in conformance with Bluetooth RF test specification 2.1.E.0.5.1.11.
Packet Type		DH1, DH3, DH5, HV3 PRBS9, BS00, BSFF, BSOF, BS55
Payload		Preamble External, RF Burst, Periodic Timer, Free Run, Video
Trigger	+30 dBm to -70 dBm	
RF input level range ${ }^{\text {a }}$		$\pm 100 \mathrm{kHz}$ (nominal)
Measurement range	$\pm 100 \mathrm{~Hz}+$ tfac (nominal)	
Measurement Accuracy ${ }^{\text {b }}$		

a. When the input signal level is lower than -40 dBm , the analyzer's preamp should be turned on and the attenuator set to 0 dB .
b. Example, using 1 ppm as frequency reference accuracy of the analyzer, at frequency of 2.402 GHz , frequency accuracy would be in the range of $\pm(2.402 \mathrm{GHz} \times 1 \mathrm{ppm}) \mathrm{Hz} \pm 100 \mathrm{~Hz}= \pm 2402 \mathrm{~Hz} \pm 100 \mathrm{~Hz}= \pm 2502 \mathrm{~Hz}$.
c. $\mathrm{tfa}=$ transmitter frequency \times frequency reference accuracy.

Description	Specifications	Supplemental Information
Adjacent Channel Power		This measurement is an Adjacent Channel Power measurement and is in conformance with Bluetooth RF test specification 2.1.E.0.5.1.8. DH1, DH3, DH5, HV3
Packet Type		PRBS9, BS00, BSFF, BSOF, BS55
Payload		None Synchronization External, RF Burst, Periodic Timer, Free Run, Video
Triger	Dominated by the variance of measurements	

a. The accuracy is for absolute power measured at 2.0 MHz offset and other offsets (offset $=\mathrm{K} \mathrm{MHz}$, $K=3, \ldots, 78)$.
b. The measurement at these offsets is usually the measurement of noise-like signals and therefore has considerable variance. For example, with 100 ms sweeping time, the standard deviation of the measurement is about 0.5 dB. In comparison, the computed uncertainties of the measurement for the case with CW interference is only \pm 0.29 dB .

Low Energy Measurements

Description	Specifications	Supplemental Information
Output Power		This measurement is a Transmit Analysis measurement and supports average and peak power in conformance with Bluetooth RF test specification LE.RF-PHY.TS/0.7d2.6.2.1.
Packet Type		Reference type PRBS9, BSO0, BSFF, BSOF, BS55
Payload		RF Burst or Preamble
Synchronization		External, RF Burst, Periodic Timer, Free Run, Video
Trigger	Average Power, Peak Power	
Supported measurements	+30 dBm to -70 dBm	
Range ${ }^{\text {a }}$		$\pm 0.29 \mathrm{~dB}$ (95th percentile)
Absolute Power Accuracy		
(20 to $30^{\circ} \mathrm{C}$, Atten $=10 \mathrm{~dB}$)		-70 dBm (nominal)
Measurement floor		

a. When the input signal level is lower than -40 dBm , the analyzer's preamp should be turned on and the attenuator set to 0 dB .
b. Absolute power accuracy includes all error sources for in-band signals except mismatch errors and repeatability due to incomplete averaging. It applies when the mixer level is high enough that measurement floor contribution is negligible.

Description	Specifications	Supplemental Information
Modulation Characteristics		This measurement is a Transmit Analysis measurement and is in conformance with Bluetooth RF test specification LE.RF-PHY.TS/0.7d2.6.2.3.
Packet Type		Reference type
Payload		BSOF, BS55
Synchronization		Preamble
Trigger		External, RF Burst, Periodic Timer, Free Run, Video
Supported measurements		Min/max $\Delta f 1$ avg $\min \Delta f 2 \max (\mathrm{kHz})$ total $\Delta f 2 \max >\Delta f 2 \max$ lower limit (\%) min of min $\Delta f 2 a v g / \max \Delta f 1$ avg pseudo frequency deviation ($\Delta f 1$ and $\Delta f 2$)
$R F$ input level range ${ }^{\text {a }}$		+30 dBm to -70 dBm
Deviation range		$\pm 250 \mathrm{kHz}$ (nominal)
Deviation resolution		100 Hz (nominal)
Measurement Accuracy ${ }^{\text {b }}$		$\pm 100 \mathrm{~Hz}+\mathrm{tfa}^{\text {c }}$ ((${ }^{\text {aminal }}$)

a. When the input signal level is lower than -40 dBm , the analyzer's preamp should be turned on and the attenuator set to 0 dB .
b. Example, using 1 ppm as frequency reference accuracy of the analyzer, at frequency of 2.402 GHz , frequency accuracy would be in the range of $\pm(2.402 \mathrm{GHz} \times 1 \mathrm{ppm}) \mathrm{Hz} \pm 100 \mathrm{~Hz}= \pm 2402 \mathrm{~Hz} \pm 100 \mathrm{~Hz}= \pm 2502 \mathrm{~Hz}$.
c. $\mathrm{tfa}=$ transmitter frequency \times frequency reference accuracy.

Description	Specifications	Supplemental Information
Initial Carrier Frequency Tolerance		This measurement is a Transmit Analysis measurement and is in conformance with Bluetooth RF test specification LE.RF-PHY.TS/0.7d2.6.2.4.
Packet Type		Reference type
Payload		PRBS9, BSO0, BSFF, BS0F, BS55
Synchronization		Preamble
Trigger		External, RF Burst, Periodic Timer, Free Run, Video
RF input level range ${ }^{\text {a }}$		+30 dBm to -70 dBm
Measurement range		Nominal channel freq $\pm 100 \mathrm{kHz}$ (nominal)
Measurement Accuracy ${ }^{\text {b }}$		$\pm 100 \mathrm{~Hz}+\mathrm{tfa}^{\mathrm{c}}$ (nominal)

a. When the input signal level is lower than -40 dBm , the analyzer's preamp should be turned on and the attenuator set to 0 dB .
b. Example, using 1 ppm as frequency reference accuracy of the analyzer, at frequency of 2.402 GHz , frequency accuracy would be in the range of $\pm(2.402 \mathrm{GHz} \times 1 \mathrm{ppm}) \mathrm{Hz} \pm 100 \mathrm{~Hz}= \pm 2402 \mathrm{~Hz} \pm 100 \mathrm{~Hz}= \pm 2502 \mathrm{~Hz}$.
c. $\mathrm{tfa}=$ transmitter frequency \times frequency reference accuracy.

Description	Specifications	Supplemental Information
Carrier Frequency Drift		This measurement is a Transmit Analysis measurement and is in conformance with Bluetooth RF test specification LE.RF-PHY.TS/0.7d2.6.2.4.
Packet Type		Reference type
Payload		PRBS9, BS00, BSFF, BSOF, BS55
Synchronization		Preamble
Trigger		External, RF Burst, Periodic Timer, Free Run, Video
RF input level range ${ }^{\text {a }}$		+30 dBm to -70 dBm
Measurement range		$\pm 100 \mathrm{kHz}$ (nominal)
Measurement Accuracy ${ }^{\text {b }}$		$\pm 100 \mathrm{~Hz}+\mathrm{tfa}^{\mathrm{c}}$ ((${ }^{\text {aminal }}$)

a. When the input signal level is lower than -40 dBm , the analyzer's preamp should be turned on and the attenuator set to 0 dB .
b. Example, using 1 ppm as frequency reference accuracy of the analyzer, at frequency of 2.402 GHz , frequency accuracy would be in the range of $\pm(2.402 \mathrm{GHz} \times 1 \mathrm{ppm}) \mathrm{Hz} \pm 100 \mathrm{~Hz}= \pm 2402 \mathrm{~Hz} \pm 100 \mathrm{~Hz}= \pm 2502 \mathrm{~Hz}$.
c. tfa $=$ transmitter frequency \times frequency reference accuracy.
\(\left.$$
\begin{array}{|l|l|l|}\hline \text { Description } & \text { Specifications } & \text { Supplemental Information } \\
\hline \text { LE In-band Emission } & & \begin{array}{l}\text { This measurement is an LE in-band } \\
\text { emission measurement and is in } \\
\text { conformance with Bluetooth RF test } \\
\text { specification } \\
\text { LE.RF-PHY.TS/0.7d2.6.2.2. }\end{array} \\
\text { Packet Type } & & \begin{array}{l}\text { Reference type } \\
\text { PRBS9, BSO0, BSFF, BSOF, BS55 }\end{array} \\
\text { Payload } & & \begin{array}{l}\text { None } \\
\text { Synchronization } \\
\text { Trigger }\end{array}
$$

Free Run, Video\end{array}\right\}\)| Dominated by the variance of |
| :--- |
| measurements ${ }^{\text {b }}$ |

a. The accuracy is for absolute power measured at 2.0 MHz offset and other offsets (offset $=2 \mathrm{MHz} \times \mathrm{K}$, $K=2, \ldots, 29)$.
b. The measurement at these offsets is usually the measurement of noise-like signals and therefore has considerable variance. For example, with 100 ms sweeping time, the standard deviation of the measurement is about 0.5 dB . In comparison, the computed uncertainties of the measurement for the case with CW interference is only \pm 0.29 dB .

Enhanced Data Rate (EDR) Measurements

Description	Specifications	Supplemental Information
EDR Relative Transmit Power		This measurement is a Transmit Analysis measurement and supports average and peak power in conformance with Bluetooth RF test specification 2.1.E.0.5.1.12.
Packet Type		$\begin{aligned} & \text { 2-DH1, 2-DH3, 2-DH5, 3-DH1, } \\ & \text { 3-DH3, 3-DH5 } \end{aligned}$
Payload		PRBS9, BS00, BSFF, BS55
Synchronization		DPSK synchronization sequence
Trigger		External, RF Burst, Periodic Timer, Free Run, Video
Supported measurements		Power in GFSK header, power in PSK payload, relative power between GFSK header and PSK payload
Range ${ }^{\text {a }}$		+30 dBm to -70 dBm
$\begin{aligned} & \text { Absolute Power Accuracy }{ }^{\text {b }} \\ & \left(20 \text { to } 30^{\circ} \mathrm{C}, \text { Atten }=10 \mathrm{~dB}\right) \end{aligned}$		$\pm 0.29 \mathrm{~dB}$ (95th percentile)
Measurement floor		-70 dBm (nominal)

a. When the input signal level is lower than -40 dBm , the analyzer's preamp should be turned on and the attenuator set to 0 dB .
b. Absolute power accuracy includes all error sources for in-band signals except mismatch errors and repeatability due to incomplete averaging. It applies when the mixer level is high enough that measurement floor contribution is negligible.

Description	Specifications	Supplemental Information
EDR Modulation Accuracy		This measurement is a Transmit Analysis measurement and is in conformance with Bluetooth RF test specification 2.1.E.0.5.1.13
Packet Type		$\begin{aligned} & \text { 2-DH1, 2-DH3, 2-DH5, 3-DH1, } \\ & \text { 3-DH3, 3-DH5 } \end{aligned}$
Payload		PRBS9, BS00, BSFF, BS55
Synchronization		DPSK synchronization sequence
Trigger		External, RF Burst, Periodic Timer, Free Run, Video
Supported measurements		rms DEVM peak DEVM, 99\% DEVM
RF input level range ${ }^{\text {a }}$		+30 dBm to -70 dBm
RMS DEVM		
Range	O to 12\%	
Floor	1.5\%	
Accuracy ${ }^{\text {b }}$	1.2\%	

a. When the input signal level is lower than -40 dBm , the analyzer's preamp should be turned on and the attenuator set to 0 dB .
b. The accuracy specification applies when the EVM to be measured is well above the measurement floor. When the EVM does not greatly exceed the floor, the errors due to the floor add to the accuracy errors. The errors due to the floor are noise-like and add incoherently with the UUT EVM. The errors depend on the EVM of the UUT and the floor as follows:
error $=\operatorname{sqrt}\left(\right.$ EVMUUT $^{2}+$ EVMsa $\left.^{2}\right)-$ EVMUUT, where EVMUUT is the EVM of the UUT in percent, and EVMsa is the EVM floor of the analyzer in percent

Description	Specifications	Supplemental Information
EDR Carrier Frequency Stability		This measurement is a Transmit Analysis measurement and is in conformance with Bluetooth RF test specification 2.1.E.0.5.1. 13
Packet Type		$\begin{aligned} & \text { 2-DH1, 2-DH3, 2-DH5, 3-DH1, } \\ & \text { 3-DH3, 3-DH5 } \end{aligned}$
Payload		PRBS9, BS00, BSFF, BS55
Synchronization		DPSK synchronization sequence
Trigger		External, RF Burst, Periodic Timer, Free Run, Video
Supported measurements		Worst case initial frequency error(ω i) for all packets (carrier frequency stability), worst case frequency error for all blocks ($\omega 0$), ($\omega 0+\omega$ i) for all blocks
RF input level range ${ }^{\text {a }}$		+30 dBm to -70 dBm
Carrier Frequency Stability and Frequency Error ${ }^{\text {b }}$		$\pm 100 \mathrm{~Hz}+\mathrm{tfa}^{\mathrm{c}}$ (nominal)

a. When the input signal level is lower than -40 dBm , the analyzer's preamp should be turned on and the attenuator set to 0 dB .
b. Example, using 1 ppm as frequency reference accuracy of the analyzer, at frequency of 2.402 GHz , frequency accuracy would be in the range of $\pm(2.402 \mathrm{GHz} \times 1 \mathrm{ppm}) \mathrm{Hz} \pm 100 \mathrm{~Hz}= \pm 2402 \mathrm{~Hz} \pm 100 \mathrm{~Hz}= \pm 2502 \mathrm{~Hz}$.
c. tfa $=$ transmitter frequency \times frequency reference accuracy.

Description	Specifications	Supplemental Information
EDR In-band Spurious Emissions		This measurement is an EDR in-band spur emissions and is in conformance with Bluetooth RF test specification 2.1.E.0.5.1.15.
Packet Type		$\begin{aligned} & \text { 2-DH1, 2-DH3, 2-DH5, 3-DH1, } \\ & \text { 3-DH3, 3-DH5 } \end{aligned}$
Payload		PRBS9, BS00, BSFF, BS55
Synchronization		DPSK synchronization sequence
Trigger		External, RF Burst, Periodic Timer, Free Run, Video
Measurement Accuracy ${ }^{\text {a }}$		
Offset Freq = 1 MHz to 1.5 MHz		Dominated by ambiguity of the measurement standards ${ }^{\text {b }}$
Offset Freq = other offsets (2 MHz to 78 MHz)		Dominated by the variance of measurements ${ }^{\text {c }}$

a. For offsets from 1 MHz to 1.5 MHz , the accuracy is the relative accuracy which is the adjacent channel power (1 MHz to 1.5 MHz offset) relative to the reference channel power (main channel). For other offsets (offset = K MHz, $\mathrm{K}=2, \ldots, 78$), the accuracy is the power accuracy of the absolute alternative channel power.
b. The measurement standards call for averaging the signal across $3.5 \mu \mathrm{~s}$ apertures and reporting the highest result. For common impulsive power at these offsets, this gives a variation of result with the time location of that interference that is 0.8 dB peak-to-peak and changes with a scallop shape with a $3.5 \mu \mathrm{~s}$ period. Uncertainties in the accuracy of measuring CW-like relative power at these offsets are nominally only $\pm 0.09 \mathrm{~dB}$, but observed variations of the measurement algorithm used with impulsive interference are similar to the scalloping error.
c. The measurement at these offsets is usually the measurement of noise-like signals and therefore has considerable variance. For example, with a 1.5 ms packet length, the standard deviation of the measurement of the peak of ten bursts is about 0.6 dB . In comparison, the computed uncertainties of the measurement for the case with CW interference is only $\pm 0.29 \mathrm{~dB}$.

In-Band Frequency Range

Description	Specifications	Supplemental Information
Bluetooth Basic Rate and Enhanced Data Rate (EDR) System	2.400 to 2.4835 GHz (ISM radio band)	$\mathrm{f}=2402+\mathrm{k} \mathrm{MHz}, \mathrm{k}=0, \ldots, 78$ (RF channels used by Bluetooth)
Bluetooth Low Energy System	2.400 to 2.4835 GHz (ISM radio band)	$\mathrm{f}=2402+\mathrm{kx2} \mathrm{MHz,k=0}, \mathrm{\ldots,39}$ (RF channels used by Bluetooth)

18 GSM/EDGE Measurement Application

This chapter contains specifications for the N9071EM0E GSM/EDGE/EDGE Evolution Measurement Application. For EDGE Evolution (EGPRS2) including Normal Burst (16QAM/32QAM) and High Symbol Rate (HSR) Burst, option 3FP is required.

Additional Definitions and Requirements

Because digital communications signals are noise-like, all measurements will have variations. The specifications apply only with adequate averaging to remove those variations.

The specifications apply in the frequency range documented in In-Band Frequency Range.
The specifications for this chapter apply only to instruments with Frequency Option 503, 507, 513 or 526. For Instruments with higher frequency options, the performance is nominal only and not subject to any warranted specifications.

Measurement

Description	Specifications	Supplemental Information
EDGE Error Vector Magnitude (EVM)		$3 \pi / 8$ shifted 8PSK modulation, $3 \pi / 4$ shifted QPSK, $\pi / 4$ shifted 16QAM, $-\pi / 4$ shifted 32QAM modulation in NSR/HSR with pulse shaping filter. Specifications based on 200 bursts
Carrier Power Range at RF Input		+24 to -45 dBm (nominal)
EVM ${ }^{\text {a }}$, rms		
Operating range		0 to 20\% (nominal)
Floor (NSR/HSR Narrow/HSR Wide) (all modulation formats)	0.7\%	0.5\% (nominal)
Accuracy ${ }^{\text {b }}$ (EVM range 1\% to 10\% (NSR 8PSK) EVM range 1\% to 6\% (NSR 16QAM/32QAM) EVM range 1\% to 8\% (HSR QPSK) EVM range 1\% to 5\% (HSR 16QAM/32QAM))	$\pm 0.5 \%$	
Frequency error ${ }^{\text {a }}$		
Initial frequency error range		$\pm 80 \mathrm{kHz}$ (nominal)
Accuracy	$\pm 5 \mathrm{~Hz}{ }^{\text {c }}+\mathrm{tfa}^{\text {d }}$	
IQ Origin Offset		
DUT Maximum Offset		-15 dBc (nominal)
Maximum Analyzer Noise Floor		-50 dBc (nominal)
Trigger to T0 Time Offset (Relative accuracy ${ }^{\text {e }}$)		$\pm 5.0 \mathrm{~ns}$ ((${ }^{\text {aminal) }}$

a. EVM and frequency error specifications apply when the Burst Sync is set to Training Sequence.
b. The definition of accuracy for the purposes of this specification is how closely the result meets the expected result. That expected result is 0.975 times the actual RMS EVM of the signal, per 3GPP TS 45.005, annex G.
c. This term includes an error due to the software algorithm. The accuracy specification applies when EVM is less than 1.5\%.
d. tfa $=$ transmitter frequency \times frequency reference accuracy
e. The accuracy specification applies when the Burst Sync is set to Training Sequence, and Trigger is set to External Trigger.

Description	Specifications	Supplemental Information
Power vs. Time and EDGE Power vs. Time		GMSK modulation (GSM) $3 \pi / 8$ shifted 8 PSK modulation, $3 \pi / 4$ shifted QPSK, $\pi / 4$ shifted 16QAM, $-\pi / 4$ shifted 32QAM modulation in NSR/HSR (EDGE) Measures mean transmitted RF carrier power during the useful part of the burst (GSM method) and the power vs. time ramping. 510 kHz RBW
Minimum carrier power at RF Input for GSM and EDGE		-35 dBm (nominal)
Absolute power accuracy for in-band signal (excluding mismatch error) ${ }^{\text {a }}$		$-0.11 \pm 0.27 \mathrm{~dB}$ (95th percentile)
Power Ramp Relative Accuracy		Referenced to mean transmitted power
Accuracy	$\pm 0.16 \mathrm{~dB}$	
Measurement floor	-89 dBm	

a. The power versus time measurement uses a resolution bandwidth of about 510 kHz . This is not wide enough to pass all the transmitter power unattenuated, leading the consistent error shown in addition to the uncertainty. A wider RBW would allow smaller errors in the carrier measurement, but would allow more noise to reduce the dynamic range of the low-level measurements. The measurement floor will change by $10 \times \log (\mathrm{RBW} / 510 \mathrm{kHz})$. The average amplitude error will be about $-0.11 \mathrm{~dB} \times\left((510 \mathrm{kHz} / \mathrm{RBW})^{2}\right)$. Therefore, the consistent part of the amplitude error can be eliminated by using a wider RBW.

