


Customizing Protocol
Descriptions for Packet
Viewer

Online Help

Notices
© Agilent Technologies, Inc. 2005-2009

No part of this manual may be reproduced
in any form or by any means (including
electronic storage and retrieval or transla-
tion into a foreign language) without prior
agreement and written consent from Agi-
lent Technologies, Inc. as governed by
United States and international copyright
laws.

Manual Part Number

Version 03.83.0000

Edition

October 12, 2009

Available in electronic format only

Agilent Technologies, Inc.
1900 Garden of the Gods Road
Colorado Springs, CO 80907 USA

Warranty

The material contained in this docu-
ment is provided “as is,” and is sub-
ject to being changed, without notice,
in future editions. Further, to the max-
imum extent permitted by applicable
law, Agilent disclaims all warranties,
either express or implied, with regard
to this manual and any information
contained herein, including but not
limited to the implied warranties of
merchantability and fitness for a par-
ticular purpose. Agilent shall not be
liable for errors or for incidental or
consequential damages in connection
with the furnishing, use, or perfor-
mance of this document or of any
information contained herein. Should
Agilent and the user have a separate
written agreement with warranty
terms covering the material in this
document that conflict with these
terms, the warranty terms in the sep-
arate agreement shall control.

Technology Licenses

The hardware and/or software described in
this document are furnished under a
license and may be used or copied only in
accordance with the terms of such license.

Restricted Rights Legend

If software is for use in the performance of
a U.S. Government prime contract or sub-
contract, Software is delivered and
licensed as “Commercial computer soft-
ware” as defined in DFAR 252.227-7014
(June 1995), or as a “commercial item” as
defined in FAR 2.101(a) or as “Restricted
computer software” as defined in FAR
52.227-19 (June 1987) or any equivalent

agency regulation or contract clause. Use,
duplication or disclosure of Software is
subject to Agilent Technologies’ standard
commercial license terms, and non-DOD
Departments and Agencies of the U.S. Gov-
ernment will receive no greater than
Restricted Rights as defined in FAR
52.227-19(c)(1-2) (June 1987). U.S. Govern-
ment users will receive no greater than
Limited Rights as defined in FAR 52.227-14
(June 1987) or DFAR 252.227-7015 (b)(2)
(November 1995), as applicable in any
technical data.

Safety Notices

CAUTION

A CAUTION notice denotes a haz-
ard. It calls attention to an operat-
ing procedure, practice, or the like
that, if not correctly performed or
adhered to, could result in damage
to the product or loss of important
data. Do not proceed beyond a
CAUTION notice until the indicated
conditions are fully understood and
met.

WARNING

A WARNING notice denotes a
hazard. It calls attention to an
operating procedure, practice, or
the like that, if not correctly per-
formed or adhered to, could result
in personal injury or death. Do not
proceed beyond a WARNING
notice until the indicated condi-
tions are fully understood and met.

Trademarks

Microsoft®, MS-DOS®, Windows®, Win-
dows 2000®, and Windows XP® are U.S.
registered trademarks of Microsoft Corpo-
ration.

Adobe®, Acrobat®, and the Acrobat
Logo® are trademarks of Adobe Systems
Incorporated.

Customizing Protocol Descriptions for Packet Viewer Online Help 3

Protocol Development Kit (PDK)—At a Glance

The Agilent Logic Analyzer application has a Packet Decoder tool that
decodes captured logic analyzer data into packet information.

There is also a Packet Viewer window that displays decoded packet
information.

Both the Packet Decoder tool and the Packet Viewer window work with
multiple protocols, specified by XML- format protocol description files.

Protocol description files describe the way a protocol is framed, decoded,
encoded (prepared for the "Find a packet" trigger function), and displayed.
You can edit existing protocol descriptions and add new ones. This
document describes how.

A single protocol description file is created for each protocol family.

Protocol description files are loaded when the Agilent Logic Analyzer
application starts or when "refreshed" in the Packet Decoder tool.

4 Customizing Protocol Descriptions for Packet Viewer Online Help

In the Packet Decoder tool's Properties dialog, you can select from the
protocols that have been loaded.

• Chapter 1, “Editing an Existing Protocol Description,” starting on page
9

• Chapter 2, “Creating a New Protocol Description,” starting on page 17

• Chapter 3, “Using Formulas,” starting on page 59

• Chapter 4, “Solving Problems,” starting on page 65

• Chapter 5, “Multi- Lane Serial Link Concepts,” starting on page 73

• Chapter 6, “XML Element Reference,” starting on page 77

• Chapter 7, “Formula Reference,” starting on page 125

For more information on using the Packet Decoder tool, the Packet Viewer
window, and the Event Editor, see:

• "Using the Packet Decoder Tool" (in the online help)

• "Analyzing Packet Data" (in the online help)

• "Using the Packet Event Editor" (in the online help) and "Event Editor
Dialog" (in the online help)

For a printable version of this help file, see: "Customizing Protocol
Descriptions for Packet Viewer".

Customizing Protocol Descriptions for Packet Viewer Online Help 5

Contents
Protocol Development Kit (PDK)—At a Glance 3

1 Editing an Existing Protocol Description

Starting the Protocol Description File Editor 10

Opening Protocol Description Files 11

Editing Protocol Description Files 13

Checking Protocol Description File Edits 14

Saving Protocol Description Files 15

Refreshing Protocol Files in the Application 16

2 Creating a New Protocol Description

Before You Get Started 18

Byte/Bit Order Requirements 18

Getting Started, Using a Simple Example 20

Step 1: Open the protocol description editor 20
Step 2: Start with a minimal protocol description 20
Step 3: Save the description to the Protocols directory 22
Step 4: Look at results in the user interface 22

Getting Started, Describing Your Protocol 27

Step 5: Choose a unique protocol family name 27
Step 6: Describe the bus to be decoded 28
Step 7: Describe the packet types 35
Step 8: Describe the protocol's headers, data, trailers, and fields 37
Step 9: Describe the columns displayed in Packet Viewer by default 43
Getting Started Summary 44

Adding Decode Information 45

Assigning Meaningful Strings to Values 45
Describing Protocol Errors 46
Adding Color Descriptions (for Packet Viewer) 47

6 Customizing Protocol Descriptions for Packet Viewer Online Help

How to ... 51

To decode conditionally based on packet bits 51
To determine serial data start of packet by using look around 51
To display and use full values for partial bit fields 52
To decode fields with printf-style format strings 52
To add information to a packet 53

Using Advanced Features 55

Using ValueFunctions 55
Using TransformFunctions 56
When the Framing Options are Not Sufficient 57

3 Using Formulas

Using Formulas in Bus/Signal Label Descriptions 60

To determine the start-/end-of-packets 60
To determine valid data 60
To look around 61
To identify rising/falling/toggling signals 61

Using Formulas in Field Descriptions 62

To operate on other field values 62
To look ahead 62
To get the length of variable-length packets 63

4 Solving Problems

Protocol Description Errors when Application Starts 66

Decode Errors 70

Pre-Defined Protocol Errors that Appear in Packet Viewer 71

5 Multi-Lane Serial Link Concepts

6 XML Element Reference

<Bus> 79

<BusProtocol> 81

<Default> 83

<DisplayDefaults> 85

<DisplayField> 86

<Enum> 87

<Enumset> 88

Customizing Protocol Descriptions for Packet Viewer Online Help 7

<Field> 89

<FieldContainer> 95

<FieldGroup> 96

<Header> 97

<Label> 98

<MetaField> 101

<PacketDisplay> 102

<PacketHighlightRule> 103

<PacketHighlightRules> 105

<PacketMask> 106

<PacketType> 107

<PacketTypeGroup> 109

<PacketTypes> 110

<Payload> 111

<Protocol> 112

<ProtocolError> 113

<ProtocolErrors> 114

<ProtocolFamily> 115

<Range> 117

<RepetitiveFields> 118

<Segment> 120

<SegmentedField> 121

<SymbolDecode> 122

<Trailer> 123

7 Formula Reference

Operators 126

Operands 127

Constants 127
Field and Bus/Signal Operand Names 127
Ranging 128
Look Around 128

8 Customizing Protocol Descriptions for Packet Viewer Online Help

8 Glossary

Index

 9

Customizing Protocol Descriptions for Packet Viewer
Online Help

1
Editing an Existing Protocol Description

Starting the Protocol Description File Editor 10

Opening Protocol Description Files 11

Editing Protocol Description Files 13

Checking Protocol Description File Edits 14

Saving Protocol Description Files 15

Refreshing Protocol Files in the Application 16

10 Customizing Protocol Descriptions for Packet Viewer Online Help

1 Editing an Existing Protocol Description

Starting the Protocol Description File Editor

1 From the Windows Start menu, choose Start>All Programs>Agilent
Logic Analyzer>Agilent Protocol Development Kit.

Or:

Click the Agilent Protocol Development Kit icon on the Windows
Desktop.

If No Licenses are
Available

If no licenses are available when starting the Protocol Development Kit
(PDK), you get the following dialog:

You can get more information on licensing by choosing Help>Software
Licenses... in the main Agilent Logic Analyzer application and by clicking
the Help button in the resulting Software Licensing dialog.

(The Help>Software Licenses... menu item is also available in the protocol
description file editor once it is licensed and you are able to start it.)

Editing an Existing Protocol Description 1

Customizing Protocol Descriptions for Packet Viewer Online Help 11

Opening Protocol Description Files

Protocol description files are opened (and saved) from the Agilent PDK
(Protocol Development Kit) editor's File menu.

Protocol description files are located in the Protocols folder in the Agilent
Logic Analyzer application's install directory. For example, the default
location is: C:\Program Files\Agilent Technologies\Logic Analyzer\
Protocols.

1 From the Protocol Description File Editor's main menu, choose
File>Open....

2 In the Open dialog, select the protocol description file you wish to
open; then, click Open.

Protocol description files have the .aex (Agilent Encrypted XML) file
extension.

The XML- format protocol description file appears in the PDK (Protocol
Development Kit) editor window.

12 Customizing Protocol Descriptions for Packet Viewer Online Help

1 Editing an Existing Protocol Description

Editing an Existing Protocol Description 1

Customizing Protocol Descriptions for Packet Viewer Online Help 13

Editing Protocol Description Files

Protocol description files are edited using the Agilent PDK (Protocol
Development Kit) editor's Edit menu.

The PDK editor provides the standard text editing features:

• Undo and Redo.

• Cut, Copy, Paste, and Delete.

• Select All.

• Find/Replace.

It also provides these features:

• Enable Line Numbers.

• Highlight Current Line.

• Word Wrap — lines longer than the number of characters that can be
displayed are wrapped in the display area so that you do not have to
scroll horizontally.

• Show 80 Column Guide.

• Go to Line.

For more information on what the different parts of the protocol
description file are for, see:

• Chapter 2, “Creating a New Protocol Description,” starting on page 17

• Chapter 6, “XML Element Reference,” starting on page 77

14 Customizing Protocol Descriptions for Packet Viewer Online Help

1 Editing an Existing Protocol Description

Checking Protocol Description File Edits

Validation Checks Validation checks occur as you edit a protocol description file, and
messages appear in the lower portion of the editor window to tell you
about problems. Validation checks find problems like:

• Incorrect element and attribute names and capitalization.

• Mismatched start and end tags.

• Invalid attribute values.

• Out of place elements.

The validation checks help you fix protocol description file problems
before the file is loaded at application startup.

Parsing Checks
at Application

Startup

When the Agilent Logic Analyzer application starts up, or when you
refresh protocol files in the Packet Decoder tool, protocol description files
are parsed and loaded. Additional checks are performed on the files as
they are parsed.

The protocol description file editor lets you simulate parsing, so that you
can find additional problems before trying to use a description.

To simulate the parsing that happens at application startup or refresh:

1 From the Protocol Description File Editor's main menu, choose
Tools>Simulate Loading File.

Messages from the parse operation appear in a separate dialog — similar
to what is shown when errors are present at application startup or
refresh.

Editing an Existing Protocol Description 1

Customizing Protocol Descriptions for Packet Viewer Online Help 15

Saving Protocol Description Files

Protocol description files are located in the Protocols folder in the Agilent
Logic Analyzer application's install directory. For example, the default
location is: C:\Program Files\Agilent Technologies\Logic Analyzer\
Protocols.

1 From the Protocol Description File Editor's main menu, choose
File>Save As....

2 In the Save As dialog, enter the protocol description file name; then,
click Save.

Protocol description files have the .aex (Agilent Encrypted XML) file
extension.

16 Customizing Protocol Descriptions for Packet Viewer Online Help

1 Editing an Existing Protocol Description

Refreshing Protocol Files in the Application

In order for the Agilent Logic Analyzer application to recognize protocol
description file changes, you must either refresh protocol files in the
Packet Decoder tool or restart the Agilent Logic Analyzer application.

To refresh
protocol files

1 In the Overview window of the Agilent Logic Analyzer application,
click Properties... in your Packet Decoder tool.

2 In the Packet Decode Properties dialog, click Refresh Protocol Files....

3 In the Question dialog that appears, click Yes to save the current
configuration. The saved configuration will automatically be re- opened
after the protocol description files are refreshed.

If you click No, the protocol files are still refreshed; however, you must
either open a different configuration or create a new configuration.

 17

Customizing Protocol Descriptions for Packet Viewer
Online Help

2
Creating a New Protocol Description

Before You Get Started 18

Getting Started, Using a Simple Example 20

Getting Started, Describing Your Protocol 27

Adding Decode Information 45

How to ... 51

Using Advanced Features 55

18 Customizing Protocol Descriptions for Packet Viewer Online Help

2 Creating a New Protocol Description

Before You Get Started

• "Byte/Bit Order Requirements" on page 18

Byte/Bit Order Requirements

The Protocol Decode tool assumes a most- significant bit (MSb) first
ordering in the packet data.

If your protocol uses a least- significant bit (LSb) first ordering in the
packet data:

MSb first bit/byte ordering

Field 1

Field 2 Field 3

15 8

7 0

2 0 7

0

3

2

Field 1

Field 3

LSb first bit/byte ordering

Field 1

Field 2 Field 3

0 7

8 15

0 2 0

7

4

5

Field 1

Field 3

Creating a New Protocol Description 2

Customizing Protocol Descriptions for Packet Viewer Online Help 19

In this case, you must:

1 Reorder the bits of buses when defining the bus channel assignments
(see "To assign channels, selecting the bit order" (in the online help)).

This reverses the bit order and makes transmission order
rearrangement faster.

2 Use the "TransmissionOrder='LSBFirst'" attribute within the
<ProtocolFamily> element.

This causes fields and bits within fields to be rearranged according to
the field descriptions.

LSb with reordered channel assignments

Field 1

Field 2Field 3

7 0

15 8

2 04

57

0

Field 1

Field 3

LSb with reordered channel assignments
and with TransmissionOrder="LSBFirst"

Field 1

Field 2 Field 3

15 8

7 0

2 0 7

02

3

Field 1

Field 3

20 Customizing Protocol Descriptions for Packet Viewer Online Help

2 Creating a New Protocol Description

Getting Started, Using a Simple Example

• "Step 1: Open the protocol description editor" on page 20

• "Step 2: Start with a minimal protocol description" on page 20

• "Step 3: Save the description to the Protocols directory" on page 22

• "Step 4: Look at results in the user interface" on page 22

Step 1: Open the protocol description editor

See "Starting the Protocol Description File Editor" on page 10.

Step 2: Start with a minimal protocol description

A minimal protocol description file looks something like:

<!-- This is a default protocol file created for you. It is a
starting point for the creation of a new protocol file. Please
refer to the online help for additional assistance. -->

<ProtocolFamily Name="Default Protocol" Version="1.1">

<!-- Specifies a bus that encompasses a grouping of bus/signals for
decode -->

<Bus Name="My Bus Name">
<!-- 'My Bus 1' and 'My Bus 2' are required bus/signals -->
<Label Name="My Bus 1" Width="1" Type="Frame"/>
<Label Name="My Bus 2" Width="8" Type="Data"

Sop="'My Bus 1'==#h1"/>

<!-- Once packets have been found, use the following protocol name
to decode them. -->

<BusProtocol Name="Header Protocol" Type="Packet"/>
</Bus>

<!-- The <PacketTypes> section defines the different types of
packets for this protocol. The types here are used by the
decoder to colorize the packet types and also display the
packet type name in the packet viewer. The Event Editor uses
this section to populate the list of predefined packets for
triggering, searching, and filtering. -->

<PacketTypes Name="Default Protocol" Protocol="Header Protocol">
<PacketType Name="Read Packet">

<PacketMask Width="2" Value="#h0"/>
<PacketDisplay BackgroundColor="LightBlue"/>

</PacketType>
<PacketType Name="Write Packet">

<PacketMask Width="2" Value="#h1"/>
<PacketDisplay BackgroundColor="Yellow"/>

</PacketType>
</PacketTypes>

<!-- This section describes how packets of data are decoded. -->

Creating a New Protocol Description 2

Customizing Protocol Descriptions for Packet Viewer Online Help 21

<Protocol Name="Header Protocol" ProtocolLayer="Physical Layer">
<Header>

<Field Name="Packet Type" Length="2" Enumset="PacketTypes"/>
<Field Name="Address" Length="4"/>
<Field Name="Length" Length="8" Select="'Packet Type'==#h1"/>

</Header>
<Payload>

<Field Name="Payload" Type="Payload" Select="'Packet Type'==#h1"
Length="Length*8"/>

</Payload>
</Protocol>

<Enumset Name="PacketTypes">
<Enum Name="Read" Value="0"/>
<Enum Name="Write" Value="1"/>
<Default Name="Error" ValueError="Unknown Packet Type"/>

</Enumset>

<!-- This section describes how the packet viewer should be
displayed by default. -->

<DisplayDefaults>
<DisplayField Name="Sample Number" Width="20"/>
<DisplayField Name="Default Protocol Packet" Width="30"/>
<DisplayField Name="Address" Width="20"/>
<DisplayField Name="Length" Width="15"/>
<DisplayField Name="Time"/>

</DisplayDefaults>

<!-- This section describes the errors that are possible with this
protocol. -->

<!-- Protocol errors are always displayed in red. -->
<ProtocolErrors>
<ProtocolError Name="Unknown Packet Type"

Description="There was an undefined packet type."/>
</ProtocolErrors>

</ProtocolFamily>

This is the simple protocol description that appears when you first open
the protocol description file editor.

