启用浏览器 cookies,以便改善站点的功能和性能。
Here's the page we think you wanted. See search results instead:
Keysight Technologies
Toggle Menu
在线咨询
联系我们
Welcome

欢迎

  • 我的个人信息
  • 退出
  • 登录
  • 注册
报价
  • 您的快速报价是空的。
  • 申请定制报价
  • 如何购买或租赁
中国

确认您的国家或地区

中国

  • 中国
  • 日本
  • 繁體中文
  • 한국
  • Россия
  • Brasil
  • Canada
  • Deutschland
  • France
  • India
  • Malaysia
  • United Kingdom
  • United States
  • Australia
  • Austria
  • Belgium
  • Denmark
  • Finland
  • Hong Kong, China
  • Ireland
  • Israel
  • Italy
  • Mexico
  • Netherlands
  • Singapore
  • Spain
  • Sweden
  • Switzerland (German)
  • Thailand
  • 更多…

请确认

确认您所在的国家/地区,以便获取相应的价格、促销、活动和联系信息等。

  • 产品与服务
    • 示波器和分析仪
      • 示波器
      • 频谱分析仪 (信号分析仪)
      • 网络分析仪
      • 逻辑分析仪
      • 协议分析仪和训练器
      • BERT - 误码率测试仪
      • 噪声系数分析仪和噪声源
      • 高速数字化仪和多通道数据采集解决方案
      • 交流功率分析仪
      • 直流电源分析仪
      • 材料测试仪器
      • 器件电流波形分析仪
      • 参数分析仪与器件分析仪、曲线追踪仪
    • 仪表
      • 数字万用表 (DMM)
      • 相位噪声测量
      • 功率计 + 功率传感器
      • 53200 Series RF and Universal Frequency Counter / Timers
      • LCR 表和阻抗测量产品
      • B2980 系列飞安计/皮安计和静电计
    • 发生器、信号源与电源
      • 信号发生器(信号源)
      • 波形和函数发生器
      • 任意波形发生器
      • 脉冲发生器产品
      • HEV/EV/电网仿真器和测试系统
      • 直流电源
      • 源表模块
      • 直流电子负载
      • 交流电源
    • 软件
      • Application Software Testing
      • PathWave 设计软件
      • PathWave 测试软件
      • 应用软件
      • 生产力软件
      • Software Enterprise Agreement
      • 所有设计与测试软件  
    • 无线
      • 无线网络仿真器
      • 信道仿真器
      • Nemo 无线网络解决方案
      • 5G OTA暗室
      • 无线分析仪
      • 物联网合规性测试解决方案
    • 模块化仪器
      • PXI 产品
      • AXIe 产品
      • 数据采集系统 (DAQ)
      • USB 产品
      • VXI 产品
      • 参考解决方案
      • All Modular Instruments  
    • 网络测试
      • 协议和负载测试
      • 网络测试硬件
      • Cloud Test
      • 性能监控
      • 5G NR 基站测试
      • 无线接入 + 核心网测试
      • Network Modeling
      • All Network Test  
    • 网络安全与可见性
      • 网络数据包代理程序
      • 云可视性
      • 网络分流器
      • 旁路交换机
      • 网络安全
      • 应用和威胁情报
    • 其他产品
      • ICT在线测试仪
      • 面向特定应用的测试系统和组件
      • 参数测试解决方案
      • 光通信测试与测量产品
      • 激光干涉仪和校准系统
      • Monolithic Laser Combiners & Precision Optics
      • 毫米波和微波器件
    • 服务
      • KeysightCare 服务与支持
      • KeysightAccess 服务
      • 仪器校准检测服务
      • 维修服务
      • 技术更新服务
      • 测试即服务(TaaS)
      • 网络/安全服务
      • 咨询服务
      • 金融服务
      • Education Services
      • Keysight Support Portal
      • Used Equipment
      • 所有服务  
    • 所有产品、软件和服务  
  • 解决方案
    • 5G
    • 云
    • 互联汽车
    • 数据中心基础设施
    • 设计与自动化
    • 新兴技术
    • 能源生态系统
    • 高速数字系统设计
    • 物联网
    • 制造测试
    • 测量基础知识
    • 网络安全
    • 网络测试
    • 网络可视化
    • SDN、NFV 与虚拟化
    • 自动化测试软件
    • 全部解决方案  
  • 行业
    • 航空航天与国防
    • 汽车与能源
    • 通信
    • 教育
    • 企业
    • 政府
    • 半导体
    • 服务提供商
    • 所有行业 + 技术  
  • 洞见是德
    • 探索新知
    • 成功案例
    • 博客
    • Keysight University
  • 资源
  • 购买
  • 支持
    • 是德科技产品支持
    • Ixia 产品支持
No product matches found - System Exception
New Pulse Signal Processing and Analysis Techniques
Application Notes

New Pulse Signal Processing and Analysis Techniques

Show Description

Introduction

Pulsed signals are widespread in radar and other EW applications, and they must be accurately measured for manufacturing, design of countermeasures, and threat assessment. However pulse measurements are an especially challenging area for signal analysis due to a combination of factors.