Description	Specifications	Supplemental Information
Phase and Frequency Error		GMSK modulation (GSM) Specifications based on 3GPP essential conformance requirements, and 200 bursts
Carrier power range at RF Input		+27 to -45 dBm (nominal)
Phase error ${ }^{\text {a }}$, rms		
Floor	$0.6{ }^{\circ}$	
Accuracy	$\pm 0.3^{\circ}$	Phase error range 1° to 6°
Frequency error ${ }^{\text {a }}$		
Initial frequency error range		$\pm 80 \mathrm{kHz}$ (nominal)
Accuracy	$\pm 5 \mathrm{~Hz}{ }^{\text {b }}+\mathrm{tfa}^{\text {c }}$	
I/Q Origin Offset		
DUT Maximum Offset		-15 dBc (nominal)
Analyzer Noise Floor		-50 dBc (nominal)
Trigger to TO time offset (Relative accuracy ${ }^{\text {d }}$)		$\pm 5.0 \mathrm{~ns}$ (nominal)

a. Phase error and frequency error specifications apply when the Burst Sync is set to Training Sequence.
b. This term includes an error due to the software algorithm. The accuracy specification applies when RMS phase error is less than 1°.
c. $\mathrm{tfa}=$ transmitter frequency x frequency reference accuracy
d. The accuracy specification applies when the Burst Sync is set to Training Sequence, and Trigger is set to External Trigger.

Description	Specifications	Supplemental Information
Output RF Spectrum (ORFS) and EDGE Output RF Spectrum		GMSK modulation (GSM) $3 \pi / 8$ shifted 8PSK modulation, $3 \pi / 4$ shifted QPSK, $\pi / 4$ shifted 16QAM, $-\pi / 4$ shifted 32QAM modulation in NSR/HSR (EDGE)
Minimum carrier power at RF Input		$-20 \mathrm{dBm}\left(\right.$ nominal) ${ }^{\text {a }}$
ORFS Relative RF Power Uncertainty ${ }^{\text {b }}$ Due to modulation		
Offsets $\leq 1.2 \mathrm{MHz}$	$\pm 0.26 \mathrm{~dB}$	
Offsets $\geq 1.8 \mathrm{MHz}$	$\pm 0.27 \mathrm{~dB}$	
Due to switching ${ }^{\text {c }}$		$\pm 0.17 \mathrm{~dB}$ (nominal)
ORFS Absolute RF Power Accuracy ${ }^{\text {d }}$		$\pm 0.27 \mathrm{~dB}$ (95th percentile)

a. For maximum dynamic range, the recommended minimum power is -10 dBm .
b. The uncertainty in the RF power ratio reported by ORFS has many components. This specification does not include the effects of added power in the measurements due to dynamic range limitations, but does include the following errors: detection linearity, RF and IF flatness, uncertainty in the bandwidth of the RBW filter, and compression due to high drive levels in the front end.
c. The worst-case modeled and computed errors in ORFS due to switching are shown, but there are two further considerations in evaluating the accuracy of the measurement: First, Keysight has been unable to create a signal of known ORFS due to switching, so we have been unable to verify the accuracy of our models. This performance value is therefore shown as nominal instead of guaranteed. Second, the standards for ORFS allow the use of any RBW of at least 300 kHz for the reference measurement against which the ORFS due to switching is ratioed. Changing the RBW can make the measured ratio change by up to about 0.24 dB , making the standards ambiguous to this level. The user may choose the RBW for the reference; the default 300 kHz RBW has good dynamic range and speed, and agrees with past practices. Using wider RBWs would allow for results that depend less on the RBW, and give larger ratios of the reference to the ORFS due to switching by up to about 0.24 dB .
d. The absolute power accuracy depends on the setting of the input attenuator as well as the signal-to-noise ratio. For high input levels, the use of the electronic attenuator and "Adjust Atten for Min Clip" will result in high sig-nal-to-noise ratios and Electronic Input Atten > 2 dB , for which the absolute power accuracy is best. At moderate levels, manually setting the Input Atten can give better accuracy than the automatic setting. For GSM and EDGE, "high levels" would nominally be levels above +1.7 dBm and -1.3 dBm , respectively.

Description	Specifications			Supplemental Information		
ORFS and EDGE ORFS (continued)			EDGE (others) ${ }^{e}$			
Dynamic Range, Spectrum due to modulation ${ }^{2}$	$\begin{aligned} & \text { GSM } \\ & \text { (GMSK) } \end{aligned}$			5 -pole sync-tuned fiters ${ }^{\text {b }}$ Methods: Direct Time ${ }^{\text {c }}$ and FFT $^{\text {d }}$		
Offset Frequency		EDGE (NSR Narrow QPSK)		GSM (GMSK) (typical)	EDGE (NSR 8PSK \& Narrow QPSK) (typical)	EDGE (others) ${ }^{e}$ (typical)
100 kHz	61.4 dB	61.4 dB	61.3 dB			
200 kHz	67.9 dB	67.8 dB	67.4 dB			
250 kHz	70.0 dB	69.7 dB	69.2 dB			
400 kHz	74.0 dB	73.4 dB	72.3 dB			
600 kHz	77.1 dB	76.0 dB	74.1 dB	79.4 dB	78.5 dB	76.8 dB
1.2 MHz	80.4 dB	78.2 dB	75.4 dB	83.1 dB	81.1 dB	78.5 dB
				GSM (GMSK) (nominal)	EDGE (NSR Narrow QPSK) (nominal)	EDGE (others) (nominal)
1.8 MHz	80.3 dB	79.5 dB	78.0 dB	82.3 dB	81.7 dB	80.6 dB
6.0 MHz	84.4 dB	82.5 dB	79.9 dB	86.6 dB	85.1 dB	83.0 dB
Dynamic Range, Spectrum due to switching ${ }^{\text {a }}$	GSM (GMSK)	EDGE (NSR	EDGE (others) ${ }^{\text {e }}$			
Offset Frequency		8PSK \& Narrow QPSK)				
400 kHz	71.7 dB		71.1 dB			
600 kHz	74.2 dB		73.3 dB			
1.2 MHz	76.5 dB		75.0 dB			
1.8 MHz	82.9 dB		82.2 dB			

a. Maximum dynamic range requires RF input power above -2 dBm for offsets of 1.2 MHz and below for GSM, and above -5 dBm for EDGE. For offsets of 1.8 MHz and above, the required $R F$ input power for maximum dynamic range is +8 dBm for GSM signals and +5 dBm for EDGE signals.
b. ORFS standards call for the use of a 5-pole, sync-tuned filter; this and the following footnotes review the instrument's conformance to that standard. Offset frequencies can be measured by using either the FFT method or the direct time method. By default, the FFT method is used for offsets of 400 kHz and below, and the direct time method is used for offsets above 400 kHz . The FFT method is faster, but has lower dynamic range than the direct time method.
c. The direct time method uses digital Gaussian RBW filters whose noise bandwidth (the measure of importance to "spectrum due to modulation") is within $\pm 0.5 \%$ of the noise bandwidth of an ideal 5 -pole sync-tuned filter. However, the Gaussian filters do not match the 5-pole standard behavior at offsets of 400 kHz and below, because they have lower leakage of the carrier into the filter. The lower leakage of the Gaussian filters provides a superior measurement because the leakage of the carrier masks the ORFS due to the UUT, so that less masking lets the test be more sensitive to variations in the UUT spectral splatter. But this superior measurement gives a result that does not conform with ORFS standards. Therefore, the default method for offsets of 400 kHz and below is the FFT method.
d. The FFT method uses an exact 5-pole sync-tuned RBW filter, implemented in software.
e. EDGE (others) means NSR 16/32QAM and HSR all formats (QPSK/16QAM/32QAM).

Frequency Ranges

Description	Uplink	Downlink
In-Band Frequency Ranges		
P-GSM 900	890 to 915 MHz	935 to 960 MHz
E-GSM 900	880 to 915 MHz	925 to 960 MHz
R-GSM 900	876 to 915 MHz	921 to 960 MHz
DCS1800	1710 to 1785 MHz	1805 to 1880 MHz
PCS1900	1850 to 1910 MHz	1930 to 1990 MHz
GSM850	824 to 849 MHz	869 to 894 MHz
GSM450	450.4 to 457.6 MHz	460.4 to 467.6 MHz
GSM480	478.8 to 486 MHz	488.8 to 496 MHz
GSM700	777 to 792 MHz	747 to 762 MHz
T-GSM810	806 to 821 MHz	851 to 866 MHz

Specification Guide

19 LTE/LTE-A Measurement Application

This chapter contains specifications for the N9080EM0E LTE/LTE-Advanced FDD measurement application and for the N9082EM0E LTE/LTE-Advanced TDD measurement application.

Additional Definitions and Requirements

Because digital communications signals are noise-like, all measurements will have variations. The specifications apply only with adequate averaging to remove those variations.

The specifications apply in the frequency range documented in In-Band Frequency Range.
The specifications apply to the single carrier case only, unless otherwise stated.

The specifications for this chapter apply only to instruments with Frequency Option 503, 507, 513 or 526. For Instruments with higher frequency options, the performance is nominal only and not subject to any warranted specifications.

Supported Air Interface Features

Description	Specifications	Supplemental Information
3GPP Standards Supported	36.211 V10.7.0 (March 2013) 36.212 V10.7.0 (December 2012) 36.213 V10.9.0 (March 2013) 36.214 V10.12.0 (March 2013) 36.141 V11.4.0 (March 2013) 36.521-1 V10.5.0 (March 2013)	
Signal Structure	FDD Frame Structure Type 1 TDD Frame Structure Type 2 Special subframe configurations 0-9	N9080B only N9082B only N9082B only
Signal Direction	Uplink and Downlink UL/DL configurations 0-6	N9082B only
Signal Bandwidth	$1.4 \mathrm{MHz}(6 \mathrm{RB}), 3 \mathrm{MHz}(15 \mathrm{RB}), 5 \mathrm{MHz}$ (25 RB), 10 MHz (50 RB), 15 MHz (75 RB), 20 MHz (100 RB)	
Modulation Formats and Sequences	BPSK; BPSK with I \&Q CDM; QPSK; 16QAM; 64QAM; PRS; CAZAC (Zadoff-Chu)	
Component Carrier	1, 2, 3, 4, or 5	
Physical Channels		
Downlink	PBCH, PCFICH, PHICH, PDCCH, PDSCH, PMCH	
Uplink	PUCCH, PUSCH, PRACH	
Physical Signals		
Downlink	P-SS, S-SS, C-RS, P-PS (positioning), MBSFN-RS, CSI-RS	
Uplink	PUCCH-DMRS, PUSCH-DMRS, S-RS (sounding)	

Measurements

Description	Specifications	Supplemental Information
Channel Power		
Minimum power at RF input		-50 dBm (nominal)
Absolute power accuracy ${ }^{\mathrm{a}}$		
$\left(20\right.$ to $30^{\circ} \mathrm{C}$, Atten $=10 \mathrm{~dB}$)	$\pm 1.04 \mathrm{~dB}$	$\pm 0.27 \mathrm{~dB}$ (95th percentile)
Measurement floor		-76.7 dBm (nominal) in a 10 MHz bandwidth

a. Absolute power accuracy includes all error sources for in-band signals except mismatch errors and repeatability due to incomplete averaging. It applies when the mixer level is high enough that the measurement floor contribution is negligible.

Description	Specifications	Supplemental Information
Channel Power		NB-loT
Minimum power at RF input	$\pm 1.04 \mathrm{~dB}$	-50 dBm (nominal)
Absolute power accuracy ${ }^{\text {a }}$		
$\left(20\right.$ to $30^{\circ} \mathrm{C}$, Atten $\left.=10 \mathrm{~dB}\right)$	$\pm 0.27 \mathrm{~dB}$ (95th percentile)	
Measurement floor		-93.7 dBm (nominal) in a 10 MHz bandwidth

a. Absolute power accuracy includes all error sources for in-band signals except mismatch errors and repeatability due to incomplete averaging. It applies when the mixer level is high enough that the measurement floor contribution is negligible.

Description	Specifications	Supplemental Information
Channel Power		C-V2X
Minimum power at RF input		Frequency Range: 5855 to 5925 MHz Absolute power accuracy (20 to $30^{\circ} \mathrm{C}$)
Measurement floor	$\pm 2.44 \mathrm{dBm}$ (nominal)	
$\pm 0.50 \mathrm{~dB}$ (95th percentile)		
		-76.7 dBm (nominal) in a 10 MHz bandwidth

a. Absolute power accuracy includes all error sources for in-band signals except mismatch errors and repeatability due to incomplete averaging. It applies when the mixer level is high enough that the measurement floor contribution is negligible.

Description	Specifications	Supplemental Information
Power Statistics CCDF		NB-IoT
Histogram Resolution $^{\text {a }}$	0.01 dB	

a. The Complementary Cumulative Distribution Function (CCDF) is a reformatting of the histogram of the power envelope. The width of the amplitude bins used by the histogram is the histogram resolution. The resolution of the CCDF will be the same as the width of those bins.

Description	Specifications	Supplemental Information
Power Statistics CCDF		C-V2X Frequency Range: 5855 to 5925 MHz
Histogram Resolution $^{\text {a }}$	0.01 dB	

a. The Complementary Cumulative Distribution Function (CCDF) is a reformatting of the histogram of the power envelope. The width of the amplitude bins used by the histogram is the histogram resolution. The resolution of the CCDF will be the same as the width of those bins.

Description	Specifications	Supplemental Information
Transmit On/Off Power		This table applies only to the N9082B measurement application.
Burst Type		Traffic, DwPTS, UpPTS, SRS, PRACH
Transmit power		Min, Max, Mean, Off
Dynamic Range ${ }^{\text {a }}$		122.5 dB (nominal)
Average type		Off, RMS, Log
Measurement time		Up to 20 slots
Trigger source		External 1, External 2, Periodic, RF Burst, IF Envelope

a. This dynamic range expression is for the case of Information $\mathrm{BW}=5 \mathrm{MHz}$; for other Info BW , the dynamic range can be derived. The equation is:

Dynamic Range = Dynamic Range for $5 \mathrm{MHz}-10 * \log 10($ Info BW/5.0e6)

Description	Specifications	Supplemental Information
Transmit On/Off Power		C-V2X
		Frequency Range: 5855 to 5925 MHz
Transmit power		Min, Max, Mean, Off
Dynamic Range	124.5 dB (nominal)	
Average type		Off, RMS, Log
Measurement time		Up to 20 slots
Trigger source		External 1, External 2, Periodic, RF Burst,
		IF Envelope

a. This dynamic range expression is for the case of Information $\mathrm{BW}=5 \mathrm{MHz}$; for other Info BW , the dynamic range can be derived. The equation is:

Dynamic Range $=$ Dynamic Range for $5 \mathrm{MHz}-10 * \log 10($ Info BW/5.0e6)

Description		Specifications			Supplemental Information	
Adjacent Channel Power		Channel Bandwidth			Single Carrier -36 dBm (nominal)	
Minimum power at RF input						
Accuracy						
Radio	Offset	5 MHz	10 MHz	20 MHz	ACPR Range for Specification	
MS	Adjacent ${ }^{\text {a }}$	$\pm 0.15 \mathrm{~dB}$	$\pm 0.20 \mathrm{~dB}$	$\pm 0.25 \mathrm{~dB}$	-33 to -27	opt ML ${ }^{\text {b }}$
BTS	Adjacent ${ }^{\text {c }}$	$\pm 0.88 \mathrm{~dB}$	± 1.14. dB	$\pm 1.64 \mathrm{~dB}$	-48 to -42	opt ML ${ }^{\text {d }}$
BTS	Alternate ${ }^{\text {c }}$	$\pm 0.20 \mathrm{~dB}$	± 0.26 dB	$\pm 0.37 \mathrm{~dB}$	-48 to -42	opt ML ${ }^{\text {e }}$
Dynamic Range E-UTRA					Test conditio	
Offset	Channel BW				Dynamic Range (nominal)	Optimum Mixer Level (nominal)
Adjacent	5 MHz				70.0 dB	$-16.5 \mathrm{dBm}$
Adjacent	10 MHz				69.3 dB	-16.5 dBm
Adjacent	20 MHz				68.4 dB	-16.3dBm
Alternate	5 MHz				75.8 dB	-16.6 dBm
Alternate	10 MHz				73.2 dB	-16.4 dBm
Alternate	20 MHz				70.3 dB	-16.3 dBm
Dynamic Ran					Test conditio	
Offset	Channel BW				Dynamic Range (nominal)	Optimum Mixer Level (nominal)
2.5 MHz	5 MHz				70.5 dB	-16.6 dBm
2.5 MHz	10 MHz				70.5 dB	-16.4 dBm
2.5 MHz	20 MHz				71.4 dB	-16.3 dBm
7.5 MHz	5 MHz				76.5 dB	-16.6 dBm
7.5 MHz	10 MHz				76.5 dB	-16.4 dBm
7.5 MHz	20 MHz				75.7 dB	-16.3 dBm

a. Measurement bandwidths for mobile stations are $4.5,9.0$ and 18.0 MHz for channel bandwidths of 5,10 and 20 MHz respectively.
b. The optimum mixer levels (ML) are $-22,-23$ and -19 dBm for channel bandwidths of 5,10 and 20 MHz respectively.
c. Measurement bandwidths for base transceiver stations are $4.515,9.015$ and 18.015 MHz for channel bandwidths of 5, 10 and 20 MHz respectively.
d. The optimum mixer levels (ML) are $-18,-18$ and -15 dBm for channel bandwidths of 5,10 and 20 MHz respectively.
e. The optimum mixer level (ML) is -8 dBm .
f. E-TM1.1 and E-TM1.2 used for test. Noise Correction set to On.

Description			Specifications	Supplemen	mation
Adjacent Channel Power				NB-loT Stand	
Minimum power at RF input				-36 dBm (n	
Accuracy					
Radio	Offset			ACPR Ran	Specification
MS	200 kHz		$\pm 0.05 \mathrm{~dB}$	-23 to -17	opt ML ${ }^{\text {a }}$
MS	2.5 MHz		$\pm 0.29 \mathrm{~dB}$	-40 to -34	opt ML ${ }^{\text {b }}$
BTS	300 kHz		$\pm 0.11 \mathrm{~dB}$	-43 to -37	opt ML ${ }^{\text {c }}$
BTS	500 kHz		$\pm 0.43 \mathrm{~dB}$	-53 to -47	opt ML ${ }^{\text {d }}$
Dynamic Range				Test conditio	
Radio	Offset	Channel BW		Dynamic Range (nominal)	Optimum Mixer Level (nominal)
MS	200 kHz	180 kHz		73.0 dB	-9.0 dBm
MS	2.5 MHz	3.84 MHz		71.0 dB	$-9.0 \mathrm{dBm}$
BTS	300 kHz	180 kHz		73.0 dB	$-9.0 \mathrm{dBm}$
BTS	500 kHz	180 kHz		78.0 dB	$-9.0 \mathrm{dBm}$

a. The optimum mixer levels (ML) is -27 dBm .
b. The optimum mixer levels (ML) is -22 dBm .
c. The optimum mixer levels (ML) is -25 dBm .
d. The optimum mixer levels (ML) is -24 dBm .
e. Noise Correction is set to On.

Description		Specifications			Supplemental Information		
Adjacent Channel Power		5 MHz $\pm 0.37 \mathrm{~dB}$	$10 \mathrm{MHz}$$\pm 0.49 \mathrm{~dB}$	$20 \mathrm{MHz}$$\pm 0.63 \mathrm{~dB}$	C-V2X		
		Frequency Range: 5855 to 5925 MHz -36 dBm (nominal)					
Minimum power at RF input							
Accuracy							
Radio	Offset	ACPR Ra			Specification		
	Adjacent ${ }^{\text {a }}$	-33 to -27			opt ML ${ }^{\text {b }}$		
Dynamic	ge E-UTRA					Test Conditio	
Offset	Channel BW				Dynamic Range (nominal)	Optimum Mixer Level (nominal)	
Adjacent	5 MHz				70.0 dB	-16.5 dBm	
Adjacent	10 MHz				69.3 dB	-16.5 dBm	
Alternate	5 MHz				75.8 dB	-16.6 dBm	
Alternate	10 MHz				73.2 dB	-16.4 dBm	
Dynamic	ge UTRA				Test conditio		
Offset	Channel BW				Dynamic Range (nominal)	Optimum Mixer Level (nominal)	
2.5 MHz	5 MHz				70.5 dB	-16.6dBm	
2.5 MHz	10 MHz				70.5 dB	-16.4 dBm	
7.5 MHz	5 MHz				76.5 dB	-16.6 dBm	
7.5 MHz	10 MHz				76.5 dB	-16.4 dBm	

a. Measurement bandwidths for mobile stations are $4.5,9.0$ and 18.0 MHz for channel bandwidths of 5,10 and 20 MHz respectively.
b. The optimum mixer levels (ML) are -22, -23 and -19 dBm for channel bandwidths of 5,10 and 20 MHz respectively.
c. Noise Correction is set to On.