The <ProtocolFamily> element identifies the family of protocols described
in the file. Within the <ProtocolFamily> element are:

• The <Bus> element is used to identify the probed buses/signals, their
contents, and the packet framing.

• The <PacketTypes> element is used to identify the main packet types
that will appear in the Packet Viewer's main protocol decode column
and to group packet descriptions to make setting up packet triggers
easier.

• The <Protocol> element defines the header and payload fields used
when decoding the data. Fields are described in the same order as they
appear in the packet data.

22 Customizing Protocol Descriptions for Packet Viewer Online Help

2 Creating a New Protocol Description

• The <DisplayDefaults> element identifies the fields that are displayed by
default in the Packet Viewer window. You can always add or delete field
columns from within the Packet Viewer window.

Step 3: Save the description to the Protocols directory

Protocol description files are located in the Protocols folder in the Agilent
Logic Analyzer application's install directory. For example, the default
location is: C:\Program Files\Agilent Technologies\Logic Analyzer\
Protocols.

1 From the Protocol Description File Editor's main menu, choose
File>Save As....

2 In the Save As dialog, enter the protocol description file name; then,
click Save.

Protocol description files have the .aex (Agilent Encrypted XML) file
extension.

Step 4: Look at results in the user interface

As you develop your protocol description, you will want to iteratively look
at results in the Agilent Logic Analyzer application, first to see if the data
is framed correctly, then to look at the decode and display results.

1 Start the Agilent Logic Analyzer application, or refresh the protocol
files in the Packet Decoder tool (see "Refreshing Protocol Files in the
Application" on page 16).

If you see protocol description file errors when starting the application,
see "Protocol Description Errors when Application Starts" on page 66.

2 Capture, open, or import the data.

3 Add a Packet Decoder tool:

a Choose Tools>New Packet Decoder...

b In the Protocol Select tab of the Packet Decode Properties dialog,
select your Protocol Family.

Creating a New Protocol Description 2

Customizing Protocol Descriptions for Packet Viewer Online Help 23

c Next, select your Decode Bus.

d In the ASCII Decode Options tab, check the Enable ASCII Decode
Output option.

24 Customizing Protocol Descriptions for Packet Viewer Online Help

2 Creating a New Protocol Description

A dialog informs you about the effect this option has on
performance, but when developing protocol descriptions, it is
sometimes useful to see packet decode information in the Listing
window.

e Click OK to close the Packet Decode Properties dialog.

4 Look at the Packet Decode column in the Listing window.

5 Add a Packet Viewer window:

a Choose Window>New Packet Viewer...

b In the "Add New Window after" dialog, make sure you add the Packet
Viewer window after the Packet Decoder tool.

Creating a New Protocol Description 2

Customizing Protocol Descriptions for Packet Viewer Online Help 25

c Click OK.

If you see protocol errors in the Packet Viewer window, see
"Pre- Defined Protocol Errors that Appear in Packet Viewer" on page 71.

26 Customizing Protocol Descriptions for Packet Viewer Online Help

2 Creating a New Protocol Description

The results of this simple example (and its data) appear in the
configuration file: C:\Documents and Settings\All Users\Documents\Agilent
Technologies\Logic Analyzer\Default Configs\Agilent\Protocol Development
Kit (PDK) Demo Config Files\DefaultProtocol.xml

Creating a New Protocol Description 2

Customizing Protocol Descriptions for Packet Viewer Online Help 27

Getting Started, Describing Your Protocol

• "Step 5: Choose a unique protocol family name" on page 27

• "Step 6: Describe the bus to be decoded" on page 28

• "Step 7: Describe the packet types" on page 35

• "Step 8: Describe the protocol's headers, data, trailers, and fields" on
page 37

• "Step 9: Describe the columns displayed in Packet Viewer by default" on
page 43

• "Getting Started Summary" on page 44

Step 5: Choose a unique protocol family name

The first thing to do when working on a protocol description (for your
data) is to name the <ProtocolFamily>:

• Make sure the protocol family name is unique; otherwise, the protocol
descriptions may not be read by the Packet Decoder tool.

• Make sure the Version attribute is specified (must be equal to "1.1" for
Agilent Logic Analyzer application version 03.65).

• Make sure you change the generated field name for the protocol family
within the <DisplayDefaults> element.

For example:

<ProtocolFamily Name="Ethernet" Version="1.1">
...

<DisplayDefaults>
...
<DisplayField Name="Ethernet Packet" Width="25"/>
...

</DisplayDefaults>

</ProtocolFamily>

The name you give a protocol family appears as a choice when selecting
the properties of a Packet Decoder tool.

28 Customizing Protocol Descriptions for Packet Viewer Online Help

2 Creating a New Protocol Description

Step 6: Describe the bus to be decoded

After choosing a protocol family name, you need to describe the bus to be
decoded. This is done with the <Bus> element and its child elements. Use
the <Bus> element's Name attribute to name the bus.

Next, you need to describe the buses/signals that will be used for decoding
with <Label> elements inside the <Bus> element.

Buses/signals can be from logic analyzer modules (that probe a device
under test), from imported data, or from upstream tools that process
captured or imported data in some way. A <Label> element's Name
attribute must be a bus/signal name defined in a logic analyzer module
(see "Defining Buses and Signals" (in the online help)), data import
module, or generated by an upstream tool.

Buses/signals used for decoding can contain the following types of
information:

• Data — that is, the actual data to be decoded.

• Framing — signals that identify start- of- packet and end- of- packet.

• Validity — signals that identify when data is valid.

• 8B/10B — signals that identify a switch between 8B and 10B data or
identify K- characters.

The data to be decoded comes from <Label> elements whose Type
attribute identifies data (see "Labels that Contain Data" on page 30). The
Sop="(formula)" attribute, the Eop="(formula)" attribute (if used), and the
Valid="(formula)" attribute (if used) can be used with any <Label> element
whose Type attribute identifies data. The formula values of the Sop, Eop,
and Valid attributes make reference to other <Label> elements that have
framing or validity information.

Creating a New Protocol Description 2

Customizing Protocol Descriptions for Packet Viewer Online Help 29

The last part of describing buses/signals is identifying the protocol used to
decode the bus; this is done with the <BusProtocol> element. Note that the
<BusProtocol> name you specify must match a defined <Protocol>
description name. (The <PacketTypes> element's Protocol attribute must
also match a defined <Protocol> description name.)

For example, suppose the bus you are probing is 16 bits wide.
Additionally, there is one signal that specifies when a start- of- packet is
present on the bus. Also, an end- of- packet signal is probed to specify
when a packet ends. There is a signal named "CLK" that specifies when
valid data is on the "DATA" bus. When CLK is 0, data will be completely
ignored, and SOP/EOP will not be considered.

<ProtocolFamily Name="Ethernet" Version="1.1">

<Bus Name="Utopia">
<Label Name="DATA" Width="16" Type="Data" Sop="'SOP'==#b1"

Eop="'EOP'==#b1" Valid="'CLK'==#b1" />
<Label Name="SOP" Width="1" Type="Frame"/>
<Label Name="EOP" Width="1" Type="Frame"/>
<Label Name="CLK" Width="1" Type="Valid"/>
<BusProtocol Name="IEEE 802.3 (Ethernet V2)" Type="Packet"/>

</Bus>

...

<Protocol Name="IEEE 802.3 (Ethernet V2)" ... >
...

</Protocol>

...

<PacketTypes ... Protocol="IEEE 802.3 (Ethernet V2)" ... >
...

</PacketTypes>

</ProtocolFamily>

The bus names you describe appear as choices when selecting the
properties of a Packet Decoder tool or when setting up a packet trigger.

NOTE The Sop, Eop, and Valid attributes are used in the <Label> element that identifies the data
(not the in the <Label> elements for signals that define the start-of-packet, end-of-packet,
or when data is valid).

30 Customizing Protocol Descriptions for Packet Viewer Online Help

2 Creating a New Protocol Description

See Also • "Labels that Contain Data" on page 30

• "Labels that Identify Valid Data" on page 31

• "If Your Serial Bus Has Lanes" on page 32

If your serial bus does not have lanes, you can choose not to display
the Lanes tab in the Packet Viewer window (right- click in the lower
pane and deselect Display>Lanes).

Labels that Contain Data

Data can be decoded from <Label> elements that have the Type="Data",
Type="8bData", Type="10bData", or Type="MetaData" attribute.

The Type="8bData" and Type="10bData" attributes simply describe data
values that are 8b or 10b values.

The Type="MetaData" attribute provides a convenient way to partition a
label's data into additional generated labels. For example:

<Bus Name="PIPE 16-bit - x2" Style="Serial" LogicalLanes="2"
PhysicalLanes="4" ProtocolBits="32">

<Label Name="TxData0" Width="16" Type="MetaData"/>
<Label Name="TxData1" Width="16" Type="MetaData"/>
<Label Name="Lane0" Width="8" Type="8bData" Lane="0"

Value="TxData0[7:0]" Kchar="TxK0[0]==#h1"
OrderedSetSop="Lane0==#hbc .land. TxK0[0]==#h1"
Sop="(Lane0==#hfb || Lane0==#h5c) .land. TxK0[0]==#h1"
Eop="(Lane0==#hfd || Lane0==#hfe) .land. TxK0[0]==#h1" />

<Label Name="Lane1" Width="8" Type="8bData" Lane="1"
Value="TxData1[7:0]" Kchar="TxK1[0]==#h1"
OrderedSetSop="Lane1==#hbc .land. TxK1[0]==#h1"
Sop="(Lane1==#hfb || Lane1==#h5c) .land. TxK1[0]==#h1"
Eop="(Lane1==#hfd || Lane1==#hfe) .land. TxK1[0]==#h1" />

<Label Name="Lane2" Width="8" Type="8bData" Lane="2"
Value="TxData0[15:8]" Kchar="TxK0[1]==#h1"
OrderedSetSop="Lane2==#hbc .land. TxK0[1]==#h1"

Creating a New Protocol Description 2

Customizing Protocol Descriptions for Packet Viewer Online Help 31

Sop="(Lane2==#hfb || Lane2==#h5c) .land. TxK0[1]==#h1"
Eop="(Lane2==#hfd || Lane2==#hfe) .land. TxK0[1]==#h1" />

<Label Name="Lane3" Width="8" Type="8bData" Lane="3"
Value="TxData1[15:8]" Kchar="TxK1[1]==#h1"
OrderedSetSop="Lane3==#hbc .land. TxK1[1]==#h1"
Sop="(Lane3==#hfb || Lane3==#h5c) .land. TxK1[1]==#h1"
Eop="(Lane3==#hfd || Lane3==#hfe) .land. TxK1[1]==#h1" />

<Label Name="TxK0" Width="2" Type="K/D"/>
<Label Name="TxK1" Width="2" Type="K/D"/>
<BusProtocol Name="PCI Express Packet" Type="Packet"/>
<BusProtocol Name="PCI Express Lane" Type="Lane"/>
<BusProtocol Name="PCI Express Symbol" Type="Symbol"/>

</Bus>

When there are multiple <Label> elements with Type attributes that
identify data, the Select attribute is used to identify which label to get
data from.

Labels that Identify Valid Data

Valid data is identified by <Label> elements with the Type="Valid",
Type="Bonded", or Type="Idle" attributes. The PacketData attribute provides
another level of identifying valid data. Invalid data is not decoded.

The Type="Valid" attribute identifies a label that specifies when data is
valid. This attribute is usually used for single lanes of data. Labels with
Type="Valid" are used in conjunction with the Valid attribute in the label
whose type identifies data. A Valid attribute formula that results in "1"
means the data is valid, and a formula that results in "0" means the data
is invalid. For example:

<Bus ... >
<Label Name="My Bus 1" Type="Data" ...

Valid="'My Bus 2'==#h7" />
<Label Name="My Bus 2" Width="3" Type="Valid"/>

The Type="Bonded" attribute specifies when multi- lane data is bonded (or
aligned). This is another way of identifying valid data. A value of "1"
means the data is valid, and "0" means the data is invalid.

The Type="Idle" attribute specifies when data is invalid due to being idle.
A value of "0" means the data is valid, and "1" means the data is invalid.

Labels with Type="Bonded" or Type="Idle" identify signals that
automatically filter samples. They are not like labels with Type="Valid" that
are used in conjunction with attributes in the data- type label.

The PacketData="(formula)" attribute provides another level of identifying
when data is valid. For example, the PacketData formula can identify
subsections of data that contain valid packet data:

32 Customizing Protocol Descriptions for Packet Viewer Online Help

2 Creating a New Protocol Description

For example:

<Bus Name="LPC" ProtocolBits="8">
<Label Name="LFRAME" Width="1" Type="Frame" />
<Label Name="Cycle Type" Width="32" Type="Valid" />
<Label Name="LAD" Width="4" Type="Data" Lane="0"

Sop="LFRAME==0 .land. LFRAME{1}==1"
PacketData="'Cycle Type'!=#h21 .land.

'Cycle Type'!=#h401 .land.
'Cycle Type'!=#ha01" />

<BusProtocol Name="LPC Packet" Type="Packet" />
</Bus>

If Your Serial Bus Has Lanes

If your serial bus has lanes (see page 129) (see also Chapter 5,
“Multi- Lane Serial Link Concepts,” starting on page 73):

• You will have <Label> elements with Sop and Lane attributes for each
physical lane.

• <BusProtocol> elements can be used for packet, lane (ordered set), and
symbol decoding, and there will be corresponding <Protocol>
descriptions for packet and lane decoding and <SymbolDecode>
elements for symbol decoding.

• You may want to display lane data in the Listing window.

For example, here is a bus description from the PCI Express protocol
description file:

<ProtocolFamily Name="PCI Express" Version="1.1">

<Bus Name="8B/10B Link - x2" GenerateLaneData="T" LogicalLanes="2"
PhysicalLanes="4" MaxBytes="10000" ProtocolBits="32">

<Label Name="10bbyte0" Width="10" Type="10bData" Lane="0"
Select="'8b/10b'[3]==#h0" Valid="valid[3]==#h1"

SOP

Data

PacketData

NOTE PacketData attribute formula strings must appear on one line. The formatting in the
example above is for readability.

Creating a New Protocol Description 2

Customizing Protocol Descriptions for Packet Viewer Online Help 33

OrderedSetSop="'10bbyte0'==#hea"
Sop="'10bbyte0'==#h368 ||

'10bbyte0'==#h97 ||
'10bbyte0'==#hf5 ||
'10bbyte0'==#h30a"

Eop="'10bbyte0'==#h2e8 ||
'10bbyte0'==#h117 ||
'10bbyte0'==#h1e8 ||
'10bbyte0'==#h217" />

<Label Name="10bbyte1" Width="10" Type="10bData" Lane="1"
Select="'8b/10b'[2]==#h0" Valid="valid[2]==#h1"
OrderedSetSop="'10bbyte1'==#hea"
Sop="'10bbyte1'==#h368 ||

'10bbyte1'==#h97 ||
'10bbyte1'==#hf5 ||
'10bbyte1'==#h30a"

Eop="'10bbyte1'==#h2e8 ||
'10bbyte1'==#h117 ||
'10bbyte1'==#h1e8 ||
'10bbyte1'==#h217" />

<Label Name="10bbyte2" Width="10" Type="10bData" Lane="2"
Select="'8b/10b'[1]==#h0" Valid="valid[1]==#h1"
OrderedSetSop="'10bbyte2'==#hea"
Sop="'10bbyte2'==#h368 ||

'10bbyte2'==#h97 ||
'10bbyte2'==#hf5 ||
'10bbyte2'==#h30a"

Eop="'10bbyte2'==#h2e8 ||
'10bbyte2'==#h117 ||
'10bbyte2'==#h1e8 ||
'10bbyte2'==#h217" />

<Label Name="10bbyte3" Width="10" Type="10bData" Lane="3"
Select="'8b/10b'[0]==#h0" Valid="valid[0]==#h1"
OrderedSetSop="'10bbyte3'==#hea"
Sop="'10bbyte3'==#h368 ||

'10bbyte3'==#h97 ||
'10bbyte3'==#hf5 ||
'10bbyte3'==#h30a"

Eop="'10bbyte3'==#h2e8 ||
'10bbyte3'==#h117 ||
'10bbyte3'==#h1e8 ||
'10bbyte3'==#h217" />

<Label Name="8bbyte0" Width="8" Type="8bData" Lane="0"
Select="'8b/10b'[3]==#h1" Valid="valid[3]==#h1"
Kchar="kcode[3]==#h1"
Sop="('8bbyte0'==#hfb || '8bbyte0'==#h5c) .land.

kcode[3]==#h1"
Eop="('8bbyte0'==#hfd || '8bbyte0'==#hfe) .land.

kcode[3]==#h1" />
<Label Name="8bbyte1" Width="8" Type="8bData" Lane="1"

Select="'8b/10b'[2]==#h1" Valid="valid[2]==#h1"
Kchar="kcode[2]==#h1"
Sop="('8bbyte1'==#hfb || '8bbyte1'==#h5c) .land.

kcode[2]==#h1"
Eop="('8bbyte1'==#hfd || '8bbyte1'==#hfe) .land.

kcode[2]==#h1" />
<Label Name="8bbyte2" Width="8" Type="8bData" Lane="2"

34 Customizing Protocol Descriptions for Packet Viewer Online Help

2 Creating a New Protocol Description

Select="'8b/10b'[1]==#h1" Valid="valid[1]==#h1"
Kchar="kcode[1]==#h1"
Sop="('8bbyte2'==#hfb || '8bbyte2'==#h5c) .land.

kcode[1]==#h1"
Eop="('8bbyte2'==#hfd || '8bbyte2'==#hfe) .land.

kcode[1]==#h1" />
<Label Name="8bbyte3" Width="8" Type="8bData" Lane="3"

Select="'8b/10b'[0]==#h1" Valid="valid[0]==#h1"
Kchar="kcode[0]==#h1"
Sop="('8bbyte3'==#hfb || '8bbyte3'==#h5c) .land.

kcode[0]==#h1"
Eop="('8bbyte3'==#hfd || '8bbyte3'==#hfe) .land.

kcode[0]==#h1" />
<Label Name="valid" Width="4" Type="Valid"/>
<Label Name="8b/10b" Width="4" Type="8b/10b"/>
<Label Name="kcode" Width="4" Type="K/D"/>
<Label Name="bonded" Width="1" Type="Bonded"/>
<Label Name="linkidle" Width="1" Type="Idle"/>
<BusProtocol Name="PCI Express Packet" Type="Packet"/>
<BusProtocol Name="PCI Express Lane" Type="Lane"/>
<BusProtocol Name="PCI Express Symbol" Type="Symbol"/>

</Bus>

...