– Wide pulse bandwidth—the result of short pulse duration and fast transitions

– Complex signal environments containing pulses from a number of different sources, often with dramatically different characteristics such as bandwidth, repetition rate and modulation type

– Pulse environments with wide dynamic range in the pulses to be analyzed or created

– Pulses with complex modulation that must be demodulated and decoded or measured

– Pulses that are difficult to detect due to very low duty cycle, intermixing with other signals, and low apparent power level at the analysis point

Fortunately many of the improving signal processing and analog-digital conversion technologies behind the generation of complex pulse environments also enable new techniques for effective pulse analysis. This application note will discuss the best tools and latest developments for different types of pulse analysis, along with display and analysis techniques for various signals and measurement goals. This note will also cover key signal acquisition and processing technologies such as IF and frequency mask triggering, signal capture, and post-processing.

The analysis described here is available in two comprehensive pulsed radar analysis applications:

The N9067C X-Series pulse measurement application is a new internal measurement application for Keysight’s X-Series signal analyzers, providing a high performance one-box measurement solution with bandwidths as wide as 1 GHz that can be operated from the multi-touch front panel interface or through SCPI programming. Option BHQ for the 89600 VSA software adds to general vector signal analysis measurements a broad set of analysis tools and statistical reports of pulse characteristics, operating on both RF/microwave signal analyzer and oscilloscope platforms.

Both of these pulse measurement applications use the same algorithms, providing consistent measurement results and improving measurement confidence. This application note will describe the choice of application software and the associated hardware platforms, along with available triggering and measurement types and displays.

Table of Contents

  • Pulsed Signals and the Challenge of Signal Acquisition
  • Choosing RF/microwave hardware for signal analysis
  • Software for measurements and signal processing
  • Pulse Analysis Measurement Process and Tools
  • Functional blocks of pulse measurement
  • Meeting the Challenges of Complex Pulse Analysis
  • IF Magnitude trigger
  • Frequency mask trigger
  • Time qualified trigger
  • Oscilloscope holdoff trigger
  • Dynamic Range and Bandwidth Tradeoffs for Wideband Signals
  • Capturing Large Numbers of Pulses with Efficient Memory Use
  • Completely Characterizing Pulse Modulation
  • Summary

Pulsed Signals and the Challenge of Signal Acquisition

In the past, basic pulse measurements were generally made with swept spectrum analyzers. The intermediate frequency (IF) bandwidth or resolution bandwidth (RBW) of the spectrum analyzer was generally narrower than the effective bandwidth of the pulse, so the spectrum analyzer was used to measure the resulting pulse spectrum. The pulse spectrum could then be used to measure basic signal characteristics such as pulse repetition rate or interval (PRI), duty cycle, power, etc. Spectrum analyzers were also used in more traditional ways to make out-of-band measurements such as spurious and harmonics of pulsed signals.

Though indirect and slightly clumsy, the pulse spectrum approach was adequate for simple pulses and signal environments containing only a single pulse train, and where frequency agility was low or could be inhibited.

Modern systems use much more complex pulses, and many signals or signal environments include a number of different pulses (along with other signals) from one or multiple emitters, as shown in the real-time spectrum measurement of Figure 1.

The combination of complex signals and detailed measurement requirements means that pulse measurements must now be made using digital signal processing (DSP) techniques on digitally sampled signals.

Choosing RF/Microwave hardware for signal analysis

A critical first step is to choose the main measurement hardware platform, a choice that will influence the pulse measurement software that will be discussed later in this note. Rapid increases in signal analyzer bandwidths and improved resolution in digital oscilloscopes are constantly changing the tradeoffs that affect pulse measurements.

Two different RF/microwave hardware measurement platforms—shown in Figure 2—are generally used for this purpose: signal analyzers with a wideband digital IF, and oscilloscopes or digitizers with a sampling rate high enough to directly handle microwave RF/microwave signals at the baseband.

The two hardware front-end approaches are conceptually similar for most pulse measurements. In both cases, the output of the RF/microwave front end (including subsequent processing) is a stream or data file of I/Q samples of the signal or signal environment. The principal architectural difference is the location of the analog to digital conversion (ADC) operations and the type of processing used to focus analysis on the frequency band of interest.

Signal analyzers use a fundamental or harmonic analog mixing process and analog filters to convert RF or microwave signals to an IF section where ADC operations are performed.

Oscilloscopes (and other time-domain samplers such as modular digitizers) sample the RF or microwave signals directly in a baseband fashion, and subsequent downconversion and band-limiting are performed by DSP.

更改电子邮件地址?
必填项

必填项

必填项

必填项

必填项

必填项

必填欄位

必填欄位

必填欄位

必填欄位

必填欄位

必填欄位

必填欄位

必填欄位

必填欄位

点击此按钮,即表示您已同意将您的个人资料提供給是德科技。 关于我们如何使用这些资料,请查阅 是德科技隐私声明。

感谢您!
Download

查看

  • 产品与服务
  • 解决方案
  • 行业
  • 活动
  • 是德科技云课堂

Insights

  • 成功案例
  • 资源
  • 博客
  • 社区

合作伙伴

支持

  • 是德科技产品支持
  • Ixia 产品支持
  • 管理软件许可证
  • 产品订单状态
  • 部件

关于 Keysight

  • 新闻
  • 投资者关系
  • 企业社会责任
  • 多元化、公平性和包容性
  • 供应链透明化
  • 招贤纳士

  • LinkedIn:与是德科技互联 WeChat:与是德科技互联
  • © 是德科技 2000–2022
  • 隐私
  • 条款
  • 反馈
  • 京ICP备20005161号 京公网安备 11010502040140 号