Description	Specification	Supplemental Information
Occupied Bandwidth Minimum carrier power at RF Input Frequency accuracy	$\pm 10 \mathrm{kHz}$	$\begin{aligned} & -30 \mathrm{dBm} \text { (nominal) } \\ & \text { RBW }=30 \mathrm{kHz}, \\ & \text { Number of Points = 1001, } \\ & \text { Span }=10 \mathrm{MHz} \end{aligned}$
Description	Specification	Supplemental Information
Occupied Bandwidth Minimum carrier power at RF Input Frequency accuracy	$\pm 400 \mathrm{~Hz}$	$\begin{aligned} & \text { NB-IoT } \\ & -30 \mathrm{dBm} \text { (nominal) } \\ & \text { RBW }=10 \mathrm{kHz}, \\ & \text { Number of Points = 1001, } \\ & \text { Span }=400 \mathrm{kHz} \end{aligned}$
Description	Specification	Supplemental Information
Occupied Bandwidth Minimum carrier power at RF Input Frequency accuracy	$\pm 10 \mathrm{kHz}$	C-V2X Frequency Range: 5855 to 5925 MHz -30 dBm (nominal) RBW $=30 \mathrm{kHz}$, Number of Points = 1001, Span $=10 \mathrm{MHz}$

Description	Specifications	Supplemental Information
Spectrum Emission Mask		Offset from CF = (channel bandwidth + measurement bandwidth) / 2; measurement bandwidth $=100 \mathrm{kHz}$
Dynamic Range		
Channel Bandwidth		
5 MHz	73.8 dB	80.2 dB (typical)
10 MHz	74.9 dB	81.4 dB (typical)
20 MHz	75.0 dB	82.7 dB (typical)
Sensitivity	-92.5 dBm	-96.5 dBm (typical)
Accuracy		
Relative	$\pm 0.21 \mathrm{~dB}$	
Absolute, 20 to $30^{\circ} \mathrm{C}$	$\pm 1.15 \mathrm{~dB}$	$\pm 0.31 \mathrm{~dB}$ (95th percentile)
Description	Specifications	Supplemental Information
Spectrum Emission Mask		NB-IoT: Stand-alone Offset from CF = (channel bandwidth + measurement bandwidth) / $2=115 \mathrm{kHz}$ Channel bandwidth $=200 \mathrm{kHz}$ Measurement bandwidth $=30 \mathrm{kHz}$
Dynamic Range	65.9 dB	72.2 dB (typical)
Sensitivity	-97.7 dBm	-101.7 dBm (typical)
Accuracy		
Relative	$\pm 0.11 \mathrm{~dB}$	
Absolute, 20 to $30^{\circ} \mathrm{C}$	$\pm 1.15 \mathrm{~dB}$	$\pm 0.31 \mathrm{~dB}$ (95th percentile)

Description	Specifications	Supplemental Information
Spectrum Emission Mask		C-V2X Frequency Range: 5855 to 5925 MHz Offset from CF $=$ channel bandwidth + measurement bandwidth) $/ 2$; measurement bandwidth $=100 \mathrm{kHz}$
Dynamic Range		
Channel Bandwidth	73.9 dB	80.3 dB (typical)
5 MHz	74.9 dB	81.3 dB (typical)
10 MHz	75.0 dB	82.6 dB (typical)
20 MHz	-92.5 dBm	-96.5 dBm (typical)
Sensitivity	$\pm 0.51 \mathrm{~dB}$	
Accuracy	$\pm 2.55 \mathrm{~dB}$	$\pm 0.54 \mathrm{~dB}$ (95th percentile)
Relative		
Absolute, 20 to $30^{\circ} \mathrm{C}$		

Description	Specifications	Supplemental Information
Spurious Emissions		Table-driven spurious signals; search across regions
Dynamic Range ${ }^{\text {a }}$, relative (RBW = 1 MHz)	80.4 dB	82.9 dB (typical)
Sensitivity ${ }^{\text {a }}$, absolute (RBW $=1 \mathrm{MHz}$)	-82.5 dBm	-86.5 dBm (typical)
Accuracy		
Attenuation = 10 dB		$\pm 0.38 \mathrm{~dB}$ (95th percentile)
Frequency Range		$\pm 1.22 \mathrm{~dB}$ (95th percentile)
9 kHz to 3.6 GHz	$\pm 1.59 \mathrm{~dB}$ (95th percentile)	
3.5 to 7.0 GHz		
6.9 to 13.6 GHz		

a. The dynamic range is specified at 12.5 MHz offset from center frequency with mixer level of 1 dB compression point, which will degrade accuracy by 1 dB .
b. The sensitivity is specified at far offset from carrier, where phase noise does not contribute. You can derive the dynamic range at far offset from 1 dB compression mixer level and sensitivity.

Description	Specifications	Supplemental Information
Spurious Emissions		C-V2X Frequency Range: 5855 to 5925 MHz Table-driven spurious signals; search across regions
Dynamic Rangea, relative (RBW = 1 MHz)	80.7 dB	81.8 dB (nominal)
Sensitivity ${ }^{\mathrm{b}}$, absolute (RBW=1 MHz)	-82.5 dBm	-86.5 dBm (typical)
Accuracy		Attenuation $=10 \mathrm{~dB}$
Frequency Range		$\pm 0.38 \mathrm{~dB}$ (95th percentile)
20 Hz to 3.6 GHz	$\pm 1.22 \mathrm{~dB}$ (95th percentile)	
3.5 to 8.4 GHz	$\pm 1.59 \mathrm{~dB}$ (95th percentile)	
8.3 to 13.6 GHz		

a. The dynamic range is specified at 12.5 MHz offset from center frequency with mixer level of 1 dB compression point, which will degrade accuracy by 1 dB .
b. The sensitivity is specified at far offset from carrier, where phase noise does not contribute. You can derive the dynamic range at far offset from 1 dB compression mixer level and sensitivity.

Description	Specifications	Supplemental Information
Modulation Analysis (Signal level within one range step of overload) OSTP/RSTP Absolute accuracy ${ }^{\text {b }}$ EVM for Downlink (OFDMA) ${ }^{\text {C }}$ Floor Signal Bandwidth $5 \mathrm{MHz}$ 10 MHz $20 \mathrm{MHz}^{\mathrm{d}}$ EVM Accuracy for Downlink (OFDMA) (EVM range: 0 to $8 \%)^{e}$ EVM for Uplink (SC-FDMA) Floor Signal Bandwidth 5 MHz 10 MHz $20 \mathrm{MHz} \mathrm{dg}$ Frequency Error Lock range Accuracy Time Offset ${ }^{9}$ Absolute frame offset accuracy Relative frame offset accuracy MIMO RS timing accuracy	$0.43 \%(-47.3 \mathrm{~dB})$ $0.43 \%(-47.3 \mathrm{~dB})$ $0.48 \%(-46.3 \mathrm{~dB})$ $0.42 \%(-47.5 \mathrm{~dB})$ $0.42 \%(-47.5 \mathrm{~dB})$ $0.48 \%(-46.3 \mathrm{~dB})$ $\pm 20 \mathrm{~ns}$	$\%$ and dB expressions ${ }^{\mathrm{a}}$ $\pm 0.30 \mathrm{~dB}$ (nominal) $\pm 0.3 \%$ (nominal) $\pm 2.5 \times$ subcarrier spacing $=37.5 \mathrm{kHz}$ for default 15 kHz subcarrier spacing (nominal) $\pm 1 \mathrm{~Hz}+\mathrm{tfa}^{\dagger}$ (nominal) ± 5 ns (nominal) ± 5 ns (nominal)

a. In these specifications, those values with \% units are the specifications, while those with decibel units, in parentheses, are conversions from the percentage units to decibels for reader convenience.
b. The accuracy specification applies when EVM is less than 1% and no boost applies for the reference signal.
c. Overall EVM and Data EVM using 3GPP standard-defined calculation. Phase Noise Optimization set to Best Close-in (<140 kHz).
d. Requires Option B25 or B40 (IF bandwidth above 10 MHz).
e. The accuracy specification applies when the EVM to be measured is well above the measurement floor. When the EVM does not greatly exceed the floor, the errors due to the floor add to the accuracy errors. The errors due to the floor are noise-like and add incoherently with the UUT EVM. The errors depend on the EVM of the UUT and the floor as follows:
error $=[$ sqrt(EVMUUT2 + EVMsa2) $]-$ EVMUUT
where EVMUUT is the EVM of the UUT in percent, and EVMsa is the EVM floor of the analyzer in percent.
f. tfa $=$ transmitter frequency \times frequency reference accuracy.
g. The accuracy specification applies when EVM is less than 1% and no boost applies for resource elements.

Description	Specifications	Supplemental Information
NB-IoT Modulation Analysis (Signal level within one range step of overload)		$\%$ and dB expressions ${ }^{\mathrm{a}}$ Channel bandwidth: 200 kHz Downlink: Operation Modes: Inband, guard-band, stand-alone Uplink: Operation Modes: Stand-alone Subcarrier spacing: $3.75 \mathrm{kHz}, 15 \mathrm{kHz}$ Number of subcarriers: 1, 3, 6, 12 Modulation types: BPSK, QPSK
EVM for Downlink Floor Early analyzers ${ }^{\text {b }}$ (SN prefix <MY/SG/US5340) Analyzers with - EP3 ${ }^{\text {C }}$ (MY/SG/US5648> SN prefix \geq MY/SG/US5340, ship standard with N9010A-EP3)		$-44.0 \mathrm{~dB}(0.63 \%)$ (nominal) $-46.0 \mathrm{~dB}(0.50 \%)$ (nominal)
EVM for Uplink Floor Early analyzers ${ }^{\text {b }}$ (SN prefix <MY/SG/US5340		
3/6/12 subcarrier signal with 15 kHz subcarrier spacing		$-42.0 \mathrm{~dB}(0.80 \%)$ (nominal)
1 subcarrier signal with 15 kHz subcarrier spacing		-44.5 dB (0.60\%) (nominal)
3.75 kHz subcarrier spacing Analyzers with - EP3 ${ }^{\text {C }}$ (MY/SG/US5648> SN prefix \geq MY/SG/US5340, ship standard with N9010A-EP3)		$-48.0 \mathrm{~dB}(0.40 \%)$ (nominal)
3/6/12 subcarrier signal with 15 kHz subcarrier spacing		$-48.0 \mathrm{~dB}(0.40 \%)$ (nominal)
1 subcarrier signal with 15 kHz subcarrier spacing		$-50.5 \mathrm{~dB}(0.30 \%)$ (nominal)
3.75 kHz subcarrier spacing		-54.0 dB (0.20\%) (nominal)

a. In these specifications, those values with $\%$ units are the specifications, while those with decibel units, in parentheses, are conversions from the percentage units to decibels for reader convenience.
b. Overall EVM and Data EVM using 3GPP standard-defined calculation. Phase Noise Optimization set to Best Close-in (<20 kHz).
c. Phase Noise Optimization mode is set to Best Close-in <20 kHz).

Description	Specifications	Supplemental Information
C-V2X Modulation Analysis (Signal level within one range step of overload) OSTP/RSTP Absolute accuracy ${ }^{\text {b }}$ EVM Floor Early analyzers (SM prefix <MY/SG/US5340) ${ }^{\text {c }}$ Signal Bandwidth 5 MHz 10 MHz $20 \mathrm{MHz}^{\mathrm{d}}$ Analyzers with -Option EP3 (MY/SG/US5648)>SN prefix \geq MY/SG/US5340, ship standard withN9010A-EP3) Signal Bandwidth 5 MHz 10 MHz $20 \mathrm{MHz}^{\mathrm{d}}$ Analyzers with -Option EP5 (SN prefix \geq MY/SG/US5648, ship standard withN9010A-EP5) ${ }^{e}$ Signal Bandwidth 5 MHz 10 MHz $20 \mathrm{MHz}^{\mathrm{d}}$ Frequency Error		$\%$ and dB expressions ${ }^{\mathrm{a}}$ Frequency Range: 5855 to 5925 MHz $\pm 0.30 \mathrm{~dB}$ (nominal) 1.35% (-37.3 dB) (nominal) 1.35% (-37.3 dB) (nominal) 1.35% (-37.3 dB) (nominal) $0.66 \%(-43.6 \mathrm{~dB})$ (nominal) $0.66 \%(-43.6 \mathrm{~dB})$ (nominal) $0.70 \%(-43.0 \mathrm{~dB})$ (nominal) 0.42% (-47.5 dB) (nominal) 0.42% (-47.5 dB) (nominal) $0.48 \%(-46.5 \mathrm{~dB})$ (nominal)

Description	Specifications	Supplemental Information
Lock range		$\pm 2.5 \times$ subcarrier spacing $=37.5 \mathrm{kHz}$ for default
		15 kHz subcarrier spacing (nominal)
Accuracy		$\pm 1 \mathrm{~Hz}+\mathrm{tfa}^{\dagger}$ (nominal)
Time Offset 9		
Absolute frame offset accuracy	$\pm 20 \mathrm{~ns}$	
Relative frame offset accuracy		$\pm 5 \mathrm{~ns}$ (nominal)
MIMO RS timing accuracy		$\pm 5 \mathrm{~ns}$ (nominal)

a. In these specifications, those values with $\%$ units are the specifications, while those with decibel units, in parentheses, are conversions from the percentage units to decibels for reader convenience.
b. The accuracy specification applies when EVM is less than 1% and no boost applies for the reference signal.
c. Overall EVM and Data EVM using 3GPP standard-defined calculation. Phase Noise Optimization set to Best Close-in (<20 kHz).
d. Requires Option B25 or B40 (IF bandwidth above 10 MHz).
e. Phase Noise Optimization Mode is set to Best Close-in ($<50 \mathrm{kHz}$).
f. tfa $=$ transmitter frequency \times frequency reference accuracy.
g. The accuracy specification applies when EVM is less than 1\% and no boost applies for resource elements

In-Band Frequency Range

C-V2X Operating Band		
E-UTRA band 47, TDD		5855 to 5925 MHz

NB-loT Operating Band		
E-UTRA bands, FDD, 1, 2, 3, 4, 5, 8, 11, 12, $13,14,17,18,19,20,25,26,28,31$		See LTE FDD Operating Band

LTE FDD Operating Band	Uplink	Downlink
1	1920 to 1980 MHz	2110 to 2170 MHz
2	1850 to 1910 MHz	1930 to 1990 MHz
3	1710 to 1785 MHz	1805 to 1880 MHz
4	1710 to 1755 MHz	2110 to 2155 MHz
5	824 to 849 MHz	869 to 894 MHz
6	830 to 840 MHz	875 to 885 MHz
7	2500 to 2570 MHz	2620 to 2690 MHz
8	880 to 915 MHz	925 to 960 MHz
9	1749.9 to 1784.9 MHz	1844.9 to 1879.9 MHz
10	1710 to 1770 MHz	2110 to 2170 MHz
11	1427.9 to 1452.9 MHz	1475.9 to 1500.9 MHz
12	698 to 716 MHz	728 to 746 MHz
13	777 to 787 MHz	746 to 756 MHz
14	788 to 798 MHz	758 to 768 MHz
17	704 to 716 MHz	734 to 746 MHz
18	815 to 830 MHz	860 to 875 MHz
19	830 to 845 MHz	875 to 890 MHz
20	832 to 862 MHz	791 to 821 MHz
21	1447.9 to 1462.9 MHz	1495.9 to 1510.9 MHz
22 See note ${ }^{\text {a }}$	3410 to 3490 MHz	3510 to 3590 MHz
23	2000 to 2020 MHz	2180 to 2200 MHz
24	1626.5 to 1660.5 MHz	1525 to 1559 MHz
25	1850 to 1915 MHz	1930 to 1995 MHz

LTE FDD Operating Band	Uplink	Downlink
26	814 to 849 MHz	859 to 894 MHz
27	807 to 824 MHz	852 to 869 MHz
28	703 to 748 MHz	758 to 803 MHz
29	$\mathrm{~N} / \mathrm{A}$	717 to 728 MHz
30	2305 to 2315 MHz	2350 to 2360 MHz
31	452.5 to 457.5 MHz	462.5 to 467.5 MHz
32	N/A	1452 to 1496 MHz

a. ACP measurements and SEM for operating Band 22 and 42 can be made in instruments with Frequency Option 508,513 or 526 and with firmware version A. 16.17 or later. The performance in the region above 3.6 GHz is nominally similar to that just below 3.6 GHz but not warranted.

LTE TDD Operating Band	Uplink/Downlink
33	1900 to 1920 MHz
34	2010 to 2025 MHz
35	1850 to 1910 MHz
36	1930 to 1990 MHz
37	1910 to 1930 MHz
38	2570 to 2620 MHz
39	1880 to 1920 MHz
40	2300 to 2400 MHz
41	2496 to 2690 MHz
42 See note ${ }^{\mathrm{a}}$	3400 to 3600 MHz
44	703 to 803 MHz

a. ACP measurements and SEM for operating Band 22 and 42 can be made in instruments with Frequency Option 508,513 or 526 and with firmware version A.16.17 or later. The performance in the region above 3.6 GHz is nominally similar to that just below 3.6 GHz but not warranted.

LTE/LTE-A Measurement Application
In-Band Frequency Range

20 Multi-Standard Radio Measurement Application

This chapter contains specifications for the N9083EMOE Multi-Standard Radio (MSR) measurement application. The measurements for GSM/EDGE, W-CDMA and LTE FDD also require N9071EM0E-2FP, N9073EM0E-1FP, N9080EM0E-1FP and N9080EM0E-3FP respectively.

Additional Definitions and Requirements

The specifications apply in the frequency range documented in In-Band Frequency Range of each application.

The specifications for this chapter apply only to instruments with Frequency Option 503, 507, 513 or 526. For Instruments with higher frequency options, the performance is nominal only and not subject to any warranted specifications.

Measurements

Description	Specifications	Supplemental Information
Channel Power		
Minimum power at RF Input		-50 dBm (nominal)
95th percentile Absolute power accuracy $\left(20\right.$ to $30^{\circ} \mathrm{C}$, Atten $\left.=10 \mathrm{~dB}\right)$		$\pm 0.27 \mathrm{~dB}$

Description	Specifications	Supplemental Information
Power Statistics CCDF		
Histogram Resolution	$0.01 \mathrm{~dB}^{\mathrm{a}}$	

a. The Complementary Cumulative Distribution Function (CCDF) is a reformatting of the histogram of the power envelope. The width of the amplitude bins used by the histogram is the histogram resolution. The resolution of the CCDF will be the same as the width of those bins.

Description	Specifications	Supplemental Information
Occupied Bandwidth		
Minimum power at RF Input		-30 dBm (nominal)
Frequency Accuracy		\pm (Span / 1000) (nominal)

Description	Specifications	Supplemental Information
Spurious Emissions		Table-driven spurious signals; search across regions
Accuracy		
(Attenuation = 10 dB)		
Frequency Range		$\pm 0.38 \mathrm{~dB}$ (95th percentile)
20 Hz to 3.6 GHz	$\pm 1.22 \mathrm{~dB}$ (95th percentile)	
3.5 to 7.0 GHz		$\pm 1.59 \mathrm{~dB}$ (95th percentile)
6.9 to 13.6 GHz		

Description	Specifications	Supplemental Information
Conformance EVM ${ }^{\text {a }}$		
GSM/EDGE ${ }^{\text {b }}$		
EVM, rms - floor (EDGE)		0.7\% (nominal)
Phase error, rms - floor (GSM)		$0.6{ }^{\circ}$ (nominal)
W-CDMA ${ }^{\text {c }}$		
Composite EVM floor		1.6\% (nominal)
LTE FDD ${ }^{\text {d }}$		
EVM floor for downlink (OFDMA)		\% and dB expression ${ }^{\text {e }}$
Signal bandwidths		
5 MHz		0.48\% (-46.3 dB) (nominal)
10 MHz		0.39\% (-48.1 dB) (nominal)
20 MHz		0.42\% (-47.5 dB) (nominal)

a. The signal level is within one range step of overload. The specification for floor do not include signal-to-noise impact which may decrease by increasing the number of carriers. The noise floor can be estimated by DANL + $2.51+10 \times \log 10($ MeasBW $)$, where DANL is the Display Averaged Noise Level specification in dBm and MeasBW is the measurement bandwidth at the receiver in Hz .
b. Specifications apply when the carrier spacing is 600 kHz and the carrier power of each adjacent channel does not exceed the carrier power of the channel tested for EVM
c. Specifications apply when the carrier spacing is 5 MHz and the carrier power of each adjacent channel does not exceed the carrier power of the channel tested for EVM.
d. Specifications apply when the carrier spacing is the same as the signal bandwidth and the carrier power of each adjacent channel does not exceed the carrier power of the channel tested for EVM.
e. In LTE FDD specifications, those values with \% units are the specifications, while those with decibel units, in parentheses, are conversion from the percentage units to decibels for reader convenience.