<Protocol Name="PCI Express Packet" ProtocolLayer="Physical">
...

</Protocol>

<Protocol Name="PCI Express Lane" Type="Lane"
ProtocolLayer="Physical">

...
</Protocol>

<SymbolDecode>
<Enumset Name="PCI Express Symbol">

...
</Enumset>

</SymbolDecode>

...

<PacketTypes Name="PCI Express" Protocol="PCI Express Packet">
...

</PacketTypes>

</ProtocolFamily>

NOTE The Sop and Eop attribute formula strings must appear on one line. The formatting in the
example above is for readability.

Creating a New Protocol Description 2

Customizing Protocol Descriptions for Packet Viewer Online Help 35

Generating Lane
Data in the

Listing Window

You can use the <Bus> element's GenerateLaneData attribute to generate
lane data in the Listing window. When GenerateLaneData="T", a generated
bus/signal column named "(ProtocolFamily name) Lane Data" is added to
the Listing window (when ASCII decode output is enabled). For example,
if your protocol family name is "Ethernet", a column named "Ethernet Lane
Data" can appear in the Listing window.

Step 7: Describe the packet types

After describing the bus to be decoded, describe the packet types that will
appear in the Packet Viewer's decode column (and in the dialogs used for
setting up packet triggers) by using the <PacketTypes>, <PacketTypeGroup>,
and <PacketType> elements.

<ProtocolFamily Name="Ethernet" Version="1.1">

<PacketTypes Name="EthernetV2PacketType"
Protocol="IEEE 802.3 (Ethernet V2)"
Default="Internet Protocol">

<PacketTypeGroup Name="EthernetV2PacketType">
<PacketType Name="Internet Protocol">

<PacketMask BitOffset="96" Width="16" Value="#h0800"/>
</PacketType>
<PacketType Name="ARP Request">

<PacketMask BitOffset="96" Width="16" Value="#h0806"/>
</PacketType>
<PacketType Name="ARP Response">

<PacketMask BitOffset="96" Width="16" Value="#h0835"/>
</PacketType>
<PacketType Name="AppleTalk Datagram">

<PacketMask BitOffset="96" Width="16" Value="#h809b"/>
</PacketType>
<PacketType Name="SNA">

<PacketMask BitOffset="96" Width="16" Value="#h80d5"/>
</PacketType>
<PacketType Name="Novel IPX">

<PacketMask BitOffset="96" Width="16" Value="#h8137"/>
</PacketType>
<PacketType Name="IPv6">

<PacketMask BitOffset="96" Width="16" Value="#h86dd"/>
</PacketType>
<PacketType Name="IPS">

36 Customizing Protocol Descriptions for Packet Viewer Online Help

2 Creating a New Protocol Description

<PacketMask BitOffset="96" Width="16" Value="#h2007"/>
</PacketType>

</PacketTypeGroup>
</PacketTypes>

</ProtocolFamily>

In the <PacketTypes> element, the Default="(packet type name)" attribute
specifies the default packet type in the Event Editor.

You can use additional <PacketTypeGroup> elements to organize a
hierarchy of packet types that can be selected from when setting up packet
triggers.

The <PacketMask> element identifies the specific bit values within the
packet that identify the packet type. If the bits that specify the packet type
are not the first bits in the packet, you can use the BitOffset="(bit offset)"
attribute to specify where those bits are located.

The described packet types appear in the main packet decode column of
the Packet Viewer window.

Creating a New Protocol Description 2

Customizing Protocol Descriptions for Packet Viewer Online Help 37

You can color- code packet types in the Packet Viewer window and add
descriptive tool tips with <PacketDisplay> elements inside the
<PacketType> elements (see "Describing Packet Type Colors" on page 47).

Step 8: Describe the protocol's headers, data, trailers, and fields

After describing packet types, start identifying protocols, their headers,
payloads, and trailers, and the fields that appear in each.

Use the <Protocol> element to name the protocol description (with the
Name attribute) and identify its layer within the protocol stack (with the
ProtocolLayer attribute).

Use <Header>, <Payload>, and <Trailer> elements to describe these parts of
a packet. Use <Field> elements within <Header>, <Payload>, and <Trailer>
elements to describe fields.

For example:

<ProtocolFamily Name="Ethernet" Version="1.1">
<Bus ... > ... </Bus>

<Protocol Name="IEEE 802.3 (Ethernet V2)"
ProtocolLayer="Physical Layer">

<Header>
<Field Name="Dest Addr" Length="48" Type="Data"

Format="Hex"/>
<Field Name="Src Addr" Length="48" Type="Data"

Format="Hex"/>
<Field Name="Length/Type" Length="16"

Enumset="EthernetV2PacketType"/>

38 Customizing Protocol Descriptions for Packet Viewer Online Help

2 Creating a New Protocol Description

<Field Name="Length/Type" Type="ProtocolField"/>
</Header>

</Protocol>

In the example above, bits 0- 47 of the packet are the Dest Addr, bits
48- 95 are the Src Addr, and bits 96- 111 are the Length/Type. The order of
<Field> elements must be the same as the order of fields in the packet.
The bits of the packet are counted as Length attributes are used.

The default <Field> element type is data, so the Type="Data" attribute is
not necessary; however, you may want to use it in order to distinguish
normal data fields from other type fields.

The Format attribute describes the default base when the field is displayed
in the Packet Viewer window or the Event Editor.

Fields with Type="Protocol" or Type="ProtocolField" reference the next
layers of the protocol stack, which are described with additional
<Protocol> elements.

The Type="ProtocolField" attribute (see the previous example) references
multiple additional protocols whose names are defined in an enumeration
set. Two <Field> elements are used: the first is for decoding the value in
the field, and the second says to use additional protocol descriptions for
further decoding. Continuing on with the previous example:

<Enumset Name="EthernetV2PacketType">
<Enum Value="#h0800" Name="Internet Protocol"/>
<Enum Value="#h0806" Name="ARP Request"/>
<Enum Value="#h0835" Name="ARP Response"/>
<Enum Value="#h809b" Name="AppleTalk Datagram"/>
<Enum Value="#h80d5" Name="SNA"/>
<Enum Value="#h8137" Name="Novel IPX"/>
<Enum Value="#h86dd" Name="IPv6"/>
<Enum Value="#h2007" Name="IPS"/>
<Enum Value="#h6002" Name="DEC MOP Remote Console"/>
<Enum Value="#h6004" Name="DEC LAT"/>

</Enumset>

<Protocol Name="Internet Protocol" ProtocolLayer="Network Layer">
</Protocol>

<Protocol Name="ARP Request" ProtocolLayer="Network Layer">
</Protocol>

<Protocol Name="ARP Response" ProtocolLayer="Network Layer">
</Protocol>

<Protocol Name="AppleTalk Datagram" ProtocolLayer="Network Layer">
</Protocol>

<Protocol Name="SNA" ProtocolLayer="Network Layer">
</Protocol>

Creating a New Protocol Description 2

Customizing Protocol Descriptions for Packet Viewer Online Help 39

<Protocol Name="Novell IPX" ProtocolLayer="Network Layer">
</Protocol>

<Protocol Name="IPv6" ProtocolLayer="Network Layer">
</Protocol>

<Protocol Name="IPS" ProtocolLayer="Network Layer">
</Protocol>

...

</ProtocolFamily>

Enumeration sets are described with <Enumset> elements; their main
purpose is to assign meaningful strings to values. For more information,
see "Using Enumsets" on page 45.

You can describe the next layer of protocol by filling- in additional
<Protocol> elements. For example, to describe "Internet Protocol":

<!-- ** -->
<!-- IP (Internet Protocol) Packet Definition -->
<!-- This description assumes the packet length is 20 bytes. -->
<!-- ** -->

<Protocol Name="Internet Protocol" ProtocolLayer="Network Layer">
<Header>

<Field Name="Version" Length="4" Type="Data" Format="Hex"/>
<Field Name="Header Length" Length="4" Type="Data"

Format="Decimal"/>
<Field Name="Precedence" Length="3"

Enumset="PrecedenceSymbols"/>
<Field Name="Delay" Length="1" Enumset="NormalLowSymbols"/>
<Field Name="Throughput" Length="1"

Enumset="NormalHighSymbols"/>
<Field Name="Reliability" Length="1"

Enumset="NormalHighSymbols"/>
<Field Name="Cost" Length="1" Enumset="NormalLowSymbols"/>
<Field Name="MBZ" Length="1" Type="Data" Format="Binary"/>
<Field Name="Total Length" Length="16" Type="Data"

Format="Decimal"/>
<Field Name="Identification" Length="16" Type="Data"

Format="Hex"/>
<Field Name="Zero" Length="1" Type="Data" Format="Binary"/>
<Field Name="Do not fragment" Length="1" Type="Data"

Format="Binary"/>
<Field Name="May fragment" Length="1" Type="Data"

Format="Binary"/>
<Field Name="Fragment Offset" Length="13" Type="Data"

Format="Decimal"/>
<Field Name="Time To Live" Length="8" Type="Data"

Format="Decimal"/>
<Field Name="Protocol" Length="8" Enumset="IPProtocolType"/>
<Field Name="Header Checksum" Length="16" Type="Data"

Format="Hex"/>
<Field Name="IP Src Addr" Length="32" Type="Data"

Format="DotNotation"/>

40 Customizing Protocol Descriptions for Packet Viewer Online Help

2 Creating a New Protocol Description

<Field Name="IP Dest Addr" Length="32" Type="Data"
Format="DotNotation"/>

<Field Name="Internet Cntrl Msg Protocol" Type="Protocol"
Select="'Protocol'==#h01"/>

<Field Name="Transmission Control Protocol" Type="Protocol"
Select="'Protocol'==#h06"/>

<Field Name="User Datagram Protocol" Type="Protocol"
Select="'Protocol'==#h11"/>

<Field Name="Open Shortest Path First IGP" Type="Protocol"
Select="'Protocol'==#h59"/>

</Header>
</Protocol>

<Enumset Name="PrecedenceSymbols">
<Enum Value="#h0" Name="Routine"/>
<Enum Value="#h1" Name="Priority"/>
<Enum Value="#h2" Name="Immediate"/>
<Enum Value="#h3" Name="Flash"/>
<Enum Value="#h4" Name="Flash Override"/>
<Enum Value="#h6" Name="Internetwork Control"/>
<Enum Value="#h7" Name="Network Control"/>

</Enumset>

<Enumset Name="NormalLowSymbols">
<Enum Value="#b0" Name="Normal"/>
<Enum Value="#b1" Name="Low"/>

</Enumset>

<Enumset Name="NormalHighSymbols">
<Enum Value="#b0" Name="Normal"/>
<Enum Value="#b1" Name="High"/>

</Enumset>

<Enumset Name="IPProtocolType">
<Enum Value="#h01" Name="Internet Cntrl Msg Protocol"/>
<Enum Value="#h06" Name="Transmission Control Protocol"/>
<Enum Value="#h11" Name="User Datagram Protocol"/>
<Enum Value="#h59" Name="Open Shortest Path First IGP"/>

</Enumset>

<Protocol Name="Internet Cntrl Msg Protocol"
ProtocolLayer="Transport Layer">

</Protocol>

<Protocol Name="Transmission Control Protocol"
ProtocolLayer="Transport Layer">

</Protocol>

<Protocol Name="User Datagram Protocol"
ProtocolLayer="Transport Layer">

</Protocol>

<Protocol Name="Open Shortest Path First IGP"
ProtocolLayer="Transport Layer">

</Protocol>

Creating a New Protocol Description 2

Customizing Protocol Descriptions for Packet Viewer Online Help 41

The above description shows another way to reference the next protocol
level. The Type="Protocol" attribute is used within <Field> elements, and
Select attributes are used to identify the protocol at the next level; in this
case, the field that identifies the next level of protocol appears earlier in
the packet.

Again, you can describe the next layer of protocol by filling- in additional
<Protocol> elements. For example, to describe "User Datagram Protocol":

<!-- ** -->
<!-- UPD Packet Definition -->
<!-- ** -->

<Protocol Name="User Datagram Protocol"
ProtocolLayer="Transport Layer">

<Header>
<Field Name="Source Port" Length="16" Enumset="PortSymbols"

Format="Decimal"/>
<Field Name="Destination Port" Length="16"

Enumset="PortSymbols" Format="Decimal"/>
<Field Name="Length (bytes)" Length="16" Type="Data"

Format="Decimal"/>
<Field Name="Checksum" Length="16" Type="Data" Format="Hex"/>

</Header>
<Payload>

<Field Name="Data" Length="'#PACKET_LENGTH' - 336"
Type="Payload"/>

</Payload>
</Protocol>

<Enumset Name="PortSymbols">
<Enum Value="#d5" Name="Remote Job Entry"/>
<Enum Value="#d7" Name="Echo"/>
<Enum Value="#d9" Name="Discard"/>
<Enum Value="#d11" Name="Active Users"/>
<Enum Value="#d13" Name="Daytime"/>
<Enum Value="#d15" Name="Who Is Up/NETSTAT"/>
<Enum Value="#d17" Name="Quote Of The Day"/>
<Enum Value="#d19" Name="Character Generation"/>
<Enum Value="#d20" Name="FTP - data"/>
<Enum Value="#d21" Name="FTP"/>
<Enum Value="#d22" Name="SSH"/>
<Enum Value="#d23" Name="TELNET"/>
<Enum Value="#d25" Name="SMTP"/>
<Enum Value="#d37" Name="Time"/>
<Enum Value="#d39" Name="Resource Location Protocol"/>
<Enum Value="#d42" Name="Host Name Server"/>
<Enum Value="#d43" Name="NICNAME/Who Is"/>
<Enum Value="#d53" Name="DNS"/>
<Enum Value="#d67" Name="BOOTP - Server"/>
<Enum Value="#d68" Name="BOOTP - Client"/>
<Enum Value="#d69" Name="Trivial FTP"/>
<Enum Value="#d75" Name="Private Dial-Out Service"/>
<Enum Value="#d77" Name="Private RJE Service"/>
<Enum Value="#d79" Name="Finger"/>
<Enum Value="#d80" Name="WWW"/>

42 Customizing Protocol Descriptions for Packet Viewer Online Help

2 Creating a New Protocol Description

<Enum Value="#d95" Name="SUPDUP Protocol"/>
<Enum Value="#d101" Name="NIC Host Name Server"/>
<Enum Value="#d102" Name="ISO-TSAP"/>
<Enum Value="#d109" Name="POP - Post Office Prot"/>
<Enum Value="#d110" Name="POP3 - Post Office Prot"/>
<Enum Value="#d111" Name="Portmap"/>
<Enum Value="#d113" Name="Authentication Service"/>
<Enum Value="#d115" Name="SFTP"/>
<Enum Value="#d117" Name="UUCP Path Service"/>
<Enum Value="#d119" Name="NNTP News Transfer"/>
<Enum Value="#d123" Name="Network Time Protocol"/>
<Enum Value="#d137" Name="NETBIOS"/>
<Enum Value="#d138" Name="NETBIOS"/>
<Enum Value="#d139" Name="NETBIOS"/>
<Enum Value="#d161" Name="SNMP"/>

</Enumset>

The decoded fields and values can be seen in the Packet Viewer window's
Details, Header, Payload, and Lanes tabs:

Creating a New Protocol Description 2

Customizing Protocol Descriptions for Packet Viewer Online Help 43

Step 9: Describe the columns displayed in Packet Viewer by default

Finally, use the <DisplayDefaults> element to describe the columns that are
displayed in the Packet Viewer by default. For example:

<DisplayDefaults>
<DisplayField Name="Sample Number" Width="16"/>
<DisplayField Name="Ethernet Packet" Width="25"/>
<DisplayField Name="Length/Type" Width="20"/>
<DisplayField Name="Protocol" Width="30"/>
<DisplayField Name="Time"/>

</DisplayDefaults>

These are the default columns displayed when you add the Packet Viewer
window:

44 Customizing Protocol Descriptions for Packet Viewer Online Help

2 Creating a New Protocol Description

In the Packet Viewer window, you can insert or delete columns as desired
(see "To insert or delete packet decode columns" (in the online help)).

There are four columns that are automatically generated by the Packet
Decoder tool:

• "Sample Number" — contains the logic analyzer sample number
corresponding to the captured data.

• "Time" — contains the logic analyzer time corresponding to the captured
data.

• "(ProtocolFamily name) Packet" — contains the main packet type
decodes. For example, if the protocol family name is "Ethernet", the
main packet type decodes appear in a column named "Ethernet Packet".

• "Direction" — can contain the name of the Packet Decoder tool or a
name you specify in the Packet Decoder tool's properties. This is useful
when multiple Packet Decoder tools are used for different directions of
a serial link and the tools are named to identify the data direction.

Other columns that can be displayed are the fields described with <Field>
elements.

Getting Started Summary

The previous getting started steps are basic steps for creating a protocol
description file. There are additional steps you can take to make your
protocol description file more useful. You can:

• Describe protocol errors (see page 46).

• Add color- coding and tool tip descriptions (see page 47).

• You can use ValueFunctions to compute CRC values and look for CRC
errors (see page 55).

• You can use TransformFunctions to transform the value of a field (see
page 56).

Creating a New Protocol Description 2

Customizing Protocol Descriptions for Packet Viewer Online Help 45

Adding Decode Information

• "Assigning Meaningful Strings to Values" on page 45

• "Describing Protocol Errors" on page 46

• "Adding Color Descriptions (for Packet Viewer)" on page 47

Assigning Meaningful Strings to Values

There are two ways to assign meaningful strings to decoded values:

• "Using Enumsets" on page 45

• "Using SymbolDecode (for Lanes tab)" on page 45

Using Enumsets

When a field can be one of a set of predefined values, use the <Enumset>
element to identify those values. For example:

<Enumset Name="EthernetV2PacketType">
<Enum Value="#h0800" Name="Internet Protocol"/>
<Enum Value="#h0806" Name="ARP Request"/>
<Enum Value="#h0835" Name="ARP Response"/>
<Enum Value="#h809b" Name="AppleTalk Datagram"/>
<Enum Value="#h80d5" Name="SNA"/>
<Enum Value="#h8137" Name="Novel IPX"/>
<Enum Value="#h86dd" Name="IPv6"/>
<Enum Value="#h2007" Name="IPS"/>
<Enum Value="#h6002" Name="DEC MOP Remote Console"/>
<Enum Value="#h6004" Name="DEC LAT"/>

</Enumset>

Then, use the Enumset attribute in a <Field> element to use the
enumeration set:

<Field Name="Length/Type" Length="16"
Enumset="EthernetV2PacketType"/>

The <Enumset> element can also contain <Range> elements for assigning a
string to a range of values and one <Default> element for assigning a
string to values not defined by <Enum> or <Range> elements (see the
example in "<Default>" on page 83).

Using SymbolDecode (for Lanes tab)

If your serial protocol uses lanes (see page 129), the <SymbolDecode>
element is used to assign meaningful strings to decoded values in the
Packet Viewer's Lanes tab. For example, the protocol description for
PCI Express contains the following <SymbolDecode> assignments.

<SymbolDecode>
<Enumset Name="PCI Express Symbol">

46 Customizing Protocol Descriptions for Packet Viewer Online Help

2 Creating a New Protocol Description

<Enum Value="#hbc" Name="COM" KDChar="KChar"/>
<Enum Value="#hfb" Name="STP" KDChar="KChar"/>
<Enum Value="#h5c" Name="SDP" KDChar="KChar"/>
<Enum Value="#hfd" Name="END" KDChar="KChar"/>
<Enum Value="#hfe" Name="EDB" KDChar="KChar"/>
<Enum Value="#hf7" Name="PAD" KDChar="KChar"/>
<Enum Value="#h1c" Name="SKP" KDChar="KChar"/>
<Enum Value="#h3c" Name="FTS" KDChar="KChar"/>
<Enum Value="#h7c" Name="IDL" KDChar="KChar"/>
<Enum Value="#h9c" Name="RSV" KDChar="KChar"/>
<Enum Value="#hdc" Name="RSV" KDChar="KChar"/>
<Enum Value="#hfc" Name="RSV" KDChar="KChar"/>
<Enum Value="#h4a" Name="TS1" KDChar="DChar"/>
<Enum Value="#h45" Name="TS2" KDChar="DChar"/>

</Enumset>
</SymbolDecode>

Describing Protocol Errors

Use the <ProtocolErrors> element to define the protocol errors specified by
the protocol that are possible during packet decode. Protocol errors have
red highlighting in the Packet Viewer.

For example, to define a protocol error:

<ProtocolErrors>
<ProtocolError Name="Bad Packet"

Description="The packet ended with the ENB Symbol."/>
</ProtocolErrors>

Then, use the ValueError attribute in a <Field> or <Enum> element:

Creating a New Protocol Description 2

Customizing Protocol Descriptions for Packet Viewer Online Help 47

<Enumset Name="EndSymbolType">
<Enum Value="#hfd" Name="END"/>
<Enum Value="#hfe" Name="EDB" ValueError="Bad Packet"/>

</Enumset>

Adding Color Descriptions (for Packet Viewer)

• "Describing Packet Type Colors" on page 47

• "Describing Cell Highlighting (for Lanes tab)" on page 47

• "Available Colors" on page 49

Describing Packet Type Colors

Use the <PacketDisplay> element in <PacketType> descriptions. For
example:

<PacketType Name="Nak">
<PacketMask Width="12" Value="#h5C1"/>
<PacketDisplay

BackgroundColor="MediumVioletRed"
ForegroundColor="White"
Description="TLP Sequence Number Negative Acknowledgement.

Initiates a Data Link Layer Retry." />
</PacketType>

The Description="(string)" attribute specifies a string that appears in a tool
tip when the mouse pointer hovers over the packet type line.

See Also • "Available Colors" on page 49

Describing Cell Highlighting (for Lanes tab)

Use the <PacketHighlightRules> element to specify cell highlighting in the
Packet Viewer's Lanes tab. For example:

<PacketHighlightRules>
<PacketHighlightRule

PacketSegment="Header"
ForegroundColor="Black"
BackgroundColor="LightYellow"
DisplayName="Header"

/>
<PacketHighlightRule

FieldName="Payload"

48 Customizing Protocol Descriptions for Packet Viewer Online Help

2 Creating a New Protocol Description

FieldType="Payload"
ForegroundColor="White"
BackgroundColor="DarkRed"
DisplayName="Payload"

/>
<PacketHighlightRule

FieldName="Sequence Number"
ForegroundColor="White"
BackgroundColor="Blue"
DisplayName="Sequence Number"

/>
<PacketHighlightRule

FieldName="LCRC"
FieldType="CRC"
ForegroundColor="Black"
BackgroundColor="Gray"
DisplayName="LCRC"

/>
<PacketHighlightRule

FieldName="TLP Digest (ECRC)"
FieldType="CRC"
ForegroundColor="Black"
BackgroundColor="LightGrey"
DisplayName="ECRC"

/>
<PacketHighlightRule

FieldName="16b CRC"
FieldType="CRC"
ForegroundColor="Black"
BackgroundColor="LightGrey"
DisplayName="16b CRC"

/>
<PacketHighlightRule

LaneKDChar="KChar"
ForegroundColor="Black"
BackgroundColor="Green"

/>
</PacketHighlightRules>

See Also • "Available Colors" on page 49

• "<PacketHighlightRules>" on page 105

Creating a New Protocol Description 2

Customizing Protocol Descriptions for Packet Viewer Online Help 49

• "<PacketHighlightRule>" on page 103

Available Colors

You can choose from the following available colors:

Black DarkOrange PaleGreen SlateGray

DimGray BurlyWood LightGreen LightSteelBlue

Gray AntiqueWhite ForestGreen CornflowerBlue

DarkGray Tan LimeGreen RoyalBlue

Silver NavajoWhite DarkGreen GhostWhite

LightGrey BlanchedAlmon
d

Green, Lime Lavender

Gainsboro PapayaWhip SeaGreen MidnightBlue

WhiteSmoke Moccasin MediumSeaGree
n

Navy

White Orange SpringGreen DarkBlue

Snow Wheat MintCream MediumBlue

RosyBrown OldLace MediumSpringGr
een

Blue

LightCoral FloralWhite MediumAquama
rine

SlateBlue

IndianRed DarkGoldenrod Aquamarine DarkSlateBlue

Brown Goldenrod Turquoise MediumSlateBlu
e

FireBrick CornSilk LightSeaGreen MediumPurple

Maroon Gold MediumTurquois
e

BlueViolet

DarkRed LemonChiffon Azure Indigo

Red Khaki LightCyan DarkOrchid

MistyRose PaleGoldenrod PaleTurquoise DarkViolet

Salmon DarkKhaki DarkSlateGray MediumOrchid

Tomato Ivory Teal Thistle

DarkSalmon Beige DarkCyan Plum

Coral LightYellow Aqua, Cyan Violet

OrangeRed LightGoldenrodY
ellow

DarkTurquoise Purple

50 Customizing Protocol Descriptions for Packet Viewer Online Help

2 Creating a New Protocol Description

LightSalmon Olive CadetBlue DarkMagenta

Sienna Yellow PowderBlue Fuchsia,
Magenta

Seashell OliveDrab LightBlue Orchid

Chocolate YellowGreen DeepSkyBlue MediumVioletRe
d

SaddleBrown DarkOliveGreen SkyBlue DeepPink

SandyBrown GreenYellow LightSkyBlue HotPink

PeachPuff Chartreuse SteelBlue LavenderBlush

Peru LawnGreen AliceBlue PaleVioletRed

Linen Honeydew DodgerBlue Crimson

Bisque DarkSeaGreen LightSlateGray Pink

Creating a New Protocol Description 2

Customizing Protocol Descriptions for Packet Viewer Online Help 51

How to ...

• "To decode conditionally based on packet bits" on page 51

• "To determine serial data start of packet by using look around" on
page 51

• "To display and use full values for partial bit fields" on page 52

• "To decode fields with printf- style format strings" on page 52

• "To add information to a packet" on page 53

To decode conditionally based on packet bits

Make <Field> element decoding conditional by using the Select="(formula)"
attribute. For example:

<Field Name="Internet Cntrl Msg Protocol" Type="Protocol"
Select="'Protocol'==#h01"/>

<Field Name="Transmission Control Protocol" Type="Protocol"
Select="'Protocol'==#h06"/>

<Field Name="User Datagram Protocol" Type="Protocol"
Select="'Protocol'==#h11"/>

<Field Name="Open Shortest Path First IGP" Type="Protocol"
Select="'Protocol'==#h59"/>

</Header>
</Protocol>

In this example, the fields are only decoded if the previously defined
Protocol field has the specified value. You can also look ahead to decode
conditionally based on fields later in the packet (see "To look ahead" on
page 62).

To determine serial data start of packet by using look around

Use the look around syntax in formulas. By appending a {} to a bus/signal
name in a formula, data can be retrieved from previous or future samples.

For example, if the bits "11110000" on a single serial channel identify the
start- of- packet, you could use:

<Bus Name="Serial Bus" Style="Parallel">
<Label Name="My TXD" Width="1" Type="Data"

Sop="'My TXD'{-7}==#b1 .land.
'My TXD'{-6}==#b1 .land.
'My TXD'{-5}==#b1 .land.
'My TXD'{-4}==#b1 .land.
'My TXD'{-3}==#b0 .land.
'My TXD'{-2}==#b0 .land.
'My TXD'{-1}==#b0 .land.
'My TXD'{0}==#b0"

<Protocol Name="Serial Bus Protocol" Type="Packet"/>
</Bus>

52 Customizing Protocol Descriptions for Packet Viewer Online Help

2 Creating a New Protocol Description

To display and use full values for partial bit fields

The <Field> element's DecodeRule, EncodeRule, and DisplayLength
attributes let you display and use full values when not all bits of a field
are transmitted in a packet.

For example, in PCI Express, there is an Address[31:2] field in a packet.
You probably want to view the value as a full 32- bit value. Also, when
searching, triggering, or filtering on that field, you would like to enter
32- bit values and have the software "normalize" that 32- bit value back to
what it should be in the packet. In this case, you can use:

<Field Name="Address" Type="Address" Length="30"
DecodeRule="Address .lshift. 2"
EncodeRule="Address .rshift. 2"
DisplayLength="32"/>

The DecodeRule attribute specifies how the value of the field should be
transformed prior to display. In the preceding example, it is to left shift
the value of the field by 2 bits.

The EncodeRule attribute specifies how the entered value when triggering,
searching, or filtering on the field should be transformed before
performing the operation. In the preceding example, it is to right shift the
value of the field by 2 bits.

Finally, the DisplayLength attribute specifies the length of the value to
display (after the transform has occurred). In the preceding example, it is
32 bits.

To decode fields with printf-style format strings

The <Field> element's DecodeString attribute lets you format decoded
fields using C language printf- style format strings. This gives you great
flexibility in formatting decoded data.

For example, this decode string displays length data separated by colons:

<Field Name="Length" Length="8"
DecodeString="'%d:%d:%d:%d', 'Length'[10:9], 'Length'[8:7],
'Length'[6:4], 'Length'[3:0]"
Select="'Packet Type'==#h1"/>

NOTE The Sop attribute formula string must appear on one line. The formatting in the example
above is for readability.

NOTE The DecodeString attribute string must appear on one line. The formatting in the example
above is for readability.

Creating a New Protocol Description 2

Customizing Protocol Descriptions for Packet Viewer Online Help 53

Only integers are to be used in the printf specification; therefore, these
data types are supported:

• c (single- byte character).

• C (wide character).

• d, i (signed decimal integer).

• o (unsigned octal integer).

• u (unsigned decimal integer).

• x (unsigned hexadecimal integer, using "abcdef").

• X (unsigned hexadecimal integer, using "ABCDEF").

There is no support for floating point values (e,E,f,g,G), pointer values
(n,p), or strings (s,S).

The full C- Printf syntax is allowed, except for the above data types.

New lines are not displayed.

To add information to a packet

You can use the <Label> element's Meta attribute to add additional
information to a packet. This additional information, for example, can be
used to:

• Qualify the selection of packet types.

• Provide additional decode information.

• Selectively decode fields in a different way.

Meta data is specified as a concatenation of labels or constants.

The underlying structure of a meta data specification is a buffer. As each
label or constant is read in, the buffer is filled in with the corresponding
data. The labels or constants are delimited by commas.

Each label or constant token must be appended with a backslash followed
by the number of bits that should be added to the buffer.

As an example, here is a meta specification that includes 2 bits of a 4- bit
status label:

<Label Name="Status" Width="4" />
<Label Name="Data" Sop="Status==1" Meta="'Status'[4:3]\2" />

Here is another example that includes the 4 bits of status, appended with
2 bits of a constant (the two bits to be added to the buffer is 3 or 11b):

<Label Name="Status" Width="4" />
<Label Name="Data" Sop="Status==1" Meta="Status\4,3\2" />

54 Customizing Protocol Descriptions for Packet Viewer Online Help

2 Creating a New Protocol Description

Note that, in these examples, the meta data is currently added only on the
SOP state. You could add {- n} to the label name to get a value n states
before the SOP state, or you could add {n} to get values n states after the
SOP state.

Creating a New Protocol Description 2

Customizing Protocol Descriptions for Packet Viewer Online Help 55

Using Advanced Features

• "Using ValueFunctions" on page 55

• "Using TransformFunctions" on page 56

• "When the Framing Options are Not Sufficient" on page 57

Using ValueFunctions

The <Field> element's ValueFunction attribute lets you use an external
program to calculate the expected value of a field. ValueFunction
attributes are normally used for CRC computation. For example:

<Trailer>
<Field Name="Next Control Word Data" Length="12"/>
<Field Name="DIP-4" Length="4"

ValueFunction="agProtocols:SPI42DIP4"
ValueInput="DIP-4 Contents"
ValueError="Bad DIP-4"/>

</Trailer>
</FieldContainer>

</Protocol>

The ValueFunction attribute's value takes the form
"LibraryName:FunctionName" where the library is a DLL with unmangled
names. For example, here is the forward declaration of a value function:

extern "C" __declspec(dllexport)
unsigned __int32 FunctionName(unsigned __int8* pData_p,

unsigned __int32 nByteLength_p);

The '"C" __declspec(dllexport)' part of the declaration is for unmangled
names.

The Packet Decoder tool passes in a pointer to the data identified by the
ValueInput attribute and its byte length.

The function returns a 32- bit unsigned integer that is the calculated field
value. A protocol error occurs if the actual field value is different than the
returned value.

Any C compiler can be used to generate the DLL as long as the function
names are unmangled.

DLL files (and any additional DLL files referenced by the ValueFunction)
should be located in the Protocols folder in the Agilent Logic Analyzer
application's install directory. For example, the default location is: C:\
Program Files\Agilent Technologies\Logic Analyzer\Protocols.

Example Here is the ValueFunction used for SPI 4.2 to perform a DIP- 4 Parity
check:

56 Customizing Protocol Descriptions for Packet Viewer Online Help

2 Creating a New Protocol Description

extern "C" __declspec(dllexport)
unsigned __int32 SPI42DIP4(unsigned __int8* pData_p,

unsigned __int32 nLength_p)
{

// need to mask the DIP-4 value to all 1's. This value is the
// last 4 bits of the packet
pData_p[nLength_p - 1] |= 0x0F;

// This routine works better if we can address the bytes in pairs.
unsigned __int16* pData

= reinterpret_cast< unsigned __int16* >(pData_p);
unsigned __int32 nLines = nLength_p / 2;

unsigned __int32 nDIP4 = 0;

for (unsigned __int32 nLine = 0; nLine < nLines; ++nLine)
{
unsigned __int32 nUpperBits

= pData[nLine] << (nLine % 16);
unsigned __int32 nLowerBits

= pData[nLine] >> (16 - (nLine % 16));
unsigned __int32 nShiftedData

= (nUpperBits | nLowerBits) & 0x0ffff;

nDIP4 ^= nShiftedData;
}

unsigned __int32 nUpperDIP4 = (nDIP4 & 0xff00) >> 8;
unsigned __int32 nLowerDIP4 = (nDIP4 & 0x00ff);

nDIP4 = (nUpperDIP4 ^ nLowerDIP4) & 0xFF;

nUpperDIP4 = (nDIP4 & 0xF0) >> 4;
nLowerDIP4 = (nDIP4 & 0x0F);

nDIP4 = (nUpperDIP4 ^ nLowerDIP4) & 0x0F;

return nDIP4;
}

Using TransformFunctions

The <Field> element's TransformFunction attribute lets you use an external
program to transform the value of a field. For example, this would be
required to modify the order of the bits/bytes of a field:

<Protocol Name="I/O Cycle" ProtocolLayer="Physical">
<Field Name="Address" Length="16"/>
<Field Name="Payload" Length="8" Type="Payload"

TransformFunction="agProtocols:LPCSwapNibbles"/>
</Protocol>

Creating a New Protocol Description 2

Customizing Protocol Descriptions for Packet Viewer Online Help 57

The TransformFunction attribute's value takes the form
"LibraryName:FunctionName" where the library is a DLL with unmangled
names. For example, here is the forward declaration of a transform
function:

extern "C" __declspec(dllexport)
unsigned __int32 FunctionName(unsigned __int8* pData_p,

unsigned __int32 nByteLength_p);

The '"C" __declspec(dllexport)' part of the declaration is for unmangled
names.