Multi-Standard Radio Measurement Application
In-Band Frequency Range
In-Band Frequency Range
Refer to the tables of In-Band Frequency Range in GSM/EDGE on page 190, W-CDMA on page 243, and LTE/ LTE-A on page 208.

21 Noise Figure Measurement Application

This chapter contains specifications for the N9069EMOE Noise Figure Measurement Application.

General Specifications

Description	Specifications		Supplemental Information
Noise Figure			Uncertainty Calculator $^{\text {a }}$
$<10 \mathrm{MHz}$		See note $^{\mathrm{b}}$	
10 MHz to internal preamplifier's		Internal and External $^{\text {preamplification recommended }}{ }^{\text {d }}$	
frequency limit ${ }^{\text {c }}$			
Noise Source ENR	Measurement	Instrument	
	Range	Uncertainty ${ }^{\text {ef }}$	
4 to 6.5 dB	0 to 20 dB	$\pm 0.02 \mathrm{~dB}$	
12 to 17 dB	0 to 30 dB	$\pm 0.025 \mathrm{~dB}$	
20 to 22 dB	0 to 35 dB	$\pm 0.03 \mathrm{~dB}$	

a. To compute the total uncertainty for your noise figure measurement, you need to take into account other factors including: DUT NF, Gain and Match, Instrument NF, Gain Uncertainty and Match; Noise source ENR uncertainty and Match. The computations can be performed with the uncertainty calculator included with the Noise Figure Measurement Personality. Go to Mode Setup then select Uncertainty Calculator. Similar calculators are also available on the Keysight web site; go to http://www.keysight.com/find/nfu.
b. Instrument Uncertainty is nominally the same in this frequency range as in the higher frequency range. However, total uncertainty is higher because the analyzer has poorer noise figure, leading to higher uncertainties as computed by the uncertainty calculator. Also, there is a paucity of available noise sources in this range.
c. At the highest frequencies, especially above 40 GHz , the only Agilent/Keysight supra- $26-\mathrm{GHz}$ noise source, the 346CK01, often will not have enough ENR to allow for the calibration operation. Operation with "Internal Cal" is almost as accurate as with normal calibration, so the inability to use normal calibration does not greatly impact usefulness. Also, if the DUT has high gain, calibration has little effect on accuracy. In those rare cases when normal calibration is required, the Noisecom NC5000 and the NoiseWave NW346V do have adequate ENR for calibration.
d. The NF uncertainty calculator can be used to compute the uncertainty. For most DUTs of normal gain, the uncertainty will be quite high without preamplification.
e. "Instrument Uncertainty" is defined for noise figure analysis as uncertainty due to relative amplitude uncertainties encountered in the analyzer when making the measurements required for a noise figure computation. The relative amplitude uncertainty depends on, but is not identical to, the relative display scale fidelity, also known as incremental log fidelity. The uncertainty of the analyzer is multiplied within the computation by an amount that depends on the Y factor to give the total uncertainty of the noise figure or gain measurement.
See Keysight App Note 57-2, literature number 5952-3706E for details on the use of this specification.
Jitter (amplitude variations) will also affect the accuracy of results. The standard deviation of the measured result decreases by a factor of the square root of the Resolution Bandwidth used and by the square root of the number of averages. This application uses the 4 MHz Resolution Bandwidth as default because this is the widest bandwidth with uncompromised accuracy.
f. The instrument uncertainties shown are under best-case sweep time conditions, which is a sweep time near to the period of the power line, such as 20 ms for 50 Hz power sources. The behavior can be greatly degraded (uncertainty increased nominally by 0.12 dB) by setting the sweep time per point far from an integer multiple of the period of the line frequency.

Description	Specifications	Supplemental Information
Gain		
Instrument Uncertainty ${ }^{\mathrm{a}}$		DUT Gain Range $=-20$ to +40 dB
$<10 \mathrm{MHz}$		See note ${ }^{\mathrm{b}}$
10 MHz to 3.6 GHz	$\pm 0.15 \mathrm{~dB}$	
$>3.6 \mathrm{GHz}$		$\pm 0.11 \mathrm{~dB}$ additionalc 95th percentile,

a. "Instrument Uncertainty" is defined for gain measurements as uncertainty due to relative amplitude uncertainties encountered in the analyzer when making the measurements required for the gain computation. See Keysight App Note 57-2, literature number 5952-3706E for details on the use of this specification. Jitter (amplitude variations) will also affect the accuracy of results. The standard deviation of the measured result decreases by a factor of the square root of the Resolution Bandwidth used and by the square root of the number of averages. This application uses the 4 MHz Resolution Bandwidth as default since this is the widest bandwidth with uncompromised accuracy.
Under difficult conditions (low Y factors), the instrument uncertainty for gain in high band can dominate the NF uncertainty as well as causing errors in the measurement of gain. These effects can be predicted with the uncertainty calculator.
b. Uncertainty performance of the instrument is nominally the same in this frequency range as in the higher frequency range. However, performance is not warranted in this range. There is a paucity of available noise sources in this range, and the analyzer has poorer noise figure, leading to higher uncertainties as computed by the uncertainty calculator.
c. For frequencies above 3.6 GHz , the analyzer uses a YIG-tuned filter (YTF) as a preselector, which adds uncertainty to the gain. When the Y factor is small, such as with low gain DUTs, this uncertainty can be greatly multiplied and dominate the uncertainty in NF (as the user can compute with the Uncertainty Calculator), as well as impacting gain directly. When the Y factor is large, the effect of IU of Gain on the NF becomes negligible. When the Y-factor is small, the non-YTF mechanism that causes Instrument Uncertainty for Gain is the same as the one that causes IU for NF with low ENR. Therefore, we would recommend the following practice: When using the Uncertainty Calculator for measurements above 3.6 GHz , fill in the IU for Gain parameter with the sum of the IU for NF for $4-6.5 \mathrm{~dB}$ ENR sources and the shown "additional" IU for gain for this frequency range. When estimating the IU for Gain for the purposes of a gain measurement for frequencies above 3.6 GHz , use the sum of IU for Gain in the $0.01-3.6 \mathrm{GHz}$ range and the "additional" IU shown.
You will find, when using the Uncertainty Calculator, that the IU for Gain is only important when the input noise of the spectrum analyzer is significant compared to the output noise of the DUT. That means that the best devices, those with high enough gain, will have comparable uncertainties for frequencies below and above 3.6 GHz .

The additional uncertainty shown is that observed to be met in 95% of the frequency/instrument combinations tested with 95% confidence. It is not warranted.

Description	Specifications	Supplemental Information
Noise Figure Uncertainty Calculator ${ }^{2}$ Instrument Noise Figure Uncertainty	See the Noise Figure table earlier in this chapter	
Instrument Gain Uncertainty	See the Gain table earlier in this chapter	
Instrument Noise Figure		See graphs of "Nominal Instrument Noise Figure"; Noise Figure is DANL + 176.24 dB (nominal) ${ }^{\text {b }}$ Note on DC coupling ${ }^{\text {cd }}$
Instrument Input Match		See graphs: Nominal VSWR Note on DC coupling ${ }^{\text {C }}$
Optional NFE Improvement/Internal Cale		See "Displayed Average Noise Level with Noise Floor Extension Improvement" on page 131 in the Option NF2 - Noise Floor Extension chapter.

a. The Noise Figure Uncertainty Calculator requires the parameters shown in order to calculate the total uncertainty of a Noise Figure measurement.
b. Nominally, the noise figure of the spectrum analyzer is given by

$$
N F=D-(K-L+N+B)
$$

where D is the DANL (displayed average noise level) specification,
K is $\mathrm{kTB}(-173.98 \mathrm{dBm}$ in a 1 Hz bandwidth at 290 K)
L is 2.51 dB (the effect of log averaging used in DANL verifications)
N is 0.24 dB (the ratio of the noise bandwidth of the RBW filter with which DANL is
specified to an ideal noise bandwidth)
B is ten times the base- 10 logarithm of the RBW (in hertz) in which the DANL is
specified. B is 0 dB for the 1 Hz RBW.
The actual $N F$ will vary from the nominal due to frequency response errors.
c. The effect of AC coupling is negligible for frequencies above 40 MHz . Below 40 MHz , DC coupling is recommended for the best measurements.
d. The instrument NF nominally degrades by 0.2 dB at 30 MHz and 1 dB at 10 MHz with AC coupling.
e. Analyzers with Option NFE (Noise Floor Extension) use that capability in the Noise Figure Measurement Application to allow "Internal Cal" instead of user calibration. With internal calibration, the measurement is much better than an uncalibrated measurement but not as good as with user calibration. Calibration reduces the effect of the analyzer noise on the total measured NF. With user calibration, the extent of this reduction is computed in the uncertainty calculator, and will be on the order of 16 dB . With internal calibration, the extent of reduction of the effective noise level varies with operating frequency, its statistics are given on the indicated page. It is usually about half as effective as User Calibration, and much more convenient. For those measurement situations where the output noise of the DUT is 10 dB or more above the instrument input noise, the errors due to using an internal calibration instead of a user calibration are negligible.

Description

Uncertainty versus

Calibration Options

User Calibration
Uncalibrated
Internal Calibration

Supplemental Information

Best uncertainties; Noise Figure Uncertainty Calculator applies
Worst uncertainties; noise of the analyzer input acts as a second stage noise on the DUT
Available with Option NF2. Good uncertainties without the need of reconnecting the DUT and running a calibration. The uncertainty of the analyzer input noise model adds a second-stage noise power to the DUT that can be positive or negative. Running the Noise Figure Uncertainty Calculator will usually show that internal Calibration achieves 90\% of the possible improvement between the Uncalibrated and User Calibration states.

Nominal Instrument Noise Figure, Freq Option ≤ 526

Nominal Instrument Input VSWR, DC Coupled, Freq Option ≤ 526

22 Phase Noise Measurement Application

This chapter contains specifications for the N9068EM0E Phase Noise measurement application.

General Specifications

Description	Specifications	Supplemental Information
Maximum Carrier Frequency		
Option 503	3.6 GHz	
Option 507	7 GHz	
Option 513	13.6 GHz	
Option 526	26.5 GHz	
Option 532	32 GHz	
Option 544	44 GHz	

Description	Specifications	Supplemental Information
Measurement Characteristics		
Measurements	Log plot, RMS noise, RMS jitter, Residual FM, Spot frequency	

Specifications

Measurement Accuracy		
Phase Noise Density Accuracy ${ }^{\text {ab }}$		
Offset $<1 \mathrm{MHz}$	$\pm 0.61 \mathrm{~dB}$	
Offset $\geq 1 \mathrm{MHz}$	$\pm 0.50 \mathrm{~dB}$	$\pm 0.60 \mathrm{~dB}$ (nominal)
Non-overdrive case ${ }^{\text {c }}$		See equation ${ }^{\mathrm{d}}$
With Overdrive		
RMS Markers		

a. This does not include the effect of system noise floor. This error is a function of the signal (phase noise of the DUT) to noise (analyzer noise floor due to phase noise and thermal noise) ratio, SN, in decibels.
The function is: error $=10 \times \log \left(1+10^{- \text {SN/10 }}\right)$
For example, if the phase noise being measured is 10 dB above the measurement floor, the error due to adding the analyzer's noise to the UUT is 0.41 dB .
b. Offset frequency errors also add amplitude errors. See the Offset frequency section, below.
c. The phase noise density accuracy for the non-overdrive case is derived from warranted analyzer specifications. It applies whenever there is no overdrive. Overdrive occurs only for offsets of 1 MHz and greater, with signal input power greater than -10 dBm , and controls set to allow overdrive. The controls allow overdrive if the electronic attenuator option is licensed, Enable Elect Atten is set to On, Pre-Adjust for Min Clip is set to either Elect Atten Only or Elect-Mech Atten, and the carrier frequency plus offset frequency is $<3.6 \mathrm{GHz}$.
The controls also allow overdrive if (in the Meas Setup > Advanced menu) the Overdrive with Mech Atten is enabled. With the mechanical attenuator only, the overdrive feature can be used with carriers in the high band path (>3.6 GHz). To prevent overdrive in all cases, set the overdrive with Mech Atten to disabled and the Enable Elect Atten to Off.
d. The accuracy of an RMS marker such as "RMS degrees" is a fraction of the readout. That fraction, in percent, depends on the phase noise accuracy, in dB , and is given by $100 \times\left(10^{\text {PhaseNoiseDensityAccuracy / } 20}-1\right)$. For example, with +0.30 dB phase noise accuracy, and with a marker reading out 10 degrees RMS, the accuracy of the marker would be $+3.5 \%$ of 10 degrees, or +0.35 degrees.

Description	Specifications	Supplemental Information
Offset Frequency Range (Log Plot) Range (Spot Frequency) Accuracy Offset < 1 MHz Offset $\geq 1 \mathrm{MHz}$	$\begin{aligned} & 1 \mathrm{~Hz} \text { to }\left(f_{\text {opt }}-f_{\text {CF }}\right)^{\mathrm{a}} \\ & 10 \mathrm{~Hz} \text { up to }\left(f_{\text {opt }}-f_{\mathrm{CF}}\right) \end{aligned}$	$f_{\text {opt: }}$: Maximum frequency determined by option ${ }^{\text {b }}$ f_{CF} : Carrier frequency of signal under test Negligible error (nominal) $\pm(0.5 \%$ of offset + marker resolution) (nominal) 0.5% of offset is equivalent to 0.0072 octave ${ }^{\mathrm{C}}$

a. Option AFP required for 1 Hz offset.
b. For example, $f_{\text {opt }}$ is 3.6 GHz for Option 503.
c. The frequency offset error in octaves causes an additional amplitude accuracy error proportional to the product of the frequency error and slope of the phase noise. For example, a 0.01 octave frequency error combined with an $18 \mathrm{~dB} /$ octave slope gives 0.18 dB additional amplitude error.

Description	Specifications	Supplemental Information
Amplitude Repeatability		$<1 \mathrm{~dB}(\text { nominal })^{2}$
(No Smoothing, all offsets, default settings, including averages $=10$)		

a. Standard deviation. The repeatability can be improved with the use of smoothing and increasing the number of averages.

Nominal Phase Noise at Different Center Frequencies

See the plot of core spectrum analyzer Nominal Phase Noise on page 50.

23 Short Range Communications Measurement Application

This chapter contains specifications for the N9084EMOE Short Range Communications Measurement Application, which has two major measurement applications:

- ZigBee (IEEE 802.15.4)
- Z-Wave (ITU-T G.9959)

ZigBee (IEEE 802.15.4) Measurement Application

Description	Specifications	Supplemental Information
EVM (Modulation Accuracy)		
ZigBee 0-QPSK (2450 MHz)		0.25\% Offset EVM (nominal)
ZigBee BPSK (868/950 MHz)		0.50\% (nominal)
ZigBee BPSK (915 MHz)		0.50\% (nominal)
Frequency Error		
Range ZigBee 0-QPSK (2450 MHz)		$\pm 80 \mathrm{ppm}$ (nominal)
ZigBee BPSK (868/950 MHz)		$\pm 50 \mathrm{ppm}$ (nominal
ZigBee BPSK (915 MHz)		$\pm 80 \mathrm{ppm}$ (nominal)
Accuracy		
ZigBee 0-QPSK (2450 MHz)		$\pm 1 \mathrm{Hz+tfa}{ }^{\text {a }}$ (nominal)
ZigBee BPSK ($868 / 950 \mathrm{MHz}$)		$\pm 1 \mathrm{Hz+ffa}{ }^{\text {a }}$ (nominal)
ZigBee BPSK (915 MHz)		$\pm 1 \mathrm{Hz+tfa}{ }^{\text {a }}$ (nominal)

a. tfa $=$ transmitter frequency \times frequency reference accuracy.

Z-Wave (ITU-T G.9959) Measurement Application

Description	Specifications	Supplemental Information
FSK Error		
Z-Wave R1 FSK (9.6 kbps)	0.58% (nominal)	
Z-Wave R2 FSK (40 kbps)	0.78% (nominal)	
Z-Wave R3 GFSK (100 kbps)	0.80% (nominal)	
Frequency Error		
Range	$\pm 60 \mathrm{ppm}$ (nominal)	
Z-Wave R1 FSK (9.6 kbps)	$\pm 60 \mathrm{ppm}$ (nominal	
Z-Wave R2 FSK (40 kbps)	$\pm 60 \mathrm{ppm}$ (nominal)	
Z-Wave R3 GFSK (100 kbps)	$\pm 50 \mathrm{Hz+tfa}{ }^{2}$ (nominal)	
Accuracy	$\pm 50 \mathrm{Hz+tfa}$ (nominal	
Z-Wave R1 FSK (9.6 kbps)	$\pm 50 \mathrm{Hz+tfa}$ (nominal)	
Z-Wave R2 FSK (40 kbps)		
Z-Wave R3 GFSK (100 kbps)		

a. tfa $=$ transmitter frequency \times frequency reference accuracy.

24 Vector Modulation Analysis Application

This chapter contains specifications for the N9054C Vector Modulation Analysis Measurement Application. Model numbers of the Vector Modulation Analyzer Mode are N9054EMOE (Flexible Digital Demod) and N9054EM1E (Custom OFDM).

This application supports the following:
PSK formats: BPSK, QPSK, Offset QPSK, Shaped OQPSK, DQPSK, $\pi / 4$ DQPSK, 8-PSK, $\pi / 8$ D8PSK, D8PSK;

QAM formats: 16/32/64/128/256/512/1024-QAM;
FSK formats: 2/4/8/16-FSK;
MSK formats: MSK Type 1, MSK Type 2;
ASK formats: 2-ASK;
APSK formats: 16/32 APSK;
VSB formats: 8/16-VSB;
Other formats: CPM (FM), EDGE.
The following measurements are supported in this application:

- Digital Demod
- Monitor Spectrum
- IQ Waveform
- Custom OFDM
- Channel Power
- Occupied BW
- Power Stat CCDF
- Adjacent Channel Power
- Spectrum Emission Mask
- Spurious Emissions

Vector Modulation Analysis Application
Frequency

Frequency

Description	Specifications	Supplemental Information
Range		See "Frequency Range" on page 16.

Measurements

Description	Specifications	Supplemental Information
Modulation Analysis Residual EVM		Modulation formats include BPSK, QPSK, DQPSK, $\pi / 4$ DQPSK, 8-PSK, $\pi / 8$ D8PSK, D8PSK, 16/32/64/128/256/512/1024-QAM; Center Frequency $=1 \mathrm{GHz}$; Transmit filter is RRC with $\alpha=0.35$; Result length set to at least 150 symbols, or $3 \times$ Number of ideal constellation states; Average number $=10$.
Symbol Rate ${ }^{\text {a }}$ $1 \mathrm{MSa} / \mathrm{s}$ $10 \mathrm{MSa} / \mathrm{s}$ $25 \mathrm{MSa} / \mathrm{s}$ Residual EVM for MSK		0.70\% (nominal) 0.70\% (nominal) 1.10\% (nominal) Modulation formats include MSK Type 1 and MSK Type 2; Center Frequency $=1 \mathrm{GHz}$; Transmit filter is Gaussian with BT $=0.3$; Result length set to 150 symbols; Average number $=10$.
Symbol Rate ${ }^{\text {a }}$ $10 \mathrm{MSa} / \mathrm{s}$ Residual EVM for VSB		0.90% (nominal) Modulation formats include 8-VSB and 16-VSB; Transmit filter is RRC with $\alpha=0.115$; Center Frequency <3.6 GHz; Result length $=800$; Average number $=10$.
Symbol Rate ${ }^{\text {a }}$ 10.762 MHz		1.50% (SNR 36 dB) (nominal)

a. Supportable symbol rate is dependent on the analyzer hardware bandwidth option.