The Packet Decoder tool passes in a pointer to the field data and its byte
length.

The function returns a 32- bit unsigned integer that is not used.

Any C compiler can be used to generate the DLL as long as the function
names are unmangled.

DLL files (and any additional DLL files referenced by the
TransformFunction) should be located in the Protocols folder in the
Agilent Logic Analyzer application's install directory. For example, the
default location is: C:\Program Files\Agilent Technologies\Logic Analyzer\
Protocols.

Example Here is the TransformFunction used for LPC to perform nibble swapping:

extern "C" __declspec(dllexport)
unsigned __int32 LPCSwapNibbles(unsigned __int8* pData_p,

unsigned __int32 nLength_p)
{

for (unsigned __int32 nByte = 0; nByte < nLength_p; ++nByte)
{
//
// for each byte, swap nibbles
//
unsigned __int8 nHighNibble = (pData_p[nByte] >> 4) & 0x0F;

pData_p[nByte] = (pData_p[nByte] << 4) & 0x0F0 | nHighNibble;
}

return 0;
}

When the Framing Options are Not Sufficient

There are some cases where the built- in frame detection options of the
protocol description file are not sufficient for detecting the start- and
end- of- packets. In some of these cases, you can use other logic analysis
system tools to massage the data before it gets to the Packet Decoder tool.

• "Using the Serial To Parallel Tool" on page 58

• "Using the Signal Extractor Tool" on page 58

58 Customizing Protocol Descriptions for Packet Viewer Online Help

2 Creating a New Protocol Description

Using the Serial To Parallel Tool

When serial data is captured without a clock signal in the timing
(asynchronous) sampling mode, you can use the Serial To Parallel tool to
extract a clock signal from the data. Then, you can tell where bit values
start and end, and you can pass that information on to the Packet
Decoder tool.

For more information, see "Using the Serial To Parallel Tool" (in the online
help).

Using the Signal Extractor Tool

For speed reasons, data is some times captured in demultiplexed form on
multiple buses/signals. The Packet Decoder tool cannot decode data from
two buses/signals. However, you can use the Signal Extractor tool to
remultiplex data before it is processed by the Packet Decoder tool.

For more information, see "Using the Signal Extractor Tool" (in the online
help).

 59

Customizing Protocol Descriptions for Packet Viewer
Online Help

3
Using Formulas

Using Formulas in Bus/Signal Label Descriptions 60

Using Formulas in Field Descriptions 62

60 Customizing Protocol Descriptions for Packet Viewer Online Help

3 Using Formulas

Using Formulas in Bus/Signal Label Descriptions

Formulas contain a simple meta- language used to make the execution of
decoding and framing more dynamic.

• "To determine the start- /end- of- packets" on page 60

• "To determine valid data" on page 60

• "To look around" on page 61

• "To identify rising/falling/toggling signals" on page 61

To determine the start-/end-of-packets

Formulas let you frame data based upon the current values of
buses/signals.

<Label> element formulas can operate on other bus/signal values that have
been defined within the <Bus> element.

<Bus Name="TestBus">
<Label Name="Control" Width="1" Type="Frame" />
<Label Name="Main" Width="8" Type="Data" Sop="Control==#h1" />
<BusProtocol ... />

</Bus>

The Sop formula for the Type="Data" label is shown above. The formula
uses the "Control" bus/signal to determine if the current state is a
start- of- packet.

To determine valid data

Formulas let you look at the current values of buses/signals to determine
when data is valid.

<Label> element formulas can operate on other bus/signal values to
determine when data is valid.

<Bus Name="TestBus">
<Label Name="Control" Width="1" Type="Frame" />
<Label Name="Extra" Width="4" Type="Valid" />
<Label Name="Main" Width="8" Type="Data" Sop="Control==#h1"

Valid="'Extra'[0]==#b0" />
<BusProtocol ... />

</Bus>

The Valid formula for the Type="Data" label is shown above. The formula
uses one of the "Extra" signals to determine if the data is valid.

Using Formulas 3

Customizing Protocol Descriptions for Packet Viewer Online Help 61

To look around

Additionally, minimal functionality has been added to provide some look
around capability. By appending a {} to a bus/signal name in a formula,
data can be retrieved from previous or future samples. For example:

Sop="Control{-1}==#h1 .land. Control{0}==0"

If more complicated look around capability is required to determine the
start- /end- of- packet, an inverse assembler can be used to generate the
required SOP/EOP signals (see "To develop your own tools" (in the online
help)).

To identify rising/falling/toggling signals

Some predefined terms can be also used to simplify specification of
common terms in framing.

Rising, Falling, and Toggling are terms that can be appended to bus/signal
names in a formula as well. For example:

Sop="Control Rising"
Sop="Control Falling"
Sop="Control Toggling" - This means a start-of-packet occurs at each

transition of "Control".

A wide variety of additional operators are available for use in formulas,
for more information, see Chapter 7, “Formula Reference,” starting on page
125.

62 Customizing Protocol Descriptions for Packet Viewer Online Help

3 Using Formulas

Using Formulas in Field Descriptions

Formulas are a simple meta- language that are used to make the execution
of decoding and framing more dynamic. The use of a formula allows the
decoding logic to be dependent upon the current values of packet data.

• "To operate on other field values" on page 62

• "To look ahead" on page 62

• "To get the length of variable- length packets" on page 63

To operate on other field values

Field element formulas let you specify other field names as inputs to the
formula. For example:

<Protocol Name="Control Packet" ProtocolLayer="Data">
<Field Name="BufferLength" Length="10"/>
<Field Name="Buffer" Length="BufferLength*8"/>

</Protocol>

The Field formula for the Buffer field is shown above. The formula uses
the previously specified BufferLength field to extract the value and use it
to compute the length of the Buffer field.

To look ahead

Usually, the field needed to calculate the formula is before the field that
typically requires it. However, sometimes that is not the case. The use of a
lookahead field is required to extract the value of the future field.

<Protocol Name="Transmit Packet" ProtocolLayer="Data">
<Field Name="PacketTypeLookahead" Length="1" BitOffset="10"

Type="Lookahead"/>
<Field Name="ControlPacket" Type="Protocol"

Select="PacketTypeLookahead==#h0"/>
<Field Name="PayloadPacket" Type="Protocol"

Select="PacketTypeLookahead==#h1"/>
<Field Name="PacketType" Length="1"/>

</Protocol>

In this example, a packet that has a packet type field 10 bits into the
packet. However, to decode the first 10 bits, the packet type field must be
known to properly decode the packet. In order to accomplish this, a
lookahead field is used to prematurely offset into and extract the field
data. This field is an internal, hidden field that will not be shown in any
of the Packet Viewer windows. It can, however, be used for formulas.
Based on the value of the lookahead field, the packet type can be
determined and the decoding works as expected.

Using Formulas 3

Customizing Protocol Descriptions for Packet Viewer Online Help 63

To get the length of variable-length packets

Sometimes, it is useful to know the length of the packet when computing
formulas. This is particularly true for length formulas in payload fields.
Many times, the length of the payload is variable, with no length field to
specify the actual length of the payload.

To help address this situation, a special "constant" is available which
returns the bit length of the entire framed packet (that is, from the
start- of- packet to the end- of- packet, if defined, or to the next start- of
packet if no end- of- packet is defined). This constant is
'#PACKET_LENGTH'. For example:

<Field Name="Payload" Length="'#PACKET_LENGTH' - 32" Type="Payload"/>

In the previous example, the length of the payload field is the total length
of the packet minus 32 bits for the header and trailer.

64 Customizing Protocol Descriptions for Packet Viewer Online Help

3 Using Formulas

 65

Customizing Protocol Descriptions for Packet Viewer
Online Help

4
Solving Problems

Protocol Description Errors when Application Starts 66

Decode Errors 70

Pre-Defined Protocol Errors that Appear in Packet Viewer 71

66 Customizing Protocol Descriptions for Packet Viewer Online Help

4 Solving Problems

Protocol Description Errors when Application Starts

General Errors General errors before any real parsing is done (for example, checking for
well- formedness).

Cannot find decryption function for: 'filename'

You may need to reinstall the Agilent Logic Analyzer application as it is
responsible for depositing the decryption library.

Decryption of 'filename' failed: {parsing errors}

This error occurs when opening files that are not .aex format files.

Malformed XML in 'filename'

Occurs when XML markup in the file is not well formed.

XML Parser Load of 'filename' failed: {parsing errors}

Parsing Errors All parsing errors have a standard "location" appended. This "location" is
of the form:

Error: {strMessage}
Location: <ProtocolFamilyName><Element Name="">

<PacketType> has no specified protocol.

This message occurs when there is no Protocol attribute. The Protocol
attribute is optional for the <PacketTypeGroup>, <PacketTypes>, and
<PacketType> elements; the error occurs when the attribute is not supplied
with any of these elements.

Cannot find 'Default' packet type '{value}.

For the Default attribute in the <PacketTypes> element.

Cannot find 'Enumset' reference: {name}.

For the Enumset attribute in the <Field> element.

Cannot find 'Name' protocol reference: {Name}.

For the Name attribute in the <BusProtocol> element.

Cannot find 'ValueError' reference: {name}.

For the ValueError element in the <Field> element.

Solving Problems 4

Customizing Protocol Descriptions for Packet Viewer Online Help 67

Cannot find default packet type with name: '{Default}'.

For the Default attribute in the <PacketTypes> element.

Cannot find referenced protocol '{Protocol}' name.

For the Protocol attribute in the <PacketType>, <PacketTypes>, and
<PacketTypeGroup> elements.

Duplicate <{Element}> elements found with name '{name}'.

For the <Enumset>, <PacketTypes>, and <Protocol> elements.

Error in loading library GetLastError() = {Error}, Path={Path}

For the ValueFunction attribute in the <Field> element.

Missing required attribute '{Attribute}' in element <{Element}>.

Note that in the <Field> element:

• The Length attribute is not required when Type="Protocol" or
Type="ProtocolField".

• The ValueInput attribute is only required if the ValueFunction attribute
is specified.

More than one <Default> element present in {EnumSet:Name}. Additional
<Default> elements will be ignored.

No <BusProtocol> elements found under <Bus>.

The <Bus> element must contain a <BusProtocol> element.

No <Label> elements found under <Bus>.

The <Bus> element must contain at least one <Label> element.

No segments defined for <SegmentedField>.

To be useful, the <SegmentedField> element should contain <Segment>
elements.

Only one <{Element}> element is permitted under the <ProtocolFamily>
element.

The <ProtocolFamily> element can contain one each of the following
elements: <DisplayDefaults>, <PacketHighlightsRule>, <ProtocolErrors>, and
<SymbolDecode>.

68 Customizing Protocol Descriptions for Packet Viewer Online Help

4 Solving Problems

The color specified '{value}' for attribute '{Attribute}' is invalid.

Can occur with the <PacketHighlightRule> and <PacketTypeDisplay>
elements' BackgroundColor and ForegroundColor attributes (see "Available
Colors" on page 49).

The following error(s) occurred while parsing '{Attribute}' attribute formula:

Can occur with these attributes that allow a formula value:

• The AbsoluteBitOffset attribute in the <Field> element.

• The Length attribute in the <Field>, <FieldGroup>, and <RepetitiveField>
elements.

• The Select attribute in the <BusProtocol> and <Field> elements.

• The Value attribute in the <Field> element.

These messages have additional error content generated by the formula
parser. Formula parser errors are usually some kind of syntax error in the
formula description. Formula parser errors are usually self- explanatory -
typically either a token is missing or unexpected.

Unable to find function '{ValueFunction}' in library '{Library}' for <Field>
'{name}'.

For the ValueFunction attribute in the <Field> element.

Make sure the library referenced has the specified function and the
function is being properly exported (with the dllexport, see "Using
ValueFunctions" on page 55).

Unable to find library with name '{name}' for field '{name}'.

For the ValueFunction attribute in the <Field> element.

Make sure the .dll with the specified name is located in the Protocols
folder in the Agilent Logic Analyzer application's install directory (for
example, the default location is: C:\Program Files\Agilent Technologies\
Logic Analyzer\Protocols).

It is also possible to get this error if you have linked with another dll that
is missing from the Protocols folder.

Unable to parse formula in 'Value' attribute.

For the <PacketTypeMask> element.

Unknown value '{value}' for attribute '{Attribute}' in element {Element}.

This error occurs when an attribute value is not one of the predefined set
of possible values.

Solving Problems 4

Customizing Protocol Descriptions for Packet Viewer Online Help 69

Unsupported version. 'Version' attribute in <ProtocolFamily> element must be
1.1.

Value of 'Width' attribute must less than or equal to 32.

For the <PacketTypeMask> element.

70 Customizing Protocol Descriptions for Packet Viewer Online Help

4 Solving Problems

Decode Errors

Decode errors appear only in Packet Viewer window tool tips.

Cannot decode '{Attribute}' attribute formula for <{Element} Name='{name}>.

This error occurs during decode, typically when a formula is not able to
be parsed because a field referenced in a formula is not present in the
decoded packet.

Zero Length field for <Protocol>: {name}, <Field>: {name}.

This error occurs during decode.

Solving Problems 4

Customizing Protocol Descriptions for Packet Viewer Online Help 71

Pre-Defined Protocol Errors that Appear in Packet Viewer

Unknown Packet Type

This means none of the defined packet type values match the value of the
captured packet. You can add the appropriate packet type description to
make this error go away (see "Step 7: Describe the packet types" on
page 35).

Unexpected End Of Packet

There are several possible causes:

• When the next start- of- packet occurs before the full number of bits in
the packet have been decoded.

• When not enough data is being framed into a packet. This usually
means the framing information is not set up correctly under the <Bus>
element.

A good way to look at all of the data that has been framed into a
packet is to use the "Packet Bytes" base on the "(ProtocolFamily name)
Packet" column in the Packet Viewer window. This shows all bytes of
the packet. If not all of the data in the packet is present, a problem
with the SOP/EOP formulas is likely.

• When a variable- length field's length is being incorrectly calculated.

Make sure that the Length attribute in each field correctly specifies the
number of bits.

72 Customizing Protocol Descriptions for Packet Viewer Online Help

4 Solving Problems

 73

Customizing Protocol Descriptions for Packet Viewer
Online Help

5
Multi-Lane Serial Link Concepts

A single physical channel (or lane) is a full- duplex serial connection, in
other words, a single transmit/receive pair.

To achieve greater bandwidths, a serial protocol can use multiple lanes in
the connection between two devices. The multi- lane connection is called a
link.

The number of serial channels in a link are sometimes described with a
number and an "x". For example, InfiniBand can have 1X, 4X, and 12X
links; PCI Express can have x1, x2, x4, x8, and x16 links.

Lane Initialization Before data can be transmitted and received over a link between devices,
communication within the individual lanes must first be established. This
is known as lane initialization.

Aligning
(Bonding) Lanes

After the individual lanes in a link have been initialized, the lanes must be
aligned (or bonded).

Lane 0

Device Device

Lane N

Link

74 Customizing Protocol Descriptions for Packet Viewer Online Help

5 Multi-Lane Serial Link Concepts

Striping Packet
Data Across

Lanes

Once lanes are bonded, packet data can be striped across the lanes to
achieve greater data transfer rates.

Lane 0

Lane 3

Lane 2

Lane 1

Transmitted Data

.

.

.

.

G

G

G

GH

H

H

H

I

I

I

I

J

J

J

J

K

K

K

K

Lane 0

Lane 3

Lane 2

Lane 1

Data Skewed at Receiver
(Rx clock before alignment)

.

.

G

G

H

H

I

I

J

J

K

K

. GHIJK

. GHIJK

Lane 0

Lane 3

Lane 2

Lane 1

Lanes Aligned/Bonded
(adjusted Rx clock)

.

.

.

. QRSTU

QRSTU

QRSTU

QRSTU

Lane 0

Byte 11
Byte 7
Byte 3

Lane 3Lane 2Lane 1

Byte 8
Byte 4
Byte 0

Byte 9
Byte 5
Byte 1

Byte 10
Byte 6
Byte 2

Byte 7
Byte 6
Byte 5
Byte 4
Byte 3
Byte 2
Byte 1
Byte 0

Packet Byte Stream

Multi-Lane Serial Link Concepts 5

Customizing Protocol Descriptions for Packet Viewer Online Help 75

The previous example shows data striped in bytes, but it can also be
striped in byte pairs or other data lengths.

Training
Sequence and

Ordered Set
Packets

Sometimes, training sequence packets and ordered set packets are inserted
between striped data packets. These packets are sent on all the lanes; they
are not striped across the lanes.

When decoding multi- lane links, the protocol description file's
OrderedSetSop attribute in the <Label> element tells the decoder when
packets switch from being striped to being sent on all lanes. Packets that
are not striped have their own lane decode protocol descriptions.

Probing a
Multi-Lane Serial
Link with a Logic

Analyzer

Special analysis probe hardware can be used to capture data on a link. An
analysis probe recovers clock signals, deserializes data for each lane,
decelerates the clock, and provides parallel data for each lane to the logic
analyzer, along with other control signals. The logic analyzer probe pods
capture the parallel data.

Of course, there are other ways to probe multi- lane serial links, depending
on the link's speed and probe points in the device under test.

Lane 0 Lane 3Lane 2Lane 1

Striped
Data
Packet

SOP

EOP

Ordered
Set
Packets

SOP

EOP

SOP

EOP

SOP

EOP

SOP

EOP

Striped
Data
Packet

SOP

EOP

Striped
Data
Packet

SOP

EOP

Training
Sequence
Packets

SOP

EOP

SOP

EOP

SOP

EOP

SOP

EOP

76 Customizing Protocol Descriptions for Packet Viewer Online Help

5 Multi-Lane Serial Link Concepts

8B and 10B Buses
From the Probe

Many serial protocols use 8B/10B encoding. An analysis probe deserializes
the 10B data and provides it to the logic analyzer in parallel form. An
analysis probe can also decode the 10B data to 8B data. The 8B data and
the 10B data are typically provided to the logic analyzer using the same
signals, so there are also control signals that tell the logic analyzer when
the data is in 10B or 8B form.

Logical Lanes vs.
Physical Lanes

Physical lanes are the number of physical channels in a link.

A link, regardless of the number of physical channels, can be contain a
number of independent data streams. These are logical lanes, and they are
not related to the number of physical lanes.

 77

Customizing Protocol Descriptions for Packet Viewer
Online Help

6
XML Element Reference

• "<ProtocolFamily>" on page 115

• "<Bus>" on page 79

• "<Label>" on page 98

• "<BusProtocol>" on page 81

• "<PacketTypes>" on page 110

• "<PacketTypeGroup>" on page 109

• "<PacketType>" on page 107

• "<PacketMask>" on page 106

• "<PacketDisplay>" on page 102

• "<Enumset>" on page 88

• "<Enum>" on page 87

• "<Range>" on page 117

• "<Default>" on page 83

• "<SymbolDecode>" on page 122

• "<DisplayDefaults>" on page 85

• "<DisplayField>" on page 86

• "<PacketHighlightRules>" on page 105

• "<PacketHighlightRule>" on page 103

• "<ProtocolErrors>" on page 114

• "<ProtocolError>" on page 113

• "<Protocol>" on page 112

• "<Header>" on page 97

• "<Field>" on page 89

• "<FieldContainer>" on page 95

• "<FieldGroup>" on page 96

• "<MetaField>" on page 101

• "<Payload>" on page 111

78 Customizing Protocol Descriptions for Packet Viewer Online Help

6 XML Element Reference

• "<RepetitiveFields>" on page 118

• "<SegmentedField>" on page 121

• "<Segment>" on page 120

• "<Trailer>" on page 123

XML Element Reference 6

Customizing Protocol Descriptions for Packet Viewer Online Help 79

<Bus>

This element describes a bus or a grouping of buses/signals (as defined by
a logic analyzer module or tool) that are required for this protocol.

Required Yes

Attributes
Name Required Value Comment

Name yes string Name that will be shown in the
Packet Decoder's list of buses that
can be decoded with this protocol.

GenerateLaneData no "T" Enables the generation of the
"(ProtocolFamily name) Lane
Data" column in the Listing
window. See "Step 6: Describe the
bus to be decoded" on page 28.

"F" (default) Disables the generation of the
"(ProtocolFamily name) Lane
Data" column in the Listing
window.

LogicalLanes no integer (default: "1") The number of lanes actually being
analyzed. For example, in the
N4220B PCI Express packet
analysis probe, even though 4
lanes are being probed, there may
only be 1 or 2 lanes being
analyzed.

MaxSearchStates no integer (default:
"4096")

This specifies the number of
samples in which to look for EOP
from the SOP. The default is 4096
samples.

PhysicalLanes no integer (default: "1") The number of lanes being probed.
For example, in the N4220B
PCI Express packet analysis probe,
x1, x2, and x4 data is decelerated
to span 4 buses/signals.

ProtocolBits no integer (default: "0") The number of bits needed in a
packet before the protocol type is
determined. See <Protocol>
Element.

80 Customizing Protocol Descriptions for Packet Viewer Online Help

6 XML Element Reference

Contains • "<Label>" on page 98 (required)

• "<BusProtocol>" on page 81 (required)

Contained By • "<ProtocolFamily>" on page 115

Example This specifies a demux of 4- 1:

<Bus Name="My Rx Bus" LogicalLanes="4" PhysicalLanes="1"/>

The attempt to find a packet type match will not occur until 32 bits of
data has been framed for the current packet:

<Bus Name="My Rx Bus" LogicalLanes="1" PhysicalLanes="1"
ProtocolBits="32"/>

SOPEOPOnSameSym
bol

no "T" This must be set if a protocol
requires EOP to be checked on the
same symbol as SOP.

"F" (default) SOP and EOP are not checked on
the same symbol in the same
state.

Name Required Value Comment

XML Element Reference 6

Customizing Protocol Descriptions for Packet Viewer Online Help 81

<BusProtocol>

This element specifies the initial protocol to use when decoding the bus. A
formula can be used to select between several different protocols. Also,
multiple protocols may exist to perform packet decoding, symbol decoding
(see page 130), and lane or ordered set (see page 130) decoding. The type
of decoding to be done is specified in the Type attribute.

Required Yes

Attributes
Name Required Value Comment

Name yes string Name of the root protocol or
symbol decode to use in decoding.

Type yes "Packet" Specifies that normal,
single-channel (or lane) packet
decoding will take place for the
bus. The decoding is described by
a <Protocol> element (see
page 112) with a matching Name
attribute.

"Lane" Specifies that ordered set
decoding, used with multi-lane
protocols, will take place for the
bus. The decoding is described by
a <Protocol> element (see
page 112) with a matching Name
attribute. See also Chapter 5,
“Multi-Lane Serial Link Concepts,”
starting on page 73.

"Symbol" Specifies that symbol decoding,
where data values are translated
to symbolic names, will take place
for the bus. The decoding is
described by a <SymbolDecode>
element (see page 122) that
contains an <Enumset> element
(see page 88) with a matching
Name attribute.

FixedLength no integer (default: "0") Length of the protocol in bits. A
zero means the protocol is not
fixed length.

InterruptiblePacket no formula (see page 59) The formula specifies packets that
can be interrupted by others.
Interruptible packets are
continued after the interrupting
packet.

82 Customizing Protocol Descriptions for Packet Viewer Online Help

6 XML Element Reference

Contains None

Contained By • "<Bus>" on page 79

Example <Bus>
<Label ...>
<Label ...>
<BusProtocol Name="Rx Packet" Type="Packet" Select="data[0]==1"/>
<BusProtocol Name="Tx Packet" Type="Packet" Select="data[0]==0"/>

</Bus>

InterruptingPacket no formula (see page 59) The formulas specifies packets
that can interrupt others.

Select no formula (see page 59) Used to determine if the protocol
should be used for the current
packet. The contents of the
formula can include references to
the data from the current packet
and must include a range or index
operator [].

Name Required Value Comment

NOTE The use of a range or index operator [] in the Select formula is required because extractions
are occurring from the packet data itself. No field names can be used to extract the data,
because the decode operation has not taken place yet. The name used to specify the data is
arbitrary and any name can be used.

XML Element Reference 6

Customizing Protocol Descriptions for Packet Viewer Online Help 83

<Default>

This element assigns a meaningful string to a value that is not described
by <Enum> or <Range> elements in the <Enumset>.

Required No

Attributes

Contains None

Contained By • "<Enumset>" on page 88

• "<Field>" on page 89 (Default can be added inline to field definitions as
a shortcut to creating an enumset external to the protocol. See the
example in "<Enum>" on page 87.)

Example <Enumset Name="FirstValueSet">
<Enum Name="OK" Value="0"/>
<Enum Name="Error" Value="1"/>
<Enum Name="Busy" Value="2"/>
<Enum Name="Retry" Value="3"/>
<Range Name="Bad Value" LowValue="8" HighValue="15"

ValueError="Bad Value Description"/>
<Default Name="Good Default"/>

</Enumset>

<Enumset Name="SecondValueSet">
<Enum Name="OK" Value="0"/>
<Enum Name="Error" Value="1"/>
<Enum Name="Busy" Value="2"/>
<Enum Name="Retry" Value="3"/>
<Range Name="Good Value" LowValue="4" HighValue="7"/>
<Default Name="Bad Default"

Name Required Value Comment

Name yes string The name assigned to a value that
is not described by <Enum> or
<Range> elements.

Description no string A description of the default.

ValueError no string If present, the ValueError attribute
specifies that this default value is
an error and will appear in Red in
the Packet Viewer window. A
matching string must appear in the
<ProtocolErrors> element (see
page 114). See "Describing
Protocol Errors" on page 46.

KDChar no "Kchar", "Dchar", or
"DontCare"

Specifies if the value is a K
character or D character.

84 Customizing Protocol Descriptions for Packet Viewer Online Help

6 XML Element Reference

ValueError="Bad Default Description"/>
</Enumset>

XML Element Reference 6

Customizing Protocol Descriptions for Packet Viewer Online Help 85

<DisplayDefaults>

This element defines which fields/bus/signals should be inserted into the
Packet Viewer window by default.

Required Yes

Attributes

Contains • "<DisplayField>" on page 86 (required)

Contained By • "<ProtocolFamily>" on page 115

Example <DisplayDefaults HeaderWidth="20">
<DisplayField Name="Sample Number" Width="50"/>
<DisplayField Name="My Packet" Width="100"/>

</DisplayDefaults>

Name Required Value Comment

FieldDirection no "LeftToRight"
(default)

Specifies a left to right ordering of
fields in the header tab of the
Packet Viewer window.

"RightToLeft" Specifies a right to left ordering of
fields in the header tab of the
Packet Viewer window.

HeaderWidth no integer (default: "32") Specifies the width (in bits) in
which to draw the grid within the
Header pane of the Packet Viewer.
It is useful for specifying the
word-size in which to draw
individual samples of a packet.

86 Customizing Protocol Descriptions for Packet Viewer Online Help

6 XML Element Reference

<DisplayField>

This element names a field that is displayed as a data column in the
Packet Viewer window by default, and it specifies the width of the column.

This element defines the characteristics of a field when inserted into the
Packet Viewer window. The name of the field can be any existing
bus/signal, including other bus/signals generated by the Packet Decoder,
like "Direction" or "{Protocol Name} Packet".

There are four columns that are automatically generated by the Packet
Decoder tool:

• "Sample Number" — contains the logic analyzer sample number
corresponding to the captured data.

• "Time" — contains the logic analyzer time corresponding to the captured
data.

• "(ProtocolFamily name) Packet" — contains the main packet type
decodes. For example, if the protocol family name is "Ethernet", the
main packet type decodes appear in a column named "Ethernet Packet".

• "Direction" — can contain the name of the Packet Decoder tool or a
name you specify in the Packet Decoder tool's properties. This is useful
when multiple Packet Decoder tools are used for different directions of
a serial link and the tools are named to identify the data direction.

Required Yes

Attributes

Contains None

Contained By • "<DisplayDefaults>" on page 85

Example <DisplayDefaults>
<DisplayField Name="Direction" Width="50"/>
<DisplayField Name="My Protocol Packet" Width="100"/>

</DisplayDefaults>

Name Required Value Comment

Name yes string Specifies the name of a field or a
bus/signal to be inserted a Packet
Viewer window when a new
Packet Viewer window is created.

Width no integer (default:
determined by Packet
Viewer window)

Specifies the column width in
pixels.

XML Element Reference 6

Customizing Protocol Descriptions for Packet Viewer Online Help 87

<Enum>

This element defines an enumeration that assigns a meaningful string to a
value.

Required No

Attributes

Contains None

Contained By • "<Enumset>" on page 88

• "<Field>" on page 89 (Enum can be added inline to field definitions as
a shortcut to creating an enumset external to the protocol. See the
example below.)

Example <Enum Name="Retry" Value="0" Description="The response was a RETRY"/>
<Enum Name="Error" Value="1" ValueError="Packet Error"/>

An example of Enum, Range, and Default added inline to a field definition:

<Field Name="XYZ" Length="3">
<Enum Name="ABC" Value="#b000"/>
<Enum Name="DEF" Value="#b001"/>
<Range Name="GHI" LowValue="#b010" HighValue="#b011"/>
<Default Name="JKL"/>
...

</Field>

Name Required Value Comment

Name yes string The name assigned to the value.

Value yes string The value the "Name" above will
be assigned to.

KDChar no "Kchar" or "Dchar"
(default: "Dchar")

Specifies if the value is a K
character or D character. Needed
to properly label values in the Lane
Data column of the Listing
window.

ValueError no string If present, then the ValueError
attribute specifies that this value
is an error and will appear in Red
in the Packet Viewer window. A
matching string must appear in the
<ProtocolErrors> element (see
page 114). See "Describing
Protocol Errors" on page 46.

Description no string Shows a tool tip when the value is
present in the Packet Viewer
window.

88 Customizing Protocol Descriptions for Packet Viewer Online Help

6 XML Element Reference

<Enumset>

This element defines a collection of enumerations that assign meaningful
strings to values.

Required No

Attributes

Contains • "<Enum>" on page 87

• "<Range>" on page 117

• "<Default>" on page 83

Contained By • "<ProtocolFamily>" on page 115

• "<SymbolDecode>" on page 122

Example <Field Name="Status" Length="2" Enumset="StatusEnum"/>
...
<Enumset Name="StatusEnum">

<Enum Name="OK" Value="0"/>
<Enum Name="Error" Value="1"/>
<Enum Name="Busy" Value="2"/>
<Enum Name="Retry" Value="3"/>

</Enumset>

Name Required Value Comment

Name yes string The name of the enumset. Field
elements that have enumerations
will reference enumerations with
this name.

XML Element Reference 6

Customizing Protocol Descriptions for Packet Viewer Online Help 89

<Field>

This element defines a field.

Required Yes

Attributes
Name Required Value Comment

Name yes string Name of the field.

Length yes formula (see page 59) A formula specifying the length of
the field. This can be a fixed
number, or be dependent of the
value of another field. The length
of a packet must equal the sum of
the lengths of all fields.

Type no "Data" (default) Normal data field.

"Protocol" Decoding will continue using the
protocol in the given field name.
This is useful for decoding multiple
layers of protocol. It is also useful
in sharing common decoding
definitions between packets.

"ProtocolField" Decoding will continue using the
protocol given with the name of
the enumeration set by the value
of the field. This saves the user
from having multiple Select
formulas to select a new protocol
to start decoding from. See
"ProtocolField Example" on
page 93.

"Reserved" A reserved field.

"Payload" A Payload field. If there are
multiple payload fields, they are
concatenated together. The
content of the payload field is
displayed in the Packet Viewer
window's Payload tab.

90 Customizing Protocol Descriptions for Packet Viewer Online Help

6 XML Element Reference

Type (Cont’d) no "Address" Specifies that this field contains
the starting address for the
payload. Only one address field is
allowed per packet. If an address
field is present in a packet, it will
be used as the starting address in
the Payload tab of the Packet
Viewer window. Only the display is
affected by this attribute value —
it does not affect the decode.

"Lookahead" Used to extract bits later in the
packet. This is useful when
decoding of a field is dependent
upon bits later on in the packet.
Use of the BitOffset or
AbsoluteBitOffset attributes are
required to specify at which bit the
data should be extracted.

"Hidden" The field will not be displayed in
any windows. This is typically
used for fields after a
<SegmentedField> element (see
page 121).

"Segment" Like the "Hidden" type, this is
typically used for fields after a
<SegmentedField> element (see
page 121). However, instead of
being hidden, the field will be
visible in the Header tab of the
Packet Viewer window and can be
inserted as a column, but it will not
be present in the Details tab.

Enumset no string Name of the enumset to be used
for a more meaningful display of
the data.

Enum no string Instead of displaying a value, a
more meaningful name will be
displayed. This is a shortcut to
creating a one element enumset.

ProtocolFamily no string Used to specify a multi-layer
protocol. The name of the field will
be used as a protocol name in the
given ProtocolFamily name to
continue decoding.

Name Required Value Comment

XML Element Reference 6

Customizing Protocol Descriptions for Packet Viewer Online Help 91

AbsoluteBitOffset no integer Offset the number of bits from the
beginning of the packet. Normally
used with the "Lookahead" type
field.

BitOffset no integer Offset the number of bits relative
to the current position in the
packet.

Format no "Hex", "Decimal",
"Octal", "Binary",
"Unicode", or "Ascii"

Specify the default base when
displaying the field in the Packet
Viewer window or Event Editor.

ExcludeCRC no "T" or "F" Use of this attribute will remove
the field from any CRC calculation.
This attribute can exclude a field
from a <FieldContainer> element
(see page 95).

Value no integer Value that the field should be. If
the value does not match the field
value, then use of the ValueError is
needed to specify the error

ValueFunction no string Specify a function to calculate the
expected value of the field. This is
normally used for CRC
computation. The syntax is
"LibraryName:FunctionName".
See "Using ValueFunctions" on
page 55.

ValueInput no string Specifies the input to be passed to
the function specified in
ValueFunction. Concatenation of
fields to be passed is typically
done by wrapping a group of fields
into a field container element. The
name of the field container would
be used for the ValueInput value.

Select no formula (see page 59) A formula that is executed to
determine if the field is to be used
or not for the current packet.

Description no string A tool tip string that will display
when hovering over the field in the
Packet Viewer window.

Name Required Value Comment

92 Customizing Protocol Descriptions for Packet Viewer Online Help

6 XML Element Reference

TransformFunction no string Specify a function to transform the
value of the field. This would be
required when the ordering of the
bits/bytes of the field need to be
modified. The string value should
be in the form:
"LibraryName:FunctionName".
See "Using TransformFunctions"
on page 56.

ValueError no string A string specifying the error
associated with the value of this
field. A matching string must
appear in the "<ProtocolErrors>"
on page 114 element. See
"Describing Protocol Errors" on
page 46.

PayloadFormat no "BigEndian" (default) If this field is a payload field, then
this specifies the default payload
ordering as BigEndian.

"LittleEndian" If this field is a payload field, then
this specifies the default payload
ordering as LittleEndian.

EncodeRule no formula (see page 59) Specifies how the entered value
when triggering, searching, or
filtering on the field should be
transformed before performing the
operation. See "To display and use
full values for partial bit fields" on
page 52.

DecodeRule no formula (see page 59) Specifies how the value of the field
should be transformed prior to
display. See "To display and use
full values for partial bit fields" on
page 52.

DecodeString no string Allows C language printf-style
formatting to give you great
flexibility when decoding data. See
"To decode fields with printf-style
format strings" on page 52.

DisplayLength no formula (see page 59) Specifies the length of the value to
display (after the transform has
occurred). See "To display and use
full values for partial bit fields" on
page 52.

Name Required Value Comment

XML Element Reference 6

Customizing Protocol Descriptions for Packet Viewer Online Help 93

Contains Field definitions can contain Enum, Range, and Default elements as a
shortcut to creating an Enumset. See the example in "<Enum>" on page 87.