Vector Modulation Analysis Application
Measurements

25 W-CDMA Measurement Application

This chapter contains specifications for the N9073EMOE W-CDMA/HSPA/HSPA+ measurement application. It contains N9073EM0E-1FP W-CDMA, N9073EM0E-2FP HSPA and N9073EM0E-3FP HSPA+ measurement applications.

Additional Definitions and Requirements

Because digital communications signals are noise-like, all measurements will have variations. The specifications apply only with adequate averaging to remove those variations.

The specifications apply in the frequency range documented in In-Band Frequency Range.

The specifications for this chapter apply only to instruments with Frequency Option 503, 507, 513 or 526. For Instruments with higher frequency options, the performance is nominal only and not subject to any warranted specifications.

Measurements

Description	Specifications	Supplemental Information
Channel Power		
Minimum power at RF Input		-50 dBm (nominal)
Absolute power accuracy ${ }^{\mathrm{a}}$		
$\left(20\right.$ to $30^{\circ} \mathrm{C}$, Atten $=10 \mathrm{~dB}$)	$\pm .04 \mathrm{~dB}$	
95 th percentile Absolute power accuracy		$\pm 0.27 \mathrm{~dB}$
$\left(20\right.$ to $30^{\circ} \mathrm{C}$, Atten $=10 \mathrm{~dB}$)		-80.8 dBm (nominal)
Measurement floor		

a. Absolute power accuracy includes all error sources for in-band signals except mismatch errors and repeatability due to incomplete averaging. It applies when the mixer level is high enough that measurement floor contribution is negligible.

Description			Specifications	Supplemental Info	ation
Adjacent Channel Power (ACPR; ACLR)					
Single Carrier					
Minimum power at RF Input				-36 dBm (nomina)	
ACPR Accuracy ${ }^{\text {ab }}$				RRC weighted, 3.8	Hz noise
Radio	Offset Freq			ba	or Fast ${ }^{\text {a }}$
MS (UE)	5 MHz		$\pm 0.17 \mathrm{~dB}$	At ACPR range of -30 to -36 dBc with optimum mixer level ${ }^{\text {d }}$	
MS (UE)	10 MHz		$\pm 0.22 \mathrm{~dB}$	At ACPR range of optimum mixer lev	to -46 dBc with
BTS	5 MHz		$\pm 0.70 \mathrm{~dB}$	At ACPR range of optimum mixer lev	to -48 dBc with
BTS	10 MHz		$\pm 0.57 \mathrm{~dB}$	At ACPR range of optimum mixer lev	to -53 dBc with
BTS	5 MHz		$\pm 0.29 \mathrm{~dB}$	At -48 dBc non-co	ent ACPR^{9}
Dynamic Range				RRC weighted, 3.8 bandwidth	Hz noise
Noise Correction	Offset Freq	Method		Typical ${ }^{\text {h }}$ Dynamic Range	Optimum ML (nominal)
off	5 MHz	Filtered IBW		-68 dB	-8dBm
off	5 MHz	Fast		-67 dB	-9 dBm
off	10 MHz	Filtered IBW		-74dB	-2 dBm
on	5 MHz	Filtered IBW		-73 dB	-8dBm
on	10 MHz	Filtered IBW		$-76 \mathrm{~dB}$	-2dBm
RRC Weighting Accuracy ${ }^{\text {i }}$					
White noise in Adjacent Channel				0.00 dB (nominal)	
TOI-induced spectrum				0.001 dB (nominal)	
rms CW error				0.012 dB (nominal)	

a. The accuracy of the Adjacent Channel Power Ratio will depend on the mixer drive level and whether the distortion products from the analyzer are coherent with those in the UUT. These specifications apply even in the worst case condition of coherent analyzer and UUT distortion products. For ACPR levels other than those in this specifications table, the optimum mixer drive level for accuracy is approximately -37 dBm - (ACPR/3), where the ACPR is given in (negative) decibels.
b. Accuracy is specified without NC. NC will make the accuracy even better.
c. The Fast method has a slight decrease in accuracy in only one case: for BTS measurements at 5 MHz offset, the accuracy degrades by $\pm 0.01 \mathrm{~dB}$ relative to the accuracy shown in this table.
d. To meet this specified accuracy when measuring mobile station (MS) or user equipment (UE) within 3 dB of the required -33 dBc ACPR, the mixer level (ML) must be optimized for accuracy. This optimum mixer level is -22 dBm , so the input attenuation must be set as close as possible to the average input power $-(-22 \mathrm{dBm})$. For example, if the average input power is -6 dBm , set the attenuation to 16 dB . This specification applies for the normal 3.5 dB peak-to-average ratio of a single code. Note that if the mixer level is set to optimize dynamic range instead of accuracy, accuracy errors are nominally doubled.
e. ACPR accuracy at 10 MHz offset is warranted when the input attenuator is set to give an average mixer level of -14 dBm .
f. In order to meet this specified accuracy, the mixer level must be optimized for accuracy when measuring node B Base Transmission Station (BTS) within 3 dB of the required -45 dBc ACPR. This optimum mixer level is $-19 \mathrm{dBm},-18 \mathrm{dBm}$, so the input attenuation must be set as close as possible to the average input power $-(-19 \mathrm{dBm})$. For example, if the average input power is -5 dBm , set the attenuation to 14 dB . This specification applies for the normal 10 dB peak-to-average ratio (at 0.01% probability) for Test Model 1. Note that, if the mixer level is set to optimize dynamic range instead of accuracy, accuracy errors are nominally doubled.
g. Accuracy can be excellent even at low ACPR levels assuming that the user sets the mixer level to optimize the dynamic range, and assuming that the analyzer and UUT distortions are incoherent. When the errors from the UUT and the analyzer are incoherent, optimizing dynamic range is equivalent to minimizing the contribution of analyzer noise and distortion to accuracy, though the higher mixer level increases the display scale fidelity errors. This incoherent addition case is commonly used in the industry and can be useful for comparison of analysis equipment, but this incoherent addition model is rarely justified. This derived accuracy specification is based on a mixer level of -14 dBm .
h. Keysight measures 100% of the signal analyzers for dynamic range in the factory production process. This measurement requires a near-ideal signal, which is impractical for field and customer use. Because field verification is impractical, Keysight only gives a typical result. More than 80% of prototype instruments met this "typical" specification; the factory test line limit is set commensurate with an on-going 80% yield to this typical. The ACPR dynamic range is verified only at 2 GHz , where Keysight has the near-perfect signal available. The dynamic range is specified for the optimum mixer drive level, which is different in different instruments and different conditions. The test signal is a 1 DPCH signal.
The ACPR dynamic range is the observed range. This typical specification includes no measurement uncertainty.
i. 3GPP requires the use of a root-raised-cosine filter in evaluating the ACLR of a device. The accuracy of the passband shape of the filter is not specified in standards, nor is any method of evaluating that accuracy. This footnote discusses the performance of the filter in this instrument. The effect of the RRC filter and the effect of the RBW used in the measurement interact. The analyzer compensates the shape of the RRC filter to accommodate the RBW filter. The effectiveness of this compensation is summarized in three ways:

- White noise in Adj Ch: The compensated RRC filter nominally has no errors if the adjacent channel has a spectrum that is flat across its width.
- TOI-induced spectrum: If the spectrum is due to third-order intermodulation, it has a distinctive shape. The computed errors of the compensated filter are -0.004 dB for the 470 kHz RBW used for UE testing with the IBW method and also used for all testing with the Fast method, and 0.000 dB for the 30 kHz RBW filter used for BTS testing with the IBW method. The worst error for RBWs between these extremes is 0.05 dB for a 330 kHz RBW filter.
- rms CW error: This error is a measure of the error in measuring a CW-like spurious component. It is evaluated by computing the root of the mean of the square of the power error across all frequencies within the adjacent channel. The computed rms error of the compensated filter is 0.023 dB for the 470 kHz RBW used for UE testing with the IBW method and also used for all testing with the Fast method, and 0.000 dB for the 30 kHz RBW filter used for BTS testing. The worst error for RBWs between these extremes is 0.057 dB for a 430 kHz RBW filter.

Description	Specifications	Supplemental Information
Power Statistics CCDF		
Histogram Resolution	$0.01 \mathrm{~dB}^{\mathrm{a}}$	

a. The Complementary Cumulative Distribution Function (CCDF) is a reformatting of the histogram of the power envelope. The width of the amplitude bins used by the histogram is the histogram resolution. The resolution of the CCDF will be the same as the width of those bins.

Description	Specifications	Supplemental Information
Occupied Bandwidth		
Minimum power at RF Input		-30 dBm (nominal)
Frequency Accuracy	$\pm 10 \mathrm{kHz}$	$\mathrm{RBW}=30 \mathrm{kHz}$, Number of Points $=1001$, span $=10$ MHz

Description	Specifications	Supplemental Information
Spectrum Emission Mask		
Dynamic Range, relative $\left(2.515 \mathrm{MHz}\right.$ offset $\left.{ }^{\text {ab }}\right)$	79.3 dB	84.9 dB (typical)
Sensitivity, absolute $(2.515 \mathrm{MHz}$ offset $)$	-97.7 dBm	-101.7 dBm (typical)
Accuracy (2.515 MHz offset)		
Relative ${ }^{\mathrm{d}}$	$\pm 0.15 \mathrm{~dB}$	
Absolute		
(20 to $\left.30^{\circ} \mathrm{C}\right)$	$\pm 1.15 \mathrm{~dB}$	$\pm 0.31 \mathrm{~dB}$ (95th percentile)

a. The dynamic range specification is the ratio of the channel power to the power in the offset specified. The dynamic range depends on the measurement settings, such as peak power or integrated power. Dynamic range specifications are based on default measurement settings, with detector set to average, and depend on the mixer level. Default measurement settings include 30 kHz RBW.
b. This dynamic range specification applies for the optimum mixer level, which is about -16 dBm . Mixer level is defined to be the average input power minus the input attenuation.
c. The sensitivity is specified with 0 dB input attenuation. It represents the noise limitations of the analyzer. It is tested without an input signal. The sensitivity at this offset is specified in the default 30 kHz RBW, at a center frequency of 2 GHz .
d. The relative accuracy is a measure of the ratio of the power at the offset to the main channel power. It applies for spectrum emission levels in the offsets that are well above the dynamic range limitation.
e. The absolute accuracy of SEM measurement is the same as the absolute accuracy of the spectrum analyzer. See "Absolute Amplitude Accuracy" on page 33 for more information. The numbers shown are for 0 to 3.6 GHz, with attenuation set to 10 dB .

W-CDMA Measurement Application

Measurements

Description	Specifications	Supplemental Information
Spurious Emissions		Table-driven spurious signals; search across regions
Dynamic Range ${ }^{\text {a }}$, relative (RBW=1 MHz)	80.4 dB	82.9 dB (typical)
Sensitivity ${ }^{\mathrm{b}}$, absolute (RBW=1 MHz)	-82.5 dBm	-86.5 dBm (typical)
Accuracy		
(Attenuation =10 dB)		
Frequency Range		$\pm 0.38 \mathrm{~dB}$ (95th percentile)
9 kHz to 3.6 GHz		$\pm 1.22 \mathrm{~dB}$ (95th percentile)
3.5 to 7.0 GHz		$\pm 1.59 \mathrm{~dB}$ (95th percentile)
7.0 to 13.6 GHz		

a. The dynamic range is specified at 12.5 MHz offset from center frequency with mixer level of 1 dB compression point, which will degrade accuracy by 1 dB .
b. The sensitivity is specified at far offset from carrier, where phase noise does not contribute. You can derive the dynamic range at far offset from 1 dB compression mixer level and sensitivity.

Description	Specifications	Supplemental Information
Code Domain (BTS Measurements $\begin{aligned} & -25 \mathrm{dBm} \leq \mathrm{ML}^{\mathrm{a}} \leq-15 \mathrm{dBm} \\ & \left.20 \text { to } 30^{\circ} \mathrm{C}\right) \end{aligned}$ Code domain power Absolute accuracy ${ }^{\text {b }}$ $(-10 \mathrm{dBc} \text { CPICH, Atten = } 10 \mathrm{~dB})$ Relative accuracy Code domain power range $\begin{aligned} & 0 \text { to }-10 \mathrm{dBc} \\ & -10 \text { to }-30 \mathrm{dBc} \\ & -30 \text { to }-40 \mathrm{dBc} \end{aligned}$ Power Control Steps Accuracy $\begin{aligned} & 0 \text { to }-10 \mathrm{dBC} \\ & -10 \text { to }-30 \mathrm{dBC} \end{aligned}$ Power Dynamic Range Accuracy (0 to -40 dBc) Symbol power vs. time Relative accuracy Code domain power range $\begin{gathered} 0 \text { to }-10 \mathrm{dBc} \\ -10 \text { to }-30 \mathrm{dBc} \\ -30 \text { to }-40 \mathrm{dBc} \end{gathered}$ Symbol error vector magnitude Accuracy (0 to - 25 dBc)	$\pm 0.015 \mathrm{~dB}$ ± 0.06 dB $\pm 0.07 \mathrm{~dB}$ $\pm 0.03 \mathrm{~dB}$ $\pm 0.12 \mathrm{~dB}$ $\pm 0.14 \mathrm{~dB}$ $\pm 0.015 \mathrm{~dB}$ $\pm 0.06 \mathrm{~dB}$ $\pm 0.07 \mathrm{~dB}$	RF input power and attenuation are set to meet the Mixer Level range. $\pm 0.29 \mathrm{~dB}$ (95th percentile)

a. ML (mixer level) is RF input power minus attenuation.
b. Code Domain Power Absolute accuracy is calculated as sum of 95\% Confidence Absolute Amplitude Accuracy and Code Domain relative accuracy at Code Power level.

Description	Specifications	Supplemental Information
QPSK EVM		
$\left(-25 \mathrm{dBm} \leq \mathrm{ML}^{\mathrm{a}} \leq-15 \mathrm{dBm}\right.$ 20 to $\left.30^{\circ} \mathrm{C}\right)$		RF input power and attenuation are set to meet EVM Mixer Level range.
Range		0 to 25% (nominal)
Floor	1.6%	
Accuracy ${ }^{\text {b }}$		
I/Q origin offset		
DUT Maximum Offset		
Analyzer Noise Floor		-10 dBc (nominal)
Frequency error		-50 dBc (nominal)
Range		$\pm 30 \mathrm{kHz}$ (nominal) ${ }^{\text {c }}$
Accuracy	$\pm 5 \mathrm{~Hz}+$ tfa $^{\mathrm{d}}$	

a. ML (mixer level) is RF input power minus attenuation.
b. The accuracy specification applies when the EVM to be measured is well above the measurement floor and successfully synchronized to the signal. When the EVM does not greatly exceed the floor, the errors due to the floor add to the accuracy errors. The errors due to the floor are noise-like and add incoherently with the UUT EVM.
The errors depend on the EVM of the UUT and the floor as follows: error = sqrt(EVMUUT² + EVMsa ${ }^{2}$) - EVMUUT, where EVMUUT is the EVM of the UUT in percent, and EVMsa is the EVM floor of the analyzer in percent.
c. This specifies a synchronization range with CPICH for CPICH only signal.
d. $\mathrm{tfa}=$ transmitter frequency x frequency reference accuracy

Description	Specifications	Supplemental Information
Modulation Accuracy (Composite EVM) (BTS Measurements $-25 \mathrm{dBm} \leq \mathrm{ML}^{\mathrm{a}} \leq-15 \mathrm{dBm}$ $\left.20 \text { to } 30^{\circ} \mathrm{C}\right)$ Composite EVM Range Floor Accuracy ${ }^{\text {b }}$ Overall Limited circumstances ($12.5 \% \leq$ EVM $\leq 22.5 \%$, No 16QAM nor 64QAM codes) Peak Code Domain Error Accuracy I/Q Origin Offset DUT Maximum Offset Analyzer Noise Floor Frequency Error Range Accuracy Time offset Absolute frame offset accuracy Relative frame offset accuracy Relative offset accuracy (for STTD diff mode) ${ }^{f}$	0 to 25\% 1.6\% $\pm 1.0 \%{ }^{\mathrm{c}}$ $\pm 0.5 \%$ $\pm 1.0 \mathrm{~dB}$ $\pm 5 \mathrm{~Hz}+\mathrm{tfa}^{\mathrm{e}}$ $\pm 20 \mathrm{~ns}$ ± 1.25 ns	RF input power and attenuation are set to meet the Mixer Level range. -10 dBc (nominal) -50 dBc (nominal) $\pm 3 \mathrm{kHz}$ (nominal) ${ }^{\mathrm{d}}$ ± 5.0 ns (nominal)

a. ML (mixer level) is RF input power minus attenuation.
b. For 16 QAM or 64 QAM modulation, the relative code domain error (RCDE) must be better than -16 dB and -22 dB respectively.
c. The accuracy specification applies when the EVM to be measured is well above the measurement floor. When the EVM does not greatly exceed the floor, the errors due to the floor add to the accuracy errors. The errors due to the floor are noise-like and add incoherently with the UUT EVM. The errors depend on the EVM of the UUT and the floor as follows: error $=\left[\right.$ sqrt(EVMUUT ${ }^{2}+$ EVMsa $\left.\left.^{2}\right)\right]-$ EVMUUT, where EVMUUT is the EVM of the UUT in percent, and EVMsa is the EVM floor of the analyzer in percent. For example, if the EVM of the UUT is 7\%, and the floor is 2.5%, the error due to the floor is 0.43%.

W-CDMA Measurement Application
 Measurements

d. This specifies a synchronization range with CPICH for CPICH only signal.
e. tfa $=$ transmitter frequency \times frequency reference accuracy
f. The accuracy specification applies when the measured signal is the combination of CPICH (antenna-1) and CPICH (antenna-2), and where the power level of each CPICH is -3 dB relative to the total power of the combined signal. Further, the range of the measurement for the accuracy specification to apply is ± 0.1 chips.

Description	Specifications	Supplemental Information
Power Control		
Absolute power measurement		Using 5 MHz resolution bandwidth
Accuracy		$\pm 0.7 \mathrm{~dB}$ (nominal)
0 to -20 dBm		$\pm 1.0 \mathrm{~dB}$ (nominal)
-20 to -60 dBm		
Relative power measurement		$\pm 0.1 \mathrm{~dB}$ (nominal)
Accuracy		$\pm 0.15 \mathrm{~dB}$ (nominal)
Step range $\pm 1.5 \mathrm{~dB}$	$\pm 0.2 \mathrm{~dB}$ (nominal)	
Step range $\pm 3.0 \mathrm{~dB}$		$\pm 0.3 \mathrm{~dB}$ (nominal)
Step range $\pm 4.5 \mathrm{~dB}$		
Step range $\pm 26.0 \mathrm{~dB}$		

W-CDMA Measurement Application In-Band Frequency Range

In-Band Frequency Range

Operating Band	UL Frequencies UE transmit, Node B receive	DL Frequencies UE receive, Node B transmit
I	1920 to 1980 MHz	2110 to 2170 MHz
II	1850 to 1910 MHz	1930 to 1990 MHz
IV	1710 to 1785 MHz	1805 to 1880 MHz
V	1710 to 1755 MHz	2110 to 2155 MHz
VII	824 to 849 MHz	869 to 894 MHz
VIII	830 to 840 MHz	875 to 885 MHz
VIII	2500 to 2570 MHz	2620 to 2690 MHz
IX	880 to 915 MHz	925 to 960 MHz
X	1749.9 to 1784.9 MHz	1844.9 to 1879.9 MHz
XI	1710 to 1770 MHz	2110 to 2170 MHz
XII	1427.9 to 1452.9 MHz	1475.9 to 1500.9 MHz
XIII	698 to 716 MHz	728 to 746 MHz
XIV	777 to 787 MHz	746 to 756 MHz

W-CDMA Measurement Application
In-Band Frequency Range

Keysight X-Series Signal Analyzer
N9010B
Specification Guide

26 WLAN Measurement Application

This chapter contains specifications for the N9077EMOE WLAN measurement application.

Additional Definitions and Requirements

Because digital communications signals are noise-like, all measurements will have variations. The specifications apply only with adequate averaging to remove the variations.

The specifications apply in the frequency range documented in In-Band Frequency Range.

Different IEEE radio standard requires relative minimum hardware bandwidth for OFDM analysis:
$802.11 \mathrm{a} / \mathrm{b} / \mathrm{g} / \mathrm{p}$, or $11 \mathrm{n}(20 \mathrm{MHz})$, or 11ac (20 MHz) requires $\mathrm{N9010B}-\mathrm{B} 25$ or above.
$802.11 \mathrm{n}(40 \mathrm{MHz})$, or 11ac (40 MHz) requires N9010B-B40 or above.
802.11ah 1M/2M/4M/8M/16M requires N9010B-B25 or above.
802.11af 6M/7M/8M requires N9010B-B25 or above.