• "<Enum>" on page 87

• "<Range>" on page 117

• "<Default>" on page 83

Contained By • "<Protocol>" on page 112

• "<Header>" on page 97

• "<Payload>" on page 111

• "<Trailer>" on page 123

• "<FieldContainer>" on page 95

• "<FieldGroup>" on page 96

• "<MetaField>" on page 101

• "<RepetitiveFields>" on page 118

Example <Protocol Name="ReadPacket" ProtocolLayer="Transaction">
<Field Name="ControlBits" Length="3" Enumset="ControlBitsEnum"/>
<Field Name="ControlBits" Type="ProtocolField"/>
<Field Name="Data" Length="10"/>

</Protocol>
<Protocol Name="Read Modify Write Packet"

ProtocolLayer="Transaction">
<Field Name="Modify Bits" Length="3"/>
<Field Name="Reserved" Length="2"/>

</Protocol>
<Protocol Name="Read - Flush Packet" ProtocolLayer="Transaction">

<Field Name="Flush bits" Length="5"/>
</Protocol>

ProtocolField
Example

The decoder should decode the next part of the packet depending upon
the HeaderType field value. One way of doing this is to use
Type="ProtocolField". It will use the enumeration value of the
"HeaderType" field as the name of the next protocol to decode.

<Protocol Name="Header" ProtocolLayer="Data">
<Field Name="HeaderType" Enumset="HeaderTypes" Length="3"/>
<Field Name="HeaderType" Type="ProtocolField"/>

</Protocol>

<Enumset Name="HeaderTypes">
<Enum Name="Read" Value="0"/>
<Enum Name="Write" Value="1"/>
<Enum Name="UpdateFC" Value="2"/>
...

</Enumset>

<Protocol Name="Read" ProtocolLayer="Data">
...

<Protocol Name="Write" ProtocolLayer="Data">

94 Customizing Protocol Descriptions for Packet Viewer Online Help

6 XML Element Reference

...

<Protocol Name="UpdateFC" ProtocolLayer="Data">
...

Instead of:

<Protocol Name="Header" ProtocolLayer="Data">
<Field Name="HeaderType" Enumset="HeaderTypes" Length="3"/>
<Field Name="Read" Type="Protocol" Select="HeaderType==0"/>
<Field Name="Write" Type="Protocol" Select="HeaderType==1"/>
<Field Name="UpdateFC" Type="Protocol" Select="HeaderType==2"/>
...

</Protocol>

<Enumset Name="HeaderTypes">
<Enum Name="Read" Value="0"/>
<Enum Name="Write" Value="1"/>
<Enum Name="UpdateFC" Value="2"/>
...

</Enumset>

<Protocol Name="Read" ProtocolLayer="Data">
...

<Protocol Name="Write" ProtocolLayer="Data">
...

<Protocol Name="UpdateFC" ProtocolLayer="Data">
...

See Also • "Using Formulas in Field Descriptions" on page 62

XML Element Reference 6

Customizing Protocol Descriptions for Packet Viewer Online Help 95

<FieldContainer>

This element defines a logical grouping of fields that will be concatenated
for use typically by a ValueInput function.

Required No

Attributes

Contains • "<Header>" on page 97

• "<Field>" on page 89 (required)

• "<FieldContainer>" on page 95

• "<FieldGroup>" on page 96

• "<MetaField>" on page 101

• "<Payload>" on page 111

• "<RepetitiveFields>" on page 118

• "<SegmentedField>" on page 121

• "<Trailer>" on page 123

Contained By • "<Protocol>" on page 112

• "<Header>" on page 97

• "<Payload>" on page 111

• "<Trailer>" on page 123

Example <FieldContainer Name="CRC Data">
<Header>

<Field Name="OriginatorID" Length="5"/>
<Field Name="Length" Length="5"/>

</Header>
<Payload>

<Field Name="Data" Length="Length*8" Type="Payload"/>
</Payload>

</FieldContainer>
<Trailer>

<Field Name="CRC" Length="32" ValueFunction="Protocols:CRC32"
ValueInput="CRC Data"/>

</Trailer>

Name Required Value Comment

Name yes string Name used to identify the field
container. This name must be
referenced by the ValueInput
attribute to be used properly. See
<Field> element (see page 89).

96 Customizing Protocol Descriptions for Packet Viewer Online Help

6 XML Element Reference

<FieldGroup>

This element defines a fixed length group of fields where only one field
can be selected (with the Select attribute).

Required No

Attributes

Contains • "<Field>" on page 89 (required)

• "<FieldGroup>" on page 96

• "<MetaField>" on page 101

• "<SegmentedField>" on page 121

Contained By • "<Protocol>" on page 112

• "<Header>" on page 97

• "<Payload>" on page 111

• "<Trailer>" on page 123

• "<FieldContainer>" on page 95

• "<FieldGroup>" on page 96

Example <Field Name="Words" Length="10"/>
<FieldGroup Name="Payload" Length="'#VARIABLE'">

<Field Name="Payload" Length="Words*32" Type="Payload"
Select="Words!=#h0"/>

<Field Name="Payload" Length="1024*32" Type="Payload"
Select="Words==#h0"/>

</FieldGroup>

In this example, if the contents of the Words field is zero, the length of
the Payload field is 1024*32 bits; otherwise, the number of bits in the
Payload field is the number in the Words field multiplied by 32.

Name Required Value Comment

Name yes string Name of the field group to be used

Length yes formula (see page 59) Specifies the length of the fields. A
formula value of '#VARIABLE' can
be used to specify that, of the
fields contained in the field group,
the length is variable.

XML Element Reference 6

Customizing Protocol Descriptions for Packet Viewer Online Help 97

<Header>

This element defines a logical grouping of fields.

The <Header> element is not required. Fields can be assumed to be in the
header because the <Payload> element is required. This element is a
convenience for organizing fields in the protocol description file.

The deepest header decoded in a packet is the one that is displayed in the
Packet Viewer window's Header tab.

Required No

Attributes No attributes defined.

Contains • "<Field>" on page 89 (required)

• "<FieldContainer>" on page 95

• "<FieldGroup>" on page 96

• "<MetaField>" on page 101

• "<RepetitiveFields>" on page 118

• "<SegmentedField>" on page 121

Contained By • "<Protocol>" on page 112

• "<FieldContainer>" on page 95

Example <Protocol Name="Write Packet" ProtocolLayer="Data">
<Header>

<Field Name="OriginatorID" Length="5"/>
<Field Name="Length" Length="5"/>

</Header>
<Payload>

<Field Name="Data" Length="Length*8" Type="Payload"/>
</Payload>

</Protocol>

98 Customizing Protocol Descriptions for Packet Viewer Online Help

6 XML Element Reference

<Label>

This element describes a bus/signal that is required to perform protocol
decode. Included are attributes that specify formulas about how
SOP/EOP/Valid and selection are performed.

Required Yes

Attributes
Name Required Value Comment

Name yes string Name of the bus/signal that is
required.

Width yes integer Required number of signals the
bus/signal must have.

Type yes "8bData" The label contains 8bdata (see
page 129).

"10bData" The label contains 10bdata (see
page 129).

"Data" The label contains data that will
potentially be included in a packet.
Typically, there is one label with
Type="Data", unless you are
decoding a multi-lane bus.

"Valid" The label contains data pertaining
to the validity of the data. Use
these labels in conjunction with
data label's Valid attribute. See
"Labels that Identify Valid Data"
on page 31.

"8b/10b" The label is used to switch
between 8bdata (see page 129)
and 10bdata (see page 129).

"K/D" The label is used to specify when
K characters (see page 129) are
present.

"Bonded" The label is used to specify when
multi-lane data is bonded (another
form of valid). Samples are
automatically filtered by the
signals identified.

"Idle" The label is used to specify when
the data is not-valid due to being
Idle. Samples are automatically
filtered by the signals identified.

XML Element Reference 6

Customizing Protocol Descriptions for Packet Viewer Online Help 99

Type (cont’d) yes "Frame" The label is used to specify
framing (SOP, EOP).

"MetaData" The label is used to contain more
than one symbol's worth of data
that should be partitioned into
individual symbols.

"Status" The label contains general status
that is used in a data label's
formulas.

Sop yes formula (see page 59) A formula used to specify when a
new packet is starting. This
attribute can be in any <Label>
element that has a Type="Data",
Type="10bData", Type="8bData",
or Type="MetaData" attribute.

Lane no integer Specifies which lane this label is
used for.

Meta no string
(label_or_constant\
#bits,
label_or_constant\
#bits, ...)

Lets you add additional
information to a packet. See "To
add information to a packet" on
page 53.

Select no formula (see page 59) A formula used to conditionally
enable or disable the use of the
label for other formulas. If no
formula is present, then the label
will always be selected.

Valid no formula (see page 59) A formula used to specify when
the data for the label should be
included as part of a packet. If no
formula is present, then all data
will assumed to be valid.

Eop no formula (see page 59) A formula used to specify when a
packet is ending. If no formula is
present, then no end-of-packet will
be specified. Each packet will span
from the start-of-packet sample to
the next start-of-packet sample.

Name Required Value Comment

100 Customizing Protocol Descriptions for Packet Viewer Online Help

6 XML Element Reference

Contains None

Contained By • "<Bus>" on page 79

Example <Bus Name="Utopia">
<Label Name="DATA" Width="16" Type="Data" Sop="'SOP'==#b1"

Eop="'EOP'==#b1" Valid="'CLK'==#b1" />
<Label Name="SOP" Width="1" Type="Frame"/>
<Label Name="EOP" Width="1" Type="Frame"/>
<Label Name="CLK" Width="1" Type="Valid"/>
<BusProtocol Name="IEEE 802.3 (Ethernet V2)" Type="Packet"/>

</Bus>

See Also • "Labels that Contain Data" on page 30

• "Labels that Identify Valid Data" on page 31

• "If Your Serial Bus Has Lanes" on page 32

• Chapter 5, “Multi- Lane Serial Link Concepts,” starting on page 73

• "Using Formulas in Bus/Signal Label Descriptions" on page 60

OrderedSetSop no formula (see page 59) A formula used to specify when a
packet is an ordered set (see
page 130). If no formula is present,
then no packets will be specified
as ordered sets. See Chapter 5,
“Multi-Lane Serial Link Concepts,”
starting on page 73.

Kchar no formula (see page 59) A formula used to specify when
the data is a K character (see
page 129) or not. If this formula is
not present, then all data is
assumed to be D characters (see
page 129).

PacketData no formula (see page 59) A formula used to specify which
states should be added to the
packet. If no formula is present,
then all states between SOP and
EOP or SOP + Packet Length will
be added to the packet unless idle
or bonded formulas specify
otherwise.

Value no formula (see page 59) A formula used to specify
additional operations on the data
provided by the label. Examples
would be bitwise shifting or
bitwise masking.

Name Required Value Comment

XML Element Reference 6

Customizing Protocol Descriptions for Packet Viewer Online Help 101

<MetaField>

This element defines a field that has subfields where you may want to
view the constituent parts. This creates a tree- structure in the Details tab
of the Packet Viewer window.

Required No

Attributes Same as the "<Field>" on page 89 element.

Contains • "<Field>" on page 89 (required)

• "<MetaField>" on page 101

• "<SegmentedField>" on page 121

Contained By • "<Protocol>" on page 112

• "<Header>" on page 97

• "<Payload>" on page 111

• "<Trailer>" on page 123

• "<FieldContainer>" on page 95

• "<FieldGroup>" on page 96

• "<MetaField>" on page 101

• "<RepetitiveFields>" on page 118

Example <MetaField Name="TransactionID" Length="12">
<Field Name="Sequence Number" Length="7" />
<Field Name="Originator ID" Length="5" />

</MetaField>

102 Customizing Protocol Descriptions for Packet Viewer Online Help

6 XML Element Reference

<PacketDisplay>

This element defines the default display of a packet in the Packet Viewer
window. Additionally, tool tip text can be specified to give additional
information about the packet type.

Required No

Attributes

Contains None

Contained By • "<PacketType>" on page 107

Example <PacketType Name="Write">
<PacketMask Width="3" Value="2"/>
<PacketDisplay ForegroundColor="Pink" BackgroundColor="Yellow"

Description="This is a write packet. Write packets require
a response packet to acknowledge the receipt of data."/>

</PacketType>

Name Required Value Comment

ForegroundColor no color (see page 49)
(default: "Black")

Foreground color of the packet in
the Packet Viewer window.

BackgroundColor no color (see page 49)
(default: "White")

Background color of the packet in
the Packet Viewer window.

Description no string Text to be displayed in tool tips for
the packet in the Packet Viewer
window.

XML Element Reference 6

Customizing Protocol Descriptions for Packet Viewer Online Help 103

<PacketHighlightRule>

This element defines a single packet highlighting rule to apply to the
selected packet within the Lanes tab of the Packet Viewer window. Recall
that these rules are applied in order from top to bottom. Therefore, latter
rules will override earlier rules for cells that match more than one rule.

A rule contains one or more optional attributes that define whether the
rule applies to a particular cell within the selected packet. Rule attributes
can refer to either a symbol, a decoded field, a segment of a packet, a
layer in a packet, or an entire protocol. Therefore, rules can be applied at
different levels of granularity to the selected packet. Since rules are
applied in order, more general rules should be defined earlier in the list
compared to more specific rules in order to achieve the correct packet
highlighting effect. Furthermore, if more than one attribute is defined
within a rule, then a cell must match all the defined attributes for the
highlighting rule to apply. In other words, attributes are AND'ed together
rather than OR'ed. For example, consider the following rule:

<PacketHighlightRule FieldName="LCRC" ForegroundColor="Black"
BackgroundColor="Gray" DisplayName="LCRC"/>

The above rule will highlight every cell with black text on a gray
background whose decoded field name is "LCRC" and whose decoded field
type is "CRC".

Last, note that if a rule only partially overlaps a cell within the Lanes tab,
then the entire cell is considered as belonging to that rule (that is, there
are no partial matches for a cell). Therefore, if only a single bit occurs
within a cell for a particular rule, the entire cell will be highlighted
according to that rule. This can have interesting side effects. For example,
if a cell spans two or more decoded fields and there exists rules for each
of these decoded fields, then the last defined rule in the list will apply as
the highlight for that cell.

Finally, the Lane8bValue and LaneKDChar attributes can only be combined
with one another. If other attributes are combined with them, they are
simply ignored. The other attributes can be combined with one another in
any possible combination.

Required No

Input Attributes
Name Required Value Comment

Lane8bValue no integer Numeric value for a particular
symbol. Example: "#hfb". May
only be combined with the
LaneKDChar attribute.

FieldName no string Decoded field name.

104 Customizing Protocol Descriptions for Packet Viewer Online Help

6 XML Element Reference

Output Attributes

Contains None

Contained By • "<PacketHighlightRules>" on page 105

Example <PacketHighlightRules>
<PacketHighlightRule PacketSegment="Header"

ForegroundColor="Black" BackgroundColor="LightYellow"
DisplayName="Header"/>

<PacketHighlightRule LaneKDChar="KChar" ForegroundColor="Black"
BackgroundColor="Green"/>

</PacketHighlightRules>

FieldType no string (see the Type
attribute values in
"<Field>" on page 89)

Decoded field type.

LaneKDChar no "Kchar", "Dchar", or
"DontCare"

Character type for a particular
symbol. May only be combined
with the Lane8bValue attribute.

PacketSegment no "Header", "Payload",
"Trailer", or "Any"

Packet segment type.

ProtocolLayer no string Protocol layer name.

ProtocolFamily no string Protocol family name.

Name Required Value Comment

Name Required Value Comment

BackgroundColor no color (see page 49)
(default: packet type
background color)

The cell's background color.

ForegroundColor no color (see page 49)
(default: packet type
foreground color)

The cell's foreground color.

DisplayName no string (default:
symbolic decode
string)

The text displayed in the cell when
the Lane tab's Field Decode
option is selected.

XML Element Reference 6

Customizing Protocol Descriptions for Packet Viewer Online Help 105

<PacketHighlightRules>

This element defines how cell highlighting should be applied in the Lanes
tab of the Packet Viewer window. Each cell within the Lanes tab
represents a single symbol of the selected packet and can be highlighted
according to various rules defined in this element. By default, a cell's color
matches the color of the corresponding packet. Therefore, if no rules are
defined, then cells will appear as the color of the selected packet.
Otherwise, the rules defined within this element allow customized
highlighting and display of particular fields and symbols within the
selected packet.

The nested rules within this element define how each cell of the selected
packet can be highlighted with a foreground color, background color, and a
display name. Each defined <PacketHighlightRule> is applied in order to
the selected packet. Therefore, rules that appear later in the list will
override earlier rules if they apply to the same cell. Essentially, each rule
is applied in order to the selected packet until all rules have been applied.
The resulting highlighting is then displayed within the Lanes tab of the
PacketViewer.

Last, these rules only apply to regular packets and not to ordered sets.
Ordered sets will always appear as the color of the ordered set.

Required No

Attributes No attributes defined.

Contains • "<PacketHighlightRule>" on page 103

Contained By • "<ProtocolFamily>" on page 115

Example <PacketHighlightRules>
<PacketHighlightRule PacketSegment="Header"

ForegroundColor="Black" BackgroundColor="LightYellow"/>
<PacketHighlightRule FieldName="Payload" FieldType="Payload"

ForegroundColor="White" BackgroundColor="DarkRed"/>
</PacketHighlightRules>

106 Customizing Protocol Descriptions for Packet Viewer Online Help

6 XML Element Reference

<PacketMask>

This element defines a bit mask to be used to pattern match a packet. The
bit mask created by this element will be used to determine the packet type
during the decoding operation. Note that the presence of multiple packet
masks will be concatenated together to create one large mask.

If the bits that identify the packet type do not appear at the start of the
packet, you can use the BitOffset attribute to specify their offset from the
SOP.

Required Yes

Attributes

Contains None

Contained By • "<PacketType>" on page 107

Example <PacketType Name="Write Packet">
<PacketMask Width="4" BitOffset="4" Value="7"/>
<PacketMask Width="4" BitOffset="12" Value="3"/>

</PacketType>

Name Required Value Comment

Width yes integer The width of the mask to be
created. Currently there is a
limitation of 32 bits per mask.

BitOffset no integer (default: "0") Number of bits from the
start-of-packet the width/value
should be offset.

Value no integer The value within the mask.

BitOffset="4"

SOP 0 0 0

BitOffset="12"

Width="4" Width="4"

111 1 1

Write Packet

Value="7" Value="3"

XML Element Reference 6

Customizing Protocol Descriptions for Packet Viewer Online Help 107

<PacketType>

This element defines a packet type. The name of the packet type will
appear in the Packet Viewer for the packet summary when a packet data
matches the specified mask under the PacketMask element. The default
colorization of the packet is specified under the PacketDisplay element.

Required Yes

Attributes

Contains • "<PacketMask>" on page 106 (required)

• "<PacketDisplay>" on page 102

Contained By • "<PacketTypes>" on page 110

• "<PacketTypeGroup>" on page 109

Example <PacketType Name="Any Write Packet" Decodeable="F">
<PacketMask Width="1" BitOffset="5" Value="1"/>

</PacketType>
<PacketType Name="Write Request Packet">

<PacketMask Width="1" BitOffset="5" Value="1"/>

Name Required Value Comment

Name yes string Name of the packet.

Any no "T" "Any" packets let you search,
filter, or trigger on general packet
types (using the Event Editor),
rather than on specific ones.

"F" (default) This packet type is not included in
the "Any" packets group.

Encodeable no "T" (default) True, if this packet should be
considered as a triggerable packet.

"F" False, if this packet should not be
considered as a triggerable event.
Sometimes certain packet types
cannot be triggered on, and using
this attribute can turn off these
packets from appearing in the
Event Editor.

Protocol no string The protocol to be used to encode
the packet for the Event Editor.
Each PacketType can specify its
own Protocol attribute, which will
override any specified by the
PacketTypeGroup or PacketTypes
elements.

108 Customizing Protocol Descriptions for Packet Viewer Online Help

6 XML Element Reference

<PacketMask Width="1" BitOffset="9" Value="1"/>
</PacketType>

XML Element Reference 6

Customizing Protocol Descriptions for Packet Viewer Online Help 109

<PacketTypeGroup>

This element specifies a logical grouping of packet types. Each
PacketTypeGroup will appear in the Event Editor as a folder. The
PacketTypeGroup can also specify a protocol that will be used by the
Event Editor and Packet Decoder to decode the packets.

Required No

Attributes

Contains • "<PacketTypeGroup>" on page 109

• "<PacketType>" on page 107 (required)

Contained By • "<PacketTypes>" on page 110

• "<PacketTypeGroup>" on page 109

Example <PacketTypes Name="My Packets" Default="Packet Type 1"
Protocol="My Packets">

<PacketTypeGroup Name="Write Packets" Protocol="Write Packets">
...

</PacketTypeGroup>
</PacketTypes>

Name Required Value Comment

Name yes string Name for the folder in the Event
Editor

Protocol no string Name of the protocol to use by the
Event Editor and Packet Decoder
to decode packets.

110 Customizing Protocol Descriptions for Packet Viewer Online Help

6 XML Element Reference

<PacketTypes>

This element specifies the main packet types that will be used to do
multiple things:

• First, each PacketType entry will appear in the Event Editor interface
as a starting point for setting up a trigger. PacketTypeGroups will
appear as folders in the Event Editor interface.

• Also, each packet type will be considered as a possible match in
determining which string to display in the Packet Viewer window for a
packet.

Packet types are searched in the order that they appear in the protocol
description file.

Required Yes

Attributes

Contains • "<PacketTypeGroup>" on page 109

• "<PacketType>" on page 107 (required)

Contained By • "<ProtocolFamily>" on page 115

Example <PacketTypes Name="My Protocol Packets" Protocol="My Protocol"
Default="Packet Type 1">

<PacketTypeGroup Name="Read Packet Types">
<PacketType Name="Packet Type 1">

<PacketMask Width="1" BitOffset="3" Value="0"/>
</PacketType>

</PacketTypeGroup>
<PacketTypeGroup Name="WritePacketTypes">

<PacketType Name="Packet Type 2">
<PacketMask Width="1" BitOffset="3" Value="1"/>

</PacketType>
</PacketTypeGroup>

</PacketTypes>

Name Required Value Comment

Name yes string Name of the packet types.

Protocol no string The protocol to be used to
decode/encode the packet. Each
PacketTypeGroup and PacketType
can specify its own Protocol
attribute, which will override this
one.

Default no string (default: the
first packet type)

The Event Editor default packet
type among the PacketType
definitions that follow.

XML Element Reference 6

Customizing Protocol Descriptions for Packet Viewer Online Help 111

<Payload>

This element defines a logical grouping of fields that comprise the payload
portion of a protocol layer.

Required No

Attributes No attributes defined.

Contains • "<Field>" on page 89 (required)

• "<FieldContainer>" on page 95

• "<FieldGroup>" on page 96

• "<MetaField>" on page 101

• "<RepetitiveFields>" on page 118

• "<SegmentedField>" on page 121

Contained By • "<Protocol>" on page 112

• "<FieldContainer>" on page 95

Example <Payload>
<Field Name="Data" Length="128" Type="Payload"/>

</Payload >

112 Customizing Protocol Descriptions for Packet Viewer Online Help

6 XML Element Reference

<Protocol>

This element defines a logical structure of protocol.

Required Yes

Attributes

Contains • "<Header>" on page 97

• "<Field>" on page 89 (required)

• "<FieldContainer>" on page 95

• "<FieldGroup>" on page 96

• "<MetaField>" on page 101

• "<Payload>" on page 111

• "<RepetitiveFields>" on page 118

• "<SegmentedField>" on page 121

• "<Trailer>" on page 123

Contained By • "<ProtocolFamily>" on page 115

Example <Protocol Name="Write Packet" ProtocolLayer="Data">
<Field Name="OriginatorID" Length="5"/>
<Field Name="Data" Length="5"/>

</Protocol>

Name Required Value Comment

Name yes string Name of the protocol referenced
by other parts of the file.

ProtocolLayer yes string Meaningful name to specify the
layer. This name is used in the
Details tab of the Packet Viewer
window and the Event Editor
dialog to organize fields into
logical groups.

Type No "Lane" The protocol is used for lane or
ordered set (see page 130)
decoding.

"Packet" (default) The protocol is used for packet
decoding.

XML Element Reference 6

Customizing Protocol Descriptions for Packet Viewer Online Help 113

<ProtocolError>

This element defines a protocol error that is referenced by enums and
fields.

Required Yes

Attributes

Contains None

Contained By • "<ProtocolErrors>" on page 114

Example <ProtocolErrors>
<ProtocolError Name="CRC Error" Description="Bad CRC"/>
<ProtocolError Name="Bad Status Value"

Description="Bad Status Value"/>
</ProtocolErrors>

Name Required Value Comment

Name yes string The name of the error which must
match exactly with the fields and
enums that use it.

Description yes string The tool tip text to be used when
hovering over a packet with an
error.

114 Customizing Protocol Descriptions for Packet Viewer Online Help

6 XML Element Reference

<ProtocolErrors>

This element defines the protocol errors specified by the protocol that are
possible during packet decode.

Required No

Attributes No attributes defined.

Contains • "<ProtocolError>" on page 113 (required)

Contained By • "<ProtocolFamily>" on page 115

Example <ProtocolErrors>
<ProtocolError Name="CRC Error" Description="Bad CRC"/>
<ProtocolError Name="Bad Status Value"

Description="Bad Status Value"/>
</ProtocolErrors>

XML Element Reference 6

Customizing Protocol Descriptions for Packet Viewer Online Help 115

<ProtocolFamily>

This is the root element of the XML document. All other elements must be
contained within this element.

If you want to license your protocol description, use the LicenseName,
LicenseVendor, and LicenseVersion attributes. When these attributes are
used, a license must be found before the protocol description can be
loaded into the Agilent Logic Analyzer application. License creation tools
are part of the standard FLEXlm developer's kit.

Required Yes

Attributes

Contains • "<Bus>" on page 79 (required)

• "<PacketTypes>" on page 110 (required)

• "<Enumset>" on page 88

• "<SymbolDecode>" on page 122

• "<Protocol>" on page 112 (required)

• "<DisplayDefaults>" on page 85 (required)

• "<PacketHighlightRules>" on page 105

• "<ProtocolErrors>" on page 114

Contained By None (this is the root element)

Name Required Value Comment

Name yes string Specifies the name that will
appear in the Packet Decoder list
of protocols.

Version yes decimal Must be 1.1 for software version
3.65. Must be 1.0 for previous
versions.

LicenseName no string FlexLM License Name

LicenseVendor no string FlexLM License Vendor

LicenseVersion no decimal FlexLM License Version

TransmissionOrder no "LSBFirst" Least significant bits are
transmitted first in the packet. See
"Byte/Bit Order Requirements" on
page 18.

"MSBFirst" (default) Most significant bits are
transmitted first in the packet.

116 Customizing Protocol Descriptions for Packet Viewer Online Help

6 XML Element Reference

Example <ProtocolFamily Name="My Protocol" Version="1.1"
LicenseName="MyProtocol_License"
LicenseVendor="My Company" LicenseVersion="1.1">

...
</ProtocolFamily>

See Also • "Step 5: Choose a unique protocol family name" on page 27

XML Element Reference 6

Customizing Protocol Descriptions for Packet Viewer Online Help 117

<Range>

This element assigns a meaningful string to a range of values.

Required No

Attributes

Contains None

Contained By • "<Enumset>" on page 88

• "<Field>" on page 89 (Range can be added inline to field definitions as
a shortcut to creating an enumset external to the protocol. See the
example in "<Enum>" on page 87.)

Example <Range Name="Good Value" LowValue="0" HighValue="7"/>
<Range Name="Bad Value" LowValue="8" HighValue="15"

ValueError="Bad Value Description"/>

Name Required Value Comment

Name yes string The name assigned to the value
range.

LowValue yes string The low value of the range.

HighValue yes string The high value of the range.

Description no string A description of the range.

ValueError no string If present, the ValueError attribute
specifies that this range of values
is an error and will appear in Red
in the Packet Viewer window. A
matching string must appear in the
"<ProtocolErrors>" on page 114
element. See "Describing Protocol
Errors" on page 46.

KDChar no "Kchar", "Dchar", or
"DontCare"

Specifies if the range of values are
K characters or D characters.

118 Customizing Protocol Descriptions for Packet Viewer Online Help

6 XML Element Reference

<RepetitiveFields>

This element defines a grouping of fields that will repeat x/y times where,
x is the overall length specified by the repetitive field element and y is the
sum of each field length contained within the repetitive field element.

Required No

Attributes

Contains • "<Field>" on page 89 (required)

• "<MetaField>" on page 101

• "<SegmentedField>" on page 121

Contained By • "<Protocol>" on page 112

• "<Header>" on page 97

• "<Payload>" on page 111

• "<Trailer>" on page 123

• "<FieldContainer>" on page 95

Example <RepetitiveFields Name="TransactionID" Length="120"/>
<Field Name="PortRegister" Length="10"/>
<Field Name="OffsetRegister" Length="10" />

</RepetitiveFields>

The PortRegister and OffsetRegister fields will each appear 6 times. Each
field have a [] appended with the occurrence number when viewed in the
Packet Viewer window. (For example: PortRegister[0], PortRegister[1], etc.)

Name Required Value Comment

Length yes formula (see page 59) Length of the overall grouping of
fields

Hierarchical no "T" (default) True, the name of the repetitive
field becomes a layer in the Details
tab and each occurrence is
indexed (with square brackets) as
a child to the layer

"F" False, repetitive fields are
displayed in the Details tab
without any hierarchy.

Name no string Name of the Repetitive Field

Select no formula (see page 59) A formula that is executed to
determine if the fields are to be
used or not for the current packet.

XML Element Reference 6

Customizing Protocol Descriptions for Packet Viewer Online Help 119

Here's an example of the Hierarchical attribute when the setting is true
and false for a repetitive field:

<RepetitiveFields Name="Information Elements" Length="('Payload Length'
- 8) * 8">

<Field Name="IE Header" Type="Protocol"/>
</RepetitiveFields>

Hierarchical="T" Hierarchical="F" (no Information Elements
layer and the repetitive name is not indexed)

120 Customizing Protocol Descriptions for Packet Viewer Online Help

6 XML Element Reference

<Segment>

This element describes individual segments within a segmented field.

<Segment> elements do not increment the internal bit counter.

Required No

Attributes

Contains None

Contained By • "<SegmentedField>" on page 121

Example <SegmentedField Name="FrameID" Length="11" Format="Decimal">
<Segment BitOffset="0" Length="3" />
<Segment BitOffset="5" Length="8" />

</SegmentedField>
<!-- Now advance the internal bit offset: -->
<Field Name="Frame ID part 1" Length="3" Type="Segment"/>
<Field Name="BSS1" Length="2" Type="Segment" Value="#b10"/>
<Field Name="Frame ID part 2" Length="8" Type="Segment"/>

Name Required Value Comment

Length yes integer The number of bits in the segment.

BitOffset no integer (default: "0") Number of bits from the current
internal bit offset location the
length should be offset.

XML Element Reference 6

Customizing Protocol Descriptions for Packet Viewer Online Help 121

<SegmentedField>

This element describes a field that has non- contiguous bits. This can be
useful, for example, when clock recovery bits appear periodically within a
packet and are not related to the packet's data.

<SegmentedField> elements do not increment the internal bit counter, so
the use of segment- type or hidden- type fields (to increment the bit
counter) after a segmented field is likely. Hidden- type fields are not
displayed. Segment- type fields are displayed in the Header tab but not the
Details tab.

Required No

Attributes Same as the "<Field>" on page 89 element.

Contains • "<Segment>" on page 120

Contained By • "<Protocol>" on page 112

• "<Header>" on page 97

• "<Payload>" on page 111

• "<Trailer>" on page 123

• "<FieldContainer>" on page 95

• "<FieldGroup>" on page 96

• "<MetaField>" on page 101

• "<RepetitiveFields>" on page 118

Example <SegmentedField Name="FrameID" Length="11" Format="Decimal">
<Segment BitOffset="0" Length="3" />
<Segment BitOffset="5" Length="8" />

</SegmentedField>
<!-- Now advance the internal bit offset: -->
<Field Name="Frame ID part 1" Length="3" Type="Segment"/>
<Field Name="BSS1" Length="2" Type="Segment" Value="#b10"/>
<Field Name="Frame ID part 2" Length="8" Type="Segment"/>

0

display display

1

hide

2 3 4 5 6 7 8 9 10 11 12

122 Customizing Protocol Descriptions for Packet Viewer Online Help

6 XML Element Reference

<SymbolDecode>

This element defines how symbol decode (see page 130) should be
performed.

Required No

Attributes No attributes defined.

Contains • "<Enumset>" on page 88 (required)

Contained By • "<ProtocolFamily>" on page 115

Example <SymbolDecode>
<Enumset Name="Symbol Decode">

<Enum Name="COM" Value="#hbc" KDChar="Kchar"/>
<Enum Name="STP" Value="#hfb" KDChar="Kchar"/>
<Enum Name="TS1" Value="#h45" KDChar="Dchar"/>

</Enumset>
</SymbolDecode>

XML Element Reference 6

Customizing Protocol Descriptions for Packet Viewer Online Help 123

<Trailer>

This element defines a logical grouping of fields.

Required No

Attributes No attributes defined.

Contains • "<Field>" on page 89 (required)

• "<FieldContainer>" on page 95

• "<FieldGroup>" on page 96

• "<MetaField>" on page 101

• "<RepetitiveFields>" on page 118

• "<SegmentedField>" on page 121

Contained By • "<Protocol>" on page 112

• "<FieldContainer>" on page 95

Example <Trailer>
<Field Name="CRC" Length="10" />

</Trailer >

124 Customizing Protocol Descriptions for Packet Viewer Online Help

6 XML Element Reference

 125

Customizing Protocol Descriptions for Packet Viewer
Online Help

7
Formula Reference

Operators 126

Operands 127

Formulas are a simple meta- language that are used to make the execution
of decoding and framing more dynamic. The use of a formula allows the
decoding and framing logic to be dependent upon the current values of
bus/signals and packet data.

Formulas are specified in attributes of particular tags using quotes to
delineate the contents. Inside the quotes, there are a variety of operands
and operators that can be used to provide the dynamic nature of framing
and decoding.

The basic structure of a formula contains one or more operands and one
or more operators.

[unaryOperator (see page 126)] operand (see page 127) [Operator (see
page 126)operand (see page 127)]

126 Customizing Protocol Descriptions for Packet Viewer Online Help

7 Formula Reference

Operators

The list of allowed operators and their precedence (bottom to top) are as
follows:

Operator Type Meaning

|| Binary Boolean OR

.land. Binary Boolean AND

| Binary Bitwise OR

^ Binary Bitwise XOR

.band. Binary Bitwise AND

==, != Binary Equivalence, Not Equivalence

.lt., .gt., .le., .ge. Binary Less Than, Greater Than, Less
Or Equal, Greater Or Equal

.lshift.

.rshift.
Binary Left Shift,

Right Shift

+, - Binary Plus, minus

*, /, % Binary Multiple, Divide, Modulo

(,) Binary Parentheses

+,-,!,~ Unary Positive, Negative, Not,
Complement

Formula Reference 7

Customizing Protocol Descriptions for Packet Viewer Online Help 127

Operands

Names of operands can be constant numbers or references to fields or
bus/signals.

• "Constants" on page 127

• "Field and Bus/Signal Operand Names" on page 127

• "Ranging" on page 128

Constants

For constant numbers, the format can be a plain number, which defaults
to decimal. Or a specified base can be used to prefix the number.

Special
#PACKET_LENGT

H Constant

The special '#PACKET_LENGTH' constant returns the length of the framed
packet in bits. See "To get the length of variable- length packets" on
page 63.

Special
#VARIABLE