The List sequence measurements requires N9010B-B40.

Measurements

Description	Specifications		Supplemental Information	
Channel Power 20 MHz Integration BW			Radio standards are: $802.11 \mathrm{a} / \mathrm{g} / \mathrm{j} / \mathrm{p}$ (OFDM) or 802.11 g (DSSS-OFDM) or 802.11n (20 MHz) or 802.11ac (20 MHz), 5 GHz band	
Minimum power at RF Input			-50 dBm (nominal)	
	Center Freq		Center Freq	
	2.4 GHz	5.0 GHz	2.4 GHz	5.0 GHz
Absolute Power Accuracy ${ }^{\text {a }}$ (20 to $30^{\circ} \mathrm{C}$)	$\pm 1.04 \mathrm{~dB}$	$\pm 2.44 \mathrm{~dB}$	$\pm 0.27 \mathrm{~dB}$ (95th percentile)	$\pm 0.50 \mathrm{~dB}$ (95th percentile)
Measurement floor			-73.7 dBm (typical)	-73.7 dBm (typical)

a. Absolute power accuracy includes all error sources for in-band signals except mismatch errors and repeatability due to incomplete averaging. It applies when the mixer level is high enough that the measurement floor contribution is negligible.

Description	Specifications		Supplemental Information	
Channel Power 40 MHz Integration BW			Radio standard is: $802.11 \mathrm{n}(40 \mathrm{MHz}$) or $802.11 \mathrm{ac}(40 \mathrm{MHz})$,	band
Minimum power at RF Input			-50 dBm (nominal)	
	Center Freq		Center Freq	
	2.4 GHz	5.0 GHz	2.4 GHz	5.0 GHz
Absolute Power Accuracy ${ }^{\text {a }}$ (20 to $30^{\circ} \mathrm{C}$)	$\pm 1.04 \mathrm{~dB}$	$\pm 2.44 \mathrm{~dB}$	$\pm 0.27 \mathrm{~dB} \text { (95th }$ percentile)	$\begin{aligned} & \pm 0.50 \mathrm{~dB} \text { (95th } \\ & \text { percentile) } \end{aligned}$
Measurement floor			-70.7 dBm (typical)	-70.7 dBm (typical)

a. Absolute power accuracy includes all error sources for in-band signals except mismatch errors and repeatability due to incomplete averaging. It applies when the mixer level is high enough that the measurement floor contribution is negligible.

Description	Specifications	Supplemental Information
Channel Power 22 MHz Integration BW	$\pm 1.04 \mathrm{~dB}$	Radio standard is: 802.11b/g (DSSS/CCK/PBCC)
		Center Frequency in 2.4 GHz Band
Minimum power at RF Input		-50 dBm (nominal)
Absolute Power Accuracy ${ }^{\text {a }}$ (20 to $30^{\circ} \mathrm{C}$)		$\pm 0.27 \mathrm{~dB}$ (95th percentile)
Measurement floor		-73.2 dBm (typical)

a. Absolute power accuracy includes all error sources for in-band signals except mismatch errors and repeatability due to incomplete averaging. It applies when the mixer level is high enough that the measurement floor contribution is negligible.

Description	Specifications	Supplemental Information
Channel Power		Radio standard is:
80 MHz Integration BW		802.11 ac (80 MHz)
Minimum power at RF Input		Center Frequency in 5.0 GHz Band
Absolute Power Accuracy ${ }^{\mathrm{a}}$	$\pm 2.44 \mathrm{~dB}$	-50 dBm (nominal)
(20 to 30° C)		$\pm 0.50 \mathrm{~dB}$ (95th percentile)
Measurement floor		-67.7 dBm (typical)

a. Absolute power accuracy includes all error sources for in-band signals except mismatch errors and repeatability due to incomplete averaging. It applies when the mixer level is high enough that the measurement floor contribution is negligible.

Description	Specifications	Supplemental Information
Channel Power		Radio standard is:
160 MHz Integration BW		$802.11 \mathrm{ac}(160 \mathrm{MHz})$
Minimum power at RF Input		Center Frequency in 5.0 GHz Band
Absolute Power Accuracy ${ }^{\mathrm{a}}$	$\pm 2.44 \mathrm{~dB}$	-50 dBm (nominal)
(20 to 30° C)		$\pm 0.50 \mathrm{~dB}$ (95th percentile)
Measurement floor		-64.7 dBm (typical)

a. Absolute power accuracy includes all error sources for in-band signals except mismatch errors and repeatability due to incomplete averaging. It applies when the mixer level is high enough that the measurement floor contribution is negligible.

Description	Specifications	Supplemental Information
Channel Power		Radio standard is: 802.11af 6M/7M/8M
Minimum power at RF Input		-50 dBm (nominal)
Integration BW		
802.11 af 6M	6 MHz	
802.11af 7M	7 MHz	
802.11 af 8M	8 MHz	
$\begin{aligned} & \text { Absolute Power Accuracy }{ }^{a} \\ & \left(20 \text { to } 30^{\circ} \mathrm{C}\right. \text {) } \\ & \text { for } 802.11 \text { af } 6 \mathrm{M} / 7 \mathrm{M} / 8 \mathrm{M} \end{aligned}$	$\pm 1.04 \mathrm{~dB}$	$\pm 0.27 \mathrm{~dB}$ (95th percentile)
Measurement floor		Typical
802.11 af 6M		- 78.96 dBm
802.11af 7M		- 78.29 dBm
802.11 af 8M		- 77.71 dBm

a. Absolute power accuracy includes all error sources for in-band signals except mismatch errors and repeatability due to incomplete averaging. It applies when the mixer level is high enough that the measurement floor contribution is negligible.

Description	Specifications	Supplemental Information
Channel Power		Radio standard is: 802.11ah 1M/2M/4M/8M/16M
Minimum power at RF Input		-50 dBm (nominal)
Integration BW		
802.11ah 1M	1 MHz	
802.11ah 2M	2 MHz	
802.11ah 4M	4 MHz	
802.11ah 8M	8 MHz	
802.11 ah 16M	16 MHz	
Minimum power @ RF Input 802.11ah 1M/2M/4M/8M/16M		- 50 dBm (nominal)
$\begin{aligned} & \text { Absolute Power Accuracy }{ }^{\mathrm{a}} \\ & \text { (} 20 \text { to } 30^{\circ} \mathrm{C} \text {) } \\ & \text { for } 802.11 \mathrm{ah} 1 \mathrm{M} / 2 \mathrm{M} / 4 \mathrm{M} / 8 \mathrm{M} / 16 \mathrm{M} \end{aligned}$	$\pm 1.04 \mathrm{~dB}$	$\pm 0.27 \mathrm{~dB}$ (95th percentile)
Measurement floor		Typical
802.11ah 1M		- 86.74 dBm
802.11ah 2M		- 83.73 dBm
802.11ah 4M		- 80.72 dBm
802.11ah 8M		- 77.71 dBm
802.11 ah 16M		- 74.70 dBm

a. Absolute power accuracy includes all error sources for in-band signals except mismatch errors and repeatability due to incomplete averaging. It applies when the mixer level is high enough that the measurement floor contribution is negligible.

Description	Specifications	Supplemental Information
Power Statistics CCDF		Radio standards are: 802.11a/g/j/p (OFDM), 802.11g (DSSS-OFDM), 802.11/b/g (DSSS/CCK/PBCC), 802.11n (20 MHz), 802.11n (40 MHz), 802.11 ac (20 MHz), or 802.11ac (40 MHz) Center Frequency in 2.4 GHz Band or 5.0 GHz Band
Minimum power at RF Input Histogram Resolution	$0.01 \mathrm{~dB}^{\text {a }}$	-50 dBm (nominal)

a. The Complementary Cumulative Distribution Function (CCDF) is a reformatting of a histogram of the power envelope. The width of the amplitude bins used by the histogram is the histogram resolution. The resolution of the CCDF will be the same as the width of those bins.

Description	Specifications	Supplemental Information
Power Statistics CCDF		Radio standards are: 802.11 af $6 \mathrm{M} / 7 \mathrm{M} / 8 \mathrm{M}$
Minimum power at RF Input		-50 dBm (nominal)
Histogram Resolution	$0.01 \mathrm{~dB}^{\mathrm{a}}$	

a. The Complementary Cumulative Distribution Function (CCDF) is a reformatting of a histogram of the power envelope. The width of the amplitude bins used by the histogram is the histogram resolution. The resolution of the CCDF will be the same as the width of those bins.

Description	Specifications	Supplemental Information
Power Statistics CCDF		Radio standards are: 802.11 ah $1 \mathrm{M} / 2 \mathrm{M} / 4 \mathrm{M} / 8 \mathrm{M} / 16 \mathrm{M}$ Minimum power at RF Input
Histogram Resolution	$0.01 \mathrm{~dB}^{\mathrm{a}}$	-50 dBm (nominal)

a. The Complementary Cumulative Distribution Function (CCDF) is a reformatting of a histogram of the power envelope. The width of the amplitude bins used by the histogram is the histogram resolution. The resolution of the CCDF will be the same as the width of those bins.

Description	Specifications	Supplemental Information
Occupied Bandwidth		Radio standards are: $802.11 \mathrm{a} / \mathrm{g} / \mathrm{j} / \mathrm{p}$ (OFDM), 802.11 g (DSSS-OFDM), 802.11/b/g (DSSS/CCK/PBCC), 802.11n (20 MHz), 802.11n (40 MHz), $802.11 \mathrm{ac}(20 \mathrm{MHz})$, $802.11 \mathrm{ac}(40 \mathrm{MHz}$), $802.11 \mathrm{ac}(80 \mathrm{MHz}$) or 802.11ac (160 MHz) Center Frequency in 2.4 GHz Band or 5.0 GHz Band
Minimum power at RF Input		-30 dBm (nominal)
Frequency accuracy	$\pm 25 \mathrm{kHz}$	$\begin{aligned} & \text { RBW }=100 \mathrm{kHz} \\ & \text { Number of Points = } 1001 \\ & \text { Span }=25 \mathrm{MHz} \end{aligned}$

Description	Specifications	Supplemental Information
Occupied Bandwidth		Radio standards are: $802.11 \mathrm{af} 6 \mathrm{M} / 7 \mathrm{M} / 8 \mathrm{M}$ Minimum power at RF Input
Frequency accuracy	$\pm 10 \mathrm{kHz}$	-30 dBm (nominal)
		RBW $=100 \mathrm{kHz}$ Number of Points $=1001$ Span $=10 \mathrm{MHz}$

Description	Specifications	Supplemental Information
Occupied Bandwidth		Radio standards are: 802.11 ah $1 \mathrm{M} / 2 \mathrm{M} / 4 \mathrm{M} / 8 \mathrm{M} / 16 \mathrm{M}$ Minimum power at RF Input
Frequency accuracy	-30 dBm (nominal)	
	$\pm 20 \mathrm{kHz}$	$\mathrm{RBW}=10 \mathrm{kHz}$
Number of Points $=1001$		
Span $=20 \mathrm{MHz}$		

Description	Specifications	Supplemental Information
Power vs. Time		Radio standard is: $802.11 / \mathrm{b} / \mathrm{g}$ (DSSS/CCK/PBCC) Measurement results type Center Frequency in 2.4 GHz Band Average Type
Measurement Time		Min, Max, Mean
Dynamic Range	0.01 dB	Off, RMS, Log

a. The dynamic range specification is the ratio of the channel power to the power in the offset specified. The dynamic range depends on the measurement settings, such as peak power or integrated power. Dynamic range specifications are based on default measurement settings, with detector set to average, and depend on the mixer level. Default measurement settings include 100 kHz RBW.
b. This dynamic range specification applies for the optimum mixer level, which is about -14 dBm . Mixer level is defined to be the average input power minus the input attenuation.
c. The sensitivity is specified with 0 dB input attenuation. It represents the noise limitations of the analyzer. It is tested without an input signal. The sensitivity at this offset is specified in the default 100 kHz RBW, at a center frequency of 2.412 GHz .
d. The relative accuracy is a measure of the ratio of the power at the offset to the main channel power. It applies for spectrum emission levels in the offsets that are well above the dynamic range limitation.

Description

Spectrum Emission Mask

(18 MHz Transmission BW
RBW $=100 \mathrm{kHz}$
11.0 MHz offset)
Dynamic Range, relative ${ }^{\text {ab }}$
Sensitivity, absolute ${ }^{\text {c }}$

Accuracy

Relative $^{\mathrm{d}}$	$\pm 0.52 \mathrm{~dB}$
Absolute $\left(20\right.$ to $\left.30^{\circ} \mathrm{C}\right)$	$\pm 2.55 \mathrm{~dB}$

Supplemental Information

Radio standards are:
$802.11 \mathrm{a} / \mathrm{g}$ (OFDM),
$802.11 \mathrm{n}(20 \mathrm{MHz})$ or 802.11ac (20 MHz)

Center Frequency in 5.0 GHz Band
80.6 dB (typical)
-96.5 dBm (typical)
$\pm 0.54 \mathrm{~dB}$ (95th percentile)
a. The dynamic range specification is the ratio of the channel power to the power in the offset specified. The dynamic range depends on the measurement settings, such as peak power or integrated power. Dynamic range specifications are based on default measurement settings, with detector set to average, and depend on the mixer level. Default measurement settings include 100 kHz RBW.
b. This dynamic range specification applies for the optimum mixer level, which is about -14 dBm . Mixer level is defined to be the average input power minus the input attenuation.
c. The sensitivity is specified with 0 dB input attenuation. It represents the noise limitations of the analyzer. It is tested without an input signal. The sensitivity at this offset is specified in the default 100 kHz RBW, at a center frequency of 5.18 GHz .
d. The relative accuracy is a measure of the ratio of the power at the offset to the main channel power. It applies for spectrum emission levels in the offsets that are well above the dynamic range limitation.

a. The dynamic range specification is the ratio of the channel power to the power in the offset specified. The dynamic range depends on the measurement settings, such as peak power or integrated power. Dynamic range specifications are based on default measurement settings, with detector set to average, and depend on the mixer level. Default measurement settings include 100 kHz RBW.
b. This dynamic range specification applies for the optimum mixer level, which is about -14 dBm . Mixer level is defined to be the average input power minus the input attenuation.
c. The sensitivity is specified with 0 dB input attenuation. It represents the noise limitations of the analyzer. It is tested without an input signal. The sensitivity at this offset is specified in the default 100 kHz RBW, at a center frequency of 2.412 GHz .
d. The relative accuracy is a measure of the ratio of the power at the offset to the main channel power. It applies for spectrum emission levels in the offsets that are well above the dynamic range limitation.

Description

Spectrum Emission Mask (22 MHz Transmission BW RBW $=100 \mathrm{kHz}$ 11.0 MHz offset)	75.5 dB	Radio standard is:
		802.11b/g (DSSS/CCK/PBCC)
		Center Frequency in 2.4 GHz Band
Dynamic Range, relative ${ }^{\text {ab }}$		80.7 dB (typical)
Sensitivity, absolute ${ }^{\text {c }}$	$-92.5 \mathrm{dBm}$	-96.5 dBm (typical)
Accuracy		
Relative ${ }^{\text {d }}$	$\pm 0.21 \mathrm{~dB}$	
Absolute (20 to $30^{\circ} \mathrm{C}$)	$\pm 1.15 \mathrm{~dB}$	$\pm 0.31 \mathrm{~dB}$ (95th percentile)

a. The dynamic range specification is the ratio of the channel power to the power in the offset specified. The dynamic range depends on the measurement settings, such as peak power or integrated power. Dynamic range specifications are based on default measurement settings, with detector set to average, and depend on the mixer level. Default measurement settings include 100 kHz RBW.
b. This dynamic range specification applies for the optimum mixer level, which is about -14 dBm . Mixer level is defined to be the average input power minus the input attenuation.
c. The sensitivity is specified with 0 dB input attenuation. It represents the noise limitations of the analyzer. It is tested without an input signal. The sensitivity at this offset is specified in the default 100 kHz RBW, at a center frequency of 2.412 GHz .
d. The relative accuracy is a measure of the ratio of the power at the offset to the main channel power. It applies for spectrum emission levels in the offsets that are well above the dynamic range limitation.

Description	Specifications	Supplemental Information
Spectrum Emission Mask (78 MHz Transmission BW RBW $=100 \mathrm{kHz}$ 41.0 MHz offset) Dynamic Range, relative ${ }^{\text {ab }}$ Sensitivity, absolute ${ }^{\text {c }}$ Accuracy Relative ${ }^{\text {d }}$ Absolute (20 to $30^{\circ} \mathrm{C}$)	$77.1 \mathrm{~dB}$ -92.5 dBm $\pm 0.77 \mathrm{~dB}$ $\pm 2.55 \mathrm{~dB}$	Radio standard is: $802.11 \mathrm{ac}(80 \mathrm{MHz})$ Center Frequency in 5.0 GHz Band 81.1 dB (typical) -96.5 dBm (typical) $\pm 0.54 \mathrm{~dB}$ (95th percentile)

a. The dynamic range specification is the ratio of the channel power to the power in the offset specified. The dynamic range depends on the measurement settings, such as peak power or integrated power. Dynamic range specifications are based on default measurement settings, with detector set to average, and depend on the mixer level. Default measurement settings include 100 kHz RBW.
b. This dynamic range specification applies for the optimum mixer level, which is about -14 dBm . Mixer level is defined to be the average input power minus the input attenuation.
c. The sensitivity is specified with 0 dB input attenuation. It represents the noise limitations of the analyzer. It is tested without an input signal. The sensitivity at this offset is specified in the default 100 kHz RBW, at a center frequency of 2.412 GHz .
d. The relative accuracy is a measure of the ratio of the power at the offset to the main channel power. It applies for spectrum emission levels in the offsets that are well above the dynamic range limitation.

Description

Spectrum Emission Mask (158 MHz Transmission BW RBW $=100 \mathrm{kHz}$ 81.0 MHz offset)		Radio standard is:
		802.11ac (160 MHz)
		Center Frequency in 5.0 GHz Band
Dynamic Range, relative ${ }^{\text {ab }}$	77.5 dB	81.2 dB (typical)
Sensitivity, absolute ${ }^{\text {c }}$	-92.5 dBm	-96.5 dBm (typical)
Accuracy		
Relative ${ }^{\text {d }}$	$\pm 0.96 \mathrm{~dB}$	
Absolute (20 to $30^{\circ} \mathrm{C}$)	$\pm 2.55 \mathrm{~dB}$	$\pm 0.54 \mathrm{~dB}$ (95th percentile)

a. The dynamic range specification is the ratio of the channel power to the power in the offset specified. The dynamic range depends on the measurement settings, such as peak power or integrated power. Dynamic range specifications are based on default measurement settings, with detector set to average, and depend on the mixer level. Default measurement settings include 100 kHz RBW.
b. This dynamic range specification applies for the optimum mixer level, which is about -14 dBm . Mixer level is defined to be the average input power minus the input attenuation.
c. The sensitivity is specified with 0 dB input attenuation. It represents the noise limitations of the analyzer. It is tested without an input signal. The sensitivity at this offset is specified in the default 100 kHz RBW, at a center frequency of 2.412 GHz .
d. The relative accuracy is a measure of the ratio of the power at the offset to the main channel power. It applies for spectrum emission levels in the offsets that are well above the dynamic range limitation.

Description	Specifications	Supplemental Information
Spectrum Emission Mask		Radio standard is: 802.11af 6M/7M/8M
Transmission BW		
802.11af 6M	5.70 MHz	
802.11af 7M	6.65 MHz	
802.11af 8M	7.60 MHz	
RBW for 802.11af 6M/7M/8M	100 kHz	
Offset		
802.11af 6M	3.15 MHz	
802.11af 7M	3.675 MHz	
802.11 af 8M	4.2 MHz	
Relative Dynamic Range ${ }^{\text {ab }}$		Typical
802.11af 6M	73.6 dB	80.7 dB
802.11 af 7M	74.0 dB	80.9 dB
802.11 af 8M	74.4 dB	81.0 dB
Absolute Sensitivity ${ }^{\text {c }}$	$-92.5 \mathrm{~dB}$	-96.5 dB
$\begin{aligned} & \text { Relative Accuracy }{ }^{\text {d }} \\ & \left(20 \text { to } 30^{\circ} \mathrm{C}\right) \end{aligned}$		
802.11 af 6 M	$\pm 0.16 \mathrm{~dB}$	
802.11af 7M	$\pm 0.17 \mathrm{~dB}$	
802.11 af 8M	$\pm 0.17 \mathrm{~dB}$	
Absolute Accuracy (20 to $30^{\circ} \mathrm{C}$) for 802.11af 6M/7M/8M	$\pm 1.15 \mathrm{~dB}$	$\pm 0.31 \mathrm{~dB}$ (typical)

a. The dynamic range specification is the ratio of the channel power to the power in the offset specified. The dynamic range depends on the measurement settings, such as peak power or integrated power. Dynamic range specifications are based on default measurement settings, with detector set to average, and depend on the mixer level. Default measurement settings include 100 kHz RBW.
b. This dynamic range specification applies for the optimum mixer level, which is about -14 dBm . Mixer level is defined to be the average input power minus the input attenuation.
c. The sensitivity is specified with 0 dB input attenuation. It represents the noise limitations of the analyzer. It is tested without an input signal. The sensitivity at this offset is specified in the default 100 kHz RBW.
d. The relative accuracy is a measure of the ratio of the power at the offset to the main channel power. It applies for spectrum emission levels in the offsets that are well above the dynamic range limitation.

Description	Specifications	Supplemental Information
Spectrum Emission Mask		Radio standard is: 802.11ah 1M/2M/4M/8M/16M
Transmission BW		
802.11ah 1M	0.9 MHz	
802.11ah 2M	1.8 MHz	
802.11ah 4M	3.8 MHz	
802.11ah 8M	7.8 MHz	
802.11ah 16M	15.8 MHz	
RBW for 802.11ah 1M/2M/4M/8M/16M	10 kHz	
Offset		
802.11ah 1M	0.6 MHz	
802.11ah 2M	1.1 MHz	
802.11ah 4M	2.1 MHz	
802.11ah 8M	4.1 MHz	
802.11 ah 16M	8.1 MHz	
Relative Dynamic Range ${ }^{\text {ab }}$		Typical
802.11ah 1M	77.7 dB	87.9 dB
802.11ah 2M	80.1 dB	89.4 dB
802.11ah 4M	82.5 dB	90.5 dB
802.11ah 8M	84.5 dB	91.2 dB
802.11 ah 16M	86.0 dB	91.6 dB
Absolute Sensitivity ${ }^{\text {c }}$	$-102.5 \mathrm{~dB}$	-106.5 dB
Relative Accuracy ${ }^{\text {d }}$ (20 to $30^{\circ} \mathrm{C}$)		
802.11ah 1M	$\pm 0.13 \mathrm{~dB}$	
802.11ah 2M	$\pm 0.14 \mathrm{~dB}$	
802.11ah 4M	$\pm 0.15 \mathrm{~dB}$	
802.11ah 8M	$\pm 0.18 \mathrm{~dB}$	
802.11 ah 16M	$\pm 0.20 \mathrm{~dB}$	

Description	Specifications	Supplemental Information
Absolute Accuracy $\left(20\right.$ to $\left.30^{\circ} \mathrm{C}\right)$ for $802.11 \mathrm{ah} 1 \mathrm{M} / 2 \mathrm{M} / 4 \mathrm{M} / 8 \mathrm{M} / 16 \mathrm{M}$	$\pm 1.15 \mathrm{~dB}$	$\pm 0.31 \mathrm{~dB}$ (typical)

a. The dynamic range specification is the ratio of the channel power to the power in the offset specified. The dynamic range depends on the measurement settings, such as peak power or integrated power. Dynamic range specifications are based on default measurement settings, with detector set to average, and depend on the mixer level. Default measurement settings include 10 kHz RBW.
b. This dynamic range specification applies for the optimum mixer level, which is about -14 dBm . Mixer level is defined to be the average input power minus the input attenuation.
c. The sensitivity is specified with 0 dB input attenuation. It represents the noise limitations of the analyzer. It is tested without an input signal. The sensitivity at this offset is specified in the default 10 kHz RBW.
d. The relative accuracy is a measure of the ratio of the power at the offset to the main channel power. It applies for spectrum emission levels in the offsets that are well above the dynamic range limitation.

Description	Specifications		Supplemental Information	
Spurious Emission (ML $=3 \mathrm{dBm}, 0$ to $55^{\circ} \mathrm{C}$ RBW $=100 \mathrm{kHz}$)			Radio standards are: $802.11 \mathrm{a} / \mathrm{g} / \mathrm{j} / \mathrm{p}(0 F D M)$, $802.11 \mathrm{~b} / \mathrm{g}$ (DSSS/CCK/PBCC), 802.11g (DSSS-OFDM), $802.11 \mathrm{n}(20 \mathrm{MHz})$, $802.11 \mathrm{n}(40 \mathrm{MHz}$), 802.11ac (20 MHz) 5.0 GHz Band, 802.11ac (40 MHz) 5.0 GHz Band, $802.11 \mathrm{ac}(80 \mathrm{MHz}$) 5.0 GHz Band or 802.11ac (160 MHz) 5.0 GHz Band	
	Center Freq		Center Freq	
	2.4 GHz	5.0 GHz	2.4 GHz	5.0 GHz
Dynamic Range ${ }^{\text {a }}$, relative	76.9 dB	76.3 dB	77.4 dB (typical)	77.1 dB (typical)
(RBW $=1 \mathrm{MHz}$)				
Sensitivity ${ }^{\text {b }}$, absolute (RBW= 1 MHz)	$-82.5 \mathrm{dBm}$	$-82.5 \mathrm{dBm}$	-86.5 dBm (typical)	-86.5 dBm (typical)
Accuracy, absolute			(95th percentile)	(95th percentile)
20 Hz to 3.6 GHz			$\pm 0.38 \mathrm{~dB}$	$\pm 0.38 \mathrm{~dB}$
3.5 to 8.4 GHz			$\pm 1.22 \mathrm{~dB}$	$\pm 1.22 \mathrm{~dB}$
8.3 to 13.6 GHz			$\pm 1.59 \mathrm{~dB}$	$\pm 1.59 \mathrm{~dB}$

a. The dynamic range is specified at 12.5 MHz offset from center frequency with mixer level of 1 dB compression point, which will degrade accuracy 1 dB .
b. The sensitivity is specified at far offset from carrier, where phase noise does not contribute. You can derive the dynamic range at far offset from 1 dB compression mixer level and sensitivity.

Description	Specifications	Supplemental Information
Spurious Emission (ML $=$ $3 \mathrm{dBm}, 0$ to $55^{\circ} \mathrm{C}$ RBW $=100 \mathrm{kHz}$)		Radio standard is:
		802.11 af $6 \mathrm{M} / 7 \mathrm{M} / 8 \mathrm{M}$
Dynamic Range ${ }^{\mathrm{a}}$, relative		
(RBW $=1 \mathrm{MHz}$)	80.7 dB	
Sensitivity ${ }^{\text {b }}$, absolute	-82.5 dBm	81.8 dB (typical)
(RBW $=1 \mathrm{MHz}$)		-86.5 dBm (typical)
Accuracy, absolute		
20 Hz to 3.6 GHz		$\pm 0.38 \mathrm{~dB}$ (95th percentile)
3.5 to 8.4 GHz	$\pm 1.22 \mathrm{~dB}$ (95th percentile)	
8.3 to 13.6 GHz		$\pm 1.59 \mathrm{~dB}$ (95th percentile)

a. The dynamic range is specified at 12.5 MHz offset from center frequency with mixer level of 1 dB compression point, which will degrade accuracy 1 dB .
b. The sensitivity is specified at far offset from carrier, where phase noise does not contribute. You can derive the dynamic range at far offset from 1 dB compression mixer level and sensitivity.

Description	Specifications	Supplemental Information
Spurious Emission (ML = $3 \mathrm{dBm}, 0$ to $55^{\circ} \mathrm{C}$ RBW $=10 \mathrm{kHz}$)		Radio standard is:
		$802.11 \mathrm{ah} 1 \mathrm{M} / 2 \mathrm{M} / 4 \mathrm{M} / 8 \mathrm{M} / 16 \mathrm{M}$
Dynamic Range ${ }^{\text {a }}$, relative	76.9 dB	
Sensitivity ${ }^{\text {b }}$, absolute	-82.5 dBm	77.4 dB (typical)
Accuracy, absolute		-86.5 dBm (typical)
20 Hz to 3.6 GHz		$\pm 0.38 \mathrm{~dB}$ (95th percentile)
3.5 to 8.4 GHz		$\pm 1.22 \mathrm{~dB}$ (95th percentile)
8.3 to 13.6 GHz		$\pm 1.59 \mathrm{~dB}$ (95th percentile)

a. The dynamic range is specified at 12.5 MHz offset from center frequency with mixer level of 1 dB compression point, which will degrade accuracy 1 dB .
b. The sensitivity is specified at far offset from carrier, where phase noise does not contribute. You can derive the dynamic range at far offset from 1 dB compression mixer level and sensitivity.

a. The specifications for these radio standards can apply to WLAN List Sequence measurements
b. Requires Option B40.
c. Phase Noise Optimization left at its default setting (Best Wide-offset ϕ Noise, $>30 \mathrm{kHz}$)
d. In these specifications, those values with dB units are the specifications, while those with $\%$ units, in parentheses, are conversions from the dB units to \% for reader convenience.
e. Phase Noise Optimization left at its default setting (Fast Tuning)
f. The accuracy specification applies when the EVM to be measured is well above the measurement floor. When the EVM does not greatly exceed the floor, the errors due to the floor add to the accuracy errors. The errors due to the floor are noise-like and add incoherently with the UUT EVM. The errors depend on the EVM of the UUT and the floor as follows:

$$
\text { error }=\left[\operatorname{sqrt}\left(E^{2} M_{U U T}{ }^{2}+\operatorname{EVM}_{\text {sa }}{ }^{2}\right)\right]-E^{2} M_{U U T}
$$

where $E V M_{U U T}$ is the EVM of the UUT in percent, and $\mathrm{EVM}_{\text {sa }}$ is the EVM floor of the analyzer in percent.
g. tfa $=$ transmitter frequency \times frequency reference accuracy.

Description	Specifications	Supplemental Information	
64QAM EVM, 5.0 GHz band (RF Input Level $=-10 \mathrm{dBm}$, Attenuation $=10 \mathrm{~dB}$, 20 to $30^{\circ} \mathrm{C}$)		Radio standards ${ }^{a}$ are: 802.11a/g/j/p (OFDM), 802.11 g (DSSS-OFDM), 802.11n (20 MHz) 802.11n (40 MHz) Code Rate: 3/4 EQ Training: Channel Est Seq Only Track Phase On Track Amp Off Track Timing Off	
EVM floor		20 MHz (nominal)	$40 \mathrm{MHz}^{\mathrm{b}}$ (nominal)
Early analyzers ${ }^{\text {cd }}$ (SN prefix <MY/SG/US5340)		-47.0 dB (0.45\%) ${ }^{\text {e }}$	-45.0 dB (0.56\%)
Analyzers with -EP3 ${ }^{\text {df }}$ (SN prefix $\geq M Y / S G / U S 5340$, ship standard with N9010A-EP3)		$\begin{aligned} & -48.0 \mathrm{~dB} \\ & (0.40 \%) \end{aligned}$	$\begin{aligned} & -46.0 \mathrm{~dB} \\ & (0.50 \%) \end{aligned}$
Accuracy ${ }^{9}$		$\pm 0.30 \%$	
(EVM Range:O to 8.0\%)			
Frequency Error			
Range		$\pm 100 \mathrm{kHz}$	
Accuracy		$\pm 10 \mathrm{~Hz}+\mathrm{tfa}^{\text {h }}$	

a. The specifications for these radio standards can apply to WLAN List Sequence measurements
b. Requires Option B40.
c. Phase Noise Optimization left at its default setting (Best Wide-offset ϕ Noise, $>30 \mathrm{kHz}$)
d. The EVM Floor specification applies when the signal path is set to $\mu \mathrm{W}$ Preselector Bypass (Option MPB enabled) for center frequencies above 3.6 GHz .
e. In these specifications, those values with dB units are the specifications, while those with \% units, in parentheses, are conversions from the dB units to \% for reader convenience.
f. Phase Noise Optimization left at its default setting (Fast Tuning)
g. The accuracy specification applies when the EVM to be measured is well above the measurement floor. When the EVM does not greatly exceed the floor, the errors due to the floor add to the accuracy errors. The errors due to the floor are noise-like and add incoherently with the UUT EVM. The errors depend on the EVM of the UUT and the floor as follows:

$$
\text { error } \left.=\left[\text { sqrt(EVMMuT }{ }^{2}+\text { EVM }_{\text {sa }}{ }^{2}\right)\right]- \text { EVM }_{\text {Uut }}
$$

where $\mathrm{EVM}_{\mathrm{UUT}}$ is the EVM of the UUT in percent, and $\mathrm{EVM}_{\text {sa }}$ is the EVM floor of the analyzer in percent.
h. tfa $=$ transmitter frequency \times frequency reference accuracy.

Description	Specifications	Supplemental Information
256QAM EVM RF Input Level $=-10 \mathrm{dBm}$ Attenuation $=10 \mathrm{~dB}$ Code Rate: 3/4 EQ training: Channel Est Seq Only Track Phase: On Track Amp: Off Track Timing: Off		Radio standard is: 802.11af 6M/7M/8M
EVM floor		
Early analyzers ${ }^{\text {ab }}$ (SN prefix <MY/SG/US5340)		Nominal
802.11af 6M		-40.5 dB (0.96\%)
802.11af 7M		-40.5 dB (0.96\%)
802.11af 8M		-40.3 dB (0.94\%)
Analyzers with - EP3 ${ }^{\text {c }}$ (SN prefix \geq MY/SG/US5340, ship standard with N9010A-EP3)		
802.11af 6M		-41.8 dB (0.81\%)
802.11af 7M		-41.8 dB (0.81\%)
802.11af 8M		-47.2 dB (0.87\%)
EVM Accuracy ${ }^{\text {d }}$		
(EVM Range:0 to 8.0\%) for 802.11 af 6M/7M/8M		$\pm 0.3 \%$
Frequency Error		
Range for 802.11 af 6M/7M/8M		$\pm 20 \mathrm{kHz}$ (nominal)
Accuracy for 802.11 af 6M/7M/8M		$\pm 10 \mathrm{~Hz}+\mathrm{tfa}^{\mathrm{e}}$ (nominal)

a. Phase Noise Optimization left at its default setting (Best Wide-offset ϕ Noise, $>30 \mathrm{kHz}$)
b. In these specifications, those values with dB units are the specifications, while those with $\%$ units, in parentheses, are conversions from the dB units to \% for reader convenience.
c. Phase Noise Optimization left at its default setting (Fast Tuning)
d. The accuracy specification applies when the EVM to be measured is well above the measurement floor. When the EVM does not greatly exceed the floor, the errors due to the floor add to the accuracy errors. The errors due to the floor are noise-like and add incoherently with the UUT EVM. The errors depend on the EVM of the UUT and the floor as follows:

$$
\text { error } \left.=\left[\text { sqrt(EVM } \text { UUT }^{2}+\text { EVM }_{\text {Sa }}{ }^{2}\right)\right]-E V M_{U U T}
$$

where $E V M_{U U T}$ is the EVM of the UUT in percent, and $\mathrm{EVM}_{\text {sa }}$ is the EVM floor of the analyzer in percent.
e. tfa $=$ transmitter frequency \times frequency reference accuracy.

Description	Specifications	Supplemental Information
256QAM EVM RF Input Level $=-10 \mathrm{dBm}$ Attenuation $=10 \mathrm{~dB}$ Code Rate: 3/4 EQ training: Channel Est Seq Only Track Phase: On Track Amp: Off Track Timing: Off		Radio standard is: 802.11ah 1M/2M/4M/8M/16M
EVM floor		
Early analyzers ${ }^{\text {ab }}$ (SN prefix <MY/SG/US5340)		Nominal
802.11ah 1M	-46.54 dB (0.471\%)	-51.60 dB (0.263\%)
802.11ah 2M	-46.54 dB (0.471\%)	-51.60 dB (0.263\%)
802.11ah 4M	-46.50 dB (0.473\%)	-51.20 dB (0.275\%)
802.11ah 8M	-46.29 dB (0.485\%)	-50.90 dB (0.285\%)
802.11 ah 16M	-45.92 dB (0.506\%)	-50.50 dB (0.299\%)
Analyzers with - EP3 ${ }^{\text {C }}$ (SN prefix \geq MY/SG/US5340, ship standard with N9010A-EP3)		
802.11ah 1M	-48.36 dB (0.382\%)	-53.10 dB (0.221\%)
802.11ah 2M	-48.36 dB (0.382\%)	-53.10 dB (0.221\%)
802.11ah 4M	-48.29 dB (0.385\%)	-52.30 dB (0.243\%)
802.11ah 8M	-47.98 dB (0.399\%)	-52.00 dB (0.251\%)
802.11 ah 16M	-47.43 dB (0.425\%)	-51.73 dB (0.259\%)
EVM Accuracy ${ }^{\text {d }}$		
(EVM Range:O to 8.0\%) for 802.11ah 1M/2M/4M/8M/16M		$\pm 0.3 \%$
Frequency Error		
Range for 802.11ah 1M/2M/4M/8M/16M		$\pm 10 \mathrm{kHz}$ (nominal)
Accuracy for 802.11ah 1M/2M/4M/8M/16M		$\pm 10 \mathrm{~Hz}+\mathrm{tfa}^{\mathrm{e}}$ (nominal)

a. Phase Noise Optimization left at its default setting (Best Wide-offset ϕ Noise, $>30 \mathrm{kHz}$)
b. In these specifications, those values with dB units are the specifications, while those with $\%$ units, in parentheses, are conversions from the dB units to \% for reader convenience.
c. Phase Noise Optimization left at its default setting (Fast Tuning)
d. The accuracy specification applies when the EVM to be measured is well above the measurement floor. When the EVM does not greatly exceed the floor, the errors due to the floor add to the accuracy errors. The errors due to the floor are noise-like and add incoherently with the UUT EVM. The errors depend on the EVM of the UUT and the floor as follows:

$$
\text { error } \left.=\left[\text { sqrt(EVMUuTt }{ }^{2}+\text { EVM }_{\text {sa }}{ }^{2}\right)\right]- \text { EVM }_{u U T}
$$

where $\mathrm{EVM}_{\mathrm{UUT}}$ is the EVM of the UUT in percent, and $\mathrm{EVM}_{\text {sa }}$ is the EVM floor of the analyzer in percent.
e. $\mathrm{tfa}=$ transmitter frequency \times frequency reference accuracy.

a. In these specifications, those values with dB units are the specifications, while those with 5 units, in parentheses, are conversions from the dB units to \% for reader convenience.
b. The EVM Floor specification applies when Phase Noise Optimization is set to Wide-offset (>30 kHz)
c. The accuracy specification applies when the EVM to be measured is well above the measurement floor. When the EVM does not greatly exceed the floor, the errors due to the floor add to the accuracy errors. The errors due to the floor are noise-like and add incoherently with the UUT EVM. The errors depend on the EVM of the UUT and the floor as follows:

$$
\text { error } \left.=\left[\text { sqrtt }^{(E V M} \text { UuT }^{2}+\text { EVM }_{\text {sa }}{ }^{2}\right)\right]- \text { EVMUUT }
$$

where EVM ${ }_{\text {UUT }}$ is the EVM of the UUT in percent, and $\mathrm{EVM}_{\text {sa }}$ is the EVM floor of the analyzer in percent.
d. $\mathrm{tfa}=\mathrm{transmitter}$ frequency \times frequency reference accuracy.

List Sequence Measurements ${ }^{1}$

Description	Specifications	Supplemental Information
Transmit Power		Radio standard is:
20 MHz Integration BW		$802.1 \mathrm{a} / \mathrm{g} / \mathrm{/j} / \mathrm{p}(\mathrm{OFDM})$,
	$802.1 \mathrm{~g}(\mathrm{DSSS}-\mathrm{OFDM})$,	
	$802.1 \mathrm{n}(20 \mathrm{MHz}$ or	
	$802.11 \mathrm{ac}(20 \mathrm{MHz})$	
Minimum power at RF Input		Center Frequency in 2.4 GHz Band
Absolute Power Accuracy ${ }^{\text {a }}$		-35 dBm (nominal)
(20 to 30		$\pm 0.49 \mathrm{~dB}$ (nominal)
Measurement floor		-73.7 dBm (typical)

a. Absolute power accuracy includes all error sources for in-band signals except mismatch errors and repeatability due to incomplete averaging. It applies when the mixer level is high enough that the measurement floor contribution is negligible.

Description	Specifications	Supplemental Information
Transmit Power		Radio standard is:
20 MHz Integration BW		$802.1 \mathrm{a} / \mathrm{g} / \mathrm{j} / \mathrm{p}(\mathrm{OFDM})$,
	$802.1 \mathrm{n}(20 \mathrm{MHz}$ or	
	$802.11 \mathrm{ac}(20 \mathrm{MHz})$	
Minimum power at RF Input		Center Frequency in 5.0 GHz Band
Absolute Power Accuracy ${ }^{\mathrm{a}}$		-35 dBm (nominal)
(20 to 30C)		$\pm 0.93 \mathrm{~dB}$ (nominal)
Measurement floor		-73.7 dBm (typical)

a. Absolute power accuracy includes all error sources for in-band signals except mismatch errors and repeatability due to incomplete averaging. It applies when the mixer level is high enough that the measurement floor contribution is negligible.

1. Requires Option N9077A-5FP be installed and licensed.

Description	Specifications	Supplemental Information
Transmit Power		Radio standard is:
40 MHz Integration BW		$802.11 \mathrm{n}(40 \mathrm{MHz}$) or
	$802.11 \mathrm{ac}(40 \mathrm{MHz})$	
Minimum power at RF Input		Center Frequency in 2.4 GHz Band
Absolute Power Accuracy ${ }^{2}$	-35 dBm (nominal)	
(20 to $30^{\circ} \mathrm{C}$)		$\pm 0.49 \mathrm{~dB}$ (nominal)
Measurement floor		-70.7 dBm (typical)

a. Absolute power accuracy includes all error sources for in-band signals except mismatch errors and repeatability due to incomplete averaging. It applies when the mixer level is high enough that the measurement floor contribution is negligible.

Description	Specifications	Supplemental Information
Transmit Power		Radio standard is:
40 MHz Integration BW		$802.11 \mathrm{n}(4 \mathrm{MHz}$ or
	$802.11 \mathrm{ac}(40 \mathrm{MHz})$	
Minimum power at RF Input		Center Frequency in 5.0 GHz Band
Absolute Power Accuracy ${ }^{\text {a }}$		-35 dBm (nominal)
(20 to 30° C)		$\pm 0.93 \mathrm{~dB}$ (nominal)
Measurement floor		-70.7 dBm (typical)

a. Absolute power accuracy includes all error sources for in-band signals except mismatch errors and repeatability due to incomplete averaging. It applies when the mixer level is high enough that the measurement floor contribution is negligible.

Description	Specifications	Supplemental Information
Transmit Power		Radio standard is:
22 MHz Integration BW		$802.11 \mathrm{~b} / \mathrm{g}$ (DSSS/CCK/PBCC)
	Center Frequency in 2.4 GHz Band	
Minimum power at RF Input	-35 dBm (nominal)	
Absolute Power Accuracy ${ }^{\text {a }}$		
(20 to 30° C)		$\pm 0.49 \mathrm{~dB}$ (nominal)
Measurement floor		-73.7 dBm (typical)

a. Absolute power accuracy includes all error sources for in-band signals except mismatch errors and repeatability due to incomplete averaging. It applies when the mixer level is high enough that the measurement floor contribution is negligible.

Description	Specifications	Supplemental Information
Transmit Output Spectrum		Radio standards are: 802.11a/g/j/p (OFDM), 802.11 g (DSSS-OFDM), $802.11 \mathrm{n}(20 \mathrm{MHz})$ or 802.11 ac (20 MHz) Center Frequency in 2.4 GHz Band
18 MHz Transmission BW RBW $=100 \mathrm{kHz}$ 11.0 MHz offset		
Dynamic Range, relative ${ }^{\text {ab }}$	75.4 dB	80.6 dB (typical)
Sensitivity, absolute ${ }^{\text {c }}$	$-92.5 \mathrm{dBm}$	-96.5 dBm (typical)
Accuracy		
Relative ${ }^{\text {d }}$	$\pm 0.21 \mathrm{~dB}$	
Absolute $\left(20 \text { to } 30^{\circ} \mathrm{C}\right)$		$\pm 0.50 \mathrm{~dB}$ (nominal)

a. The dynamic range specification is the ratio of the channel power to the power in the offset specified. The dynamic range depends on the measurement settings, such as peak power or integrated power. Dynamic range specifications are based on default measurement settings, with detector set to average, and depend on the mixer level. Default measurement settings include 100 kHz RBW.
b. This dynamic range specification applies for the optimum mixer level, which is about -14 dBm . Mixer level is defined to be the average input power minus the input attenuation.
c. The sensitivity is specified with 0 dB input attenuation. It represents the noise limitations of the analyzer. It is tested without an input signal. The sensitivity at this offset is specified in the default 100 kHz RBW, at a center frequency of 2.412 GHz
d. The relative accuracy is a measure of the ratio of the power at the offset to the main channel power. It applies for spectrum emission levels in the offsets that are well above the dynamic range limitation.

Description	Specifications	Supplemental Information
Transmit Output Spectrum		Radio standards are: 802.11a/g (OFDM), $802.11 \mathrm{n}(20 \mathrm{MHz})$ or $802.11 \mathrm{ac}(20 \mathrm{MHz})$ Center Frequency in 5.0 GHz Band
$\begin{aligned} & 18 \mathrm{MHz} \text { Transmission BW } \\ & \text { RBW }=100 \mathrm{kHz} \\ & 11.0 \mathrm{MHz} \text { offset } \end{aligned}$		
Dynamic Range, relative ${ }^{\text {ab }}$	75.4 dB	80.6 dB (typical)
Sensitivity, absolute ${ }^{\text {c }}$	$-92.5 \mathrm{dBm}$	-96.5 dBm (typical)
Accuracy		
Relative ${ }^{\text {d }}$	$\pm 0.52 \mathrm{~dB}$	
Absolute (20 to $30^{\circ} \mathrm{C}$)		$\pm 0.94 \mathrm{~dB}$ (nominal)

a. The dynamic range specification is the ratio of the channel power to the power in the offset specified. The dynamic range depends on the measurement settings, such as peak power or integrated power. Dynamic range specifications are based on default measurement settings, with detector set to average, and depend on the mixer level. Default measurement settings include 100 kHz RBW.
b. This dynamic range specification applies for the optimum mixer level, which is about -14 dBm . Mixer level is defined to be the average input power minus the input attenuation.
c. The sensitivity is specified with 0 dB input attenuation. It represents the noise limitations of the analyzer. It is tested without an input signal. The sensitivity at this offset is specified in the default 100 kHz RBW, at a center frequency of 5.18 GHz .
d. The relative accuracy is a measure of the ratio of the power at the offset to the main channel power. It applies for spectrum emission levels in the offsets that are well above the dynamic range limitation.

Description	Specifications	Supplemental Information
Transmit Output Spectrum		Radio standards are: $802.11 \mathrm{n}(40 \mathrm{MHz}$) or $802.11 \mathrm{ac}(40 \mathrm{MHz}$) Center Frequency in 2.4 GHz Band
38 MHz Transmission BW RBW $=100 \mathrm{kHz}$ 21.0 MHz offset		
Dynamic Range, relative ${ }^{\text {ab }}$	76.5 dB	80.9 dB (typical)
Sensitivity, absolute ${ }^{\text {c }}$	$-92.5 \mathrm{dBm}$	-96.5 dBm (typical)
Accuracy		
Relative ${ }^{\text {d }}$	$\pm 0.23 \mathrm{~dB}$	
Absolute (20 to $30^{\circ} \mathrm{C}$)		$\pm 0.50 \mathrm{~dB}$ (nominal)

a. The dynamic range specification is the ratio of the channel power to the power in the offset specified. The dynamic range depends on the measurement settings, such as peak power or integrated power. Dynamic range specifications are based on default measurement settings, with detector set to average, and depend on the mixer level. Default measurement settings include 100 kHz RBW.
b. This dynamic range specification applies for the optimum mixer level, which is about -14 dBm . Mixer level is defined to be the average input power minus the input attenuation.
c. The sensitivity is specified with 0 dB input attenuation. It represents the noise limitations of the analyzer. It is tested without an input signal. The sensitivity at this offset is specified in the default 100 kHz RBW, at a center frequency of 5.18 GHz
d. The relative accuracy is a measure of the ratio of the power at the offset to the main channel power. It applies for spectrum emission levels in the offsets that are well above the dynamic range limitation.

Description	Specifications	Supplemental Information
Transmit Output Spectrum		Radio standards are: 802.11n (40 MHz) or $802.11 \mathrm{ac}(40 \mathrm{MHz})$ Center Frequency in 5.0 GHz Band
38 MHz Transmission BW RBW $=100 \mathrm{kHz}$ 21.0 MHz offset		
Dynamic Range, relative ${ }^{\text {ab }}$	76.5 dB	80.9 dB (typical)
Sensitivity, absolute ${ }^{\text {c }}$	$-92.5 \mathrm{dBm}$	-96.5 dBm (typical)
Accuracy		
Relative ${ }^{\text {d }}$	$\pm 0.63 \mathrm{~dB}$	
Absolute (20 to $30^{\circ} \mathrm{C}$)		$\pm 0.94 \mathrm{~dB}$ (nominal)

a. The dynamic range specification is the ratio of the channel power to the power in the offset specified. The dynamic range depends on the measurement settings, such as peak power or integrated power. Dynamic range specifications are based on default measurement settings, with detector set to average, and depend on the mixer level. Default measurement settings include 100 kHz RBW.
b. This dynamic range specification applies for the optimum mixer level, which is about -14 dBm . Mixer level is defined to be the average input power minus the input attenuation.
c. The sensitivity is specified with 0 dB input attenuation. It represents the noise limitations of the analyzer. It is tested without an input signal. The sensitivity at this offset is specified in the default 100 kHz RBW, at a center frequency of 5.18 GHz
d. The relative accuracy is a measure of the ratio of the power at the offset to the main channel power. It applies for spectrum emission levels in the offsets that are well above the dynamic range limitation.

Description	Specifications	Supplemental Information
Transmit Output Spectrum		Radio standard is: 802.11b/g (DSSS/CCK/PBCC) Center Frequency in 2.4 GHz Band
22 MHz Transmission BW RBW $=100 \mathrm{kHz}$ 11.0 MHz offset		
Dynamic Range, relative ${ }^{\text {ab }}$	75.5 dB	80.7 dB (typical)
Sensitivity, absolute ${ }^{\text {c }}$	$-92.5 \mathrm{dBm}$	-96.5 dBm (typical)
Accuracy		
Relative ${ }^{\text {d }}$	$\pm 0.21 \mathrm{~dB}$	
Absolute (20 to $30^{\circ} \mathrm{C}$)		$\pm 0.50 \mathrm{~dB}$ (nominal)

a. The dynamic range specification is the ratio of the channel power to the power in the offset specified. The dynamic range depends on the measurement settings, such as peak power or integrated power. Dynamic range specifications are based on default measurement settings, with detector set to average, and depend on the mixer level. Default measurement settings include 100 kHz RBW.
b. This dynamic range specification applies for the optimum mixer level, which is about -14 dBm . Mixer level is defined to be the average input power minus the input attenuation.
c. The sensitivity is specified with 0 dB input attenuation. It represents the noise limitations of the analyzer. It is tested without an input signal. The sensitivity at this offset is specified in the default 100 kHz RBW, at a center frequency of 2.412 GHz .
d. The relative accuracy is a measure of the ratio of the power at the offset to the main channel power. It applies for spectrum emission levels in the offsets that are well above the dynamic range limitation.

Description	Specifications	Supplemental Information
64QAM EVM (RF Input Level = -10 dBm, Attenuation $=10 \mathrm{~dB}$, 20 to $30^{\circ} \mathrm{C}$)		Radio standards are: 802.11a/g/j/p (OFDM), 802.11 g (DSSS-OFDM), $802.11 \mathrm{n}(20 \mathrm{MHz}$) or $802.11 \mathrm{ac}(20 \mathrm{MHz})$, Center Frequency in 2.4 GHz Band Code Rate: 3/4 EQ Training: Channel Est Seq Only Track Phase On Track Amp Off Track Timing Off
EVM		
Floor ${ }^{\text {ab }}$		$-49.0 \mathrm{~dB}(0.36 \%)$ (nominal)
Accuracy ${ }^{\text {c }}$ (EVM Range:0 to 8.0\%)		$\pm 0.30 \%$ (nominal)
Frequency Error		
Range		$\pm 100 \mathrm{kHz}$ (nominal)
Accuracy		$\pm 10 \mathrm{~Hz}+\mathrm{tfa}^{\mathrm{d}}$ (nominal)

a. In these specifications, those values with dB units are the specifications, while those with $\%$ units, in parentheses, are conversions from the dB units to \% for reader convenience.
b. The EVM Floor specification applies when Phase Noise Optimization is set to Wide-offset ($>30 \mathrm{kHz}$)
c. The accuracy specification applies when the EVM to be measured is well above the measurement floor. When the EVM does not greatly exceed the floor, the errors due to the floor add to the accuracy errors. The errors due to the floor are noise-like and add incoherently with the UUT EVM. The errors depend on the EVM of the UUT and the floor as follows:

$$
\text { error }=\left[\operatorname{sqrt}\left(E V M_{U U T}{ }^{2}+\mathrm{EVM}_{\mathrm{Sa}}{ }^{2}\right)\right]-E V M_{U U T}
$$

where EVM
d. tfa $=$ transmitter frequency \times frequency reference accuracy.

a. In these specifications, those values with dB units are the specifications, while those with $\%$ units, in parentheses, are conversions from the dB units to \% for reader convenience.
b. The EVM Floor specification applies when Phase Noise Optimization is set to Wide-offset ($>30 \mathrm{kHz}$)
c. The EVM Floor specification applies when $\mu \mathrm{W}$ Path Control is set to $\mu \mathrm{W}$ Preselector Bypass.
d. The accuracy specification applies when the EVM to be measured is well above the measurement floor. When the EVM does not greatly exceed the floor, the errors due to the floor add to the accuracy errors. The errors due to the floor are noise-like and add incoherently with the UUT EVM. The errors depend on the EVM of the UUT and the floor as follows:

$$
\text { error }=\left[\operatorname{sqrt}\left(E V M_{U U T}^{2}+\mathrm{EVM}_{\mathrm{Sa}}^{2}\right)\right]-\mathrm{EVM}_{\mathrm{UUT}}
$$

where $\mathrm{EVM}_{\text {UUT }}$ is the EVM of the UUT in percent, and $\mathrm{EVM}_{\text {sa }}$ is the EVM floor of the analyzer in percent.
e. tfa $=$ transmitter frequency \times frequency reference accuracy.

Description	Specifications	Supplemental Information
64QAM EVM		Radio standards are: (RF Input Level $=-10 \mathrm{dBm}$, Attenuation $=10 \mathrm{~dB}$, 20 to $30^{\circ} \mathrm{C}$)
		$802.11 \mathrm{n}(40 \mathrm{MHz}$) or Center Frequency in 2.4 GHz Band Code Rate: 3/4 EQ Training: Channel Est Seq Only Track Phase On
EVM		Track Amp Off Track Timing Off
Floorabc		
Accuracy		
(EVM Range:0 to 8.0\%)		-46.5 dB (0.47\%) (nominal)
Frequency Error		$\pm 0.30 \%$ (nominal)
Range		$\pm 100 \mathrm{kHz}$ (nominal)
Accuracy		$\pm 10 \mathrm{~Hz}+$ tfae (nominal)

a. In these specifications, those values with dB units are the specifications, while those with $\%$ units, in parentheses, are conversions from the dB units to \% for reader convenience.
b. The EVM Floor specification applies when Phase Noise Optimization is set to Wide-offset (>30 kHz)
c. The EVM Floor specification applies when B40 is available.
d. The accuracy specification applies when the EVM to be measured is well above the measurement floor. When the EVM does not greatly exceed the floor, the errors due to the floor add to the accuracy errors. The errors due to the floor are noise-like and add incoherently with the UUT EVM. The errors depend on the EVM of the UUT and the floor as follows:

$$
\text { error }=\left[\operatorname{sqrt}^{\prime}\left(\text { EVM }_{U u T}{ }^{2}+\text { EVM }_{\text {sa }}{ }^{2}\right)\right]-E V M_{U U T}
$$

where $\mathrm{EVM}_{\text {Uut }}$ is the EVM of the UUT in percent, and $\mathrm{EVM}_{\mathrm{sa}}$ is the EVM floor of the analyzer in percent.
e. $\mathrm{tfa}=$ transmitter frequency \times frequency reference accuracy.

Description	Specifications	Supplemental Information
64QAM EVM		Radio standards are: (RF Input Level $=-10 \mathrm{dBm}$, Attenuation $=10 \mathrm{~dB}$, 20 to $30^{\circ} \mathrm{C}$)
		$802.11 \mathrm{n}(40 \mathrm{MHz}$) or Center Frequency in 5.0 GHz Band Code Rate: 3/4 EQ Training: Channel Est Seq Only Track Phase On
EVM		Track Amp Off Track Timing Off
Floorabcd		-45.5 dB (0.53\%) (nominal)
Accuracy		$\pm 0.30 \%$ (nominal)
(EVM Range:0 to 8.0\%)		$\pm 100 \mathrm{kHz}$ (nominal)
Frequency Error		$\pm 10 \mathrm{~Hz}+\mathrm{tfa}^{\dagger}$ (nominal)
Range		
Accuracy		

a. In these specifications, those values with dB units are the specifications, while those with $\%$ units, in parentheses, are conversions from the dB units to \% for reader convenience.
b. The EVM Floor specification applies when Phase Noise Optimization is set to Wide-offset (>30 kHz)
c. The EVM Floor specification applies when $B 40, B 85, B 1 A$, or $B 1 X$ is available.
d. The EVM Floor specification applies when $\mu \mathrm{W}$ Path Control is set to $\mu \mathrm{W}$ Preselector Bypass.
e. The accuracy specification applies when the EVM to be measured is well above the measurement floor. When the EVM does not greatly exceed the floor, the errors due to the floor add to the accuracy errors. The errors due to the floor are noise-like and add incoherently with the UUT EVM. The errors depend on the EVM of the UUT and the floor as follows:

$$
\text { error } \left.=\left[\text { sqrt(EVM } \text { Uut }^{2}+\text { EVM }_{\text {sa }}{ }^{2}\right)\right]- \text { EVMuut }
$$

where $\mathrm{EVM} \mathrm{Mut}_{\text {t }}$ is the EVM of the UUT in percent, and $\mathrm{EVM}_{\mathrm{sa}}$ is the EVM floor of the analyzer in percent.
f. tfa $=$ transmitter frequency \times frequency reference accuracy.

Description

Specifications

Supplemental Information

CCK 11Mbps

(RF Input Level $=-10 \mathrm{dBm}$,
Attenuation $=10 \mathrm{~dB}$,
20 to $30^{\circ} \mathrm{C}$)

EVM
Floor ${ }^{\text {ab (EQ Off) }}$
Floor (EQ On)
Accuracy ${ }^{\text {c }}$
(EVM Range: 0 to 2.0\%)
(EVM Range: 2 to 20.0\%)
Frequency Error
Range
Accuracy
a. In these specifications, those values with dB units are the specifications, while those with 5 units, in parentheses, are conversions from the dB units to \% for reader convenience.
b. The EVM Floor specification applies when Phase Noise Optimization is set to Wide-offset (>30 kHz)
c. The accuracy specification applies when the EVM to be measured is well above the measurement floor. When the EVM does not greatly exceed the floor, the errors due to the floor add to the accuracy errors. The errors due to the floor are noise-like and add incoherently with the UUT EVM. The errors depend on the EVM of the UUT and the floor as follows:

$$
\text { error }=\left[\operatorname{sqrt}\left(E V M_{U U T}^{2}+\mathrm{EVM}_{\mathrm{Sa}}{ }^{2}\right)\right]-E V M_{U U T}
$$

where $E V M_{\text {UUT }}$ is the EVM of the UUT in percent, and $\mathrm{EVM}_{\text {sa }}$ is the EVM floor of the analyzer in percent.
d. tfa = transmitter frequency \mathbf{X} frequency reference accuracy.

In-Band Frequency Range for Warranted Specifications

a. Channel center frequency, Channel starting frequency and Channel Center Frequency Index are given by the operating class (Annex E) in IEEE P802.11ah ${ }^{\text {TM }} /$ D2.1.
b. Channel starting frequency, Channel number multiplier are given by the operating class (Annex E) in IEEE P802.11 af ${ }^{\text {TM } / D 1.05 . ~}$

This information is subject to change without notice.
© Keysight Technologies 2016-2024

Edition 1, April 2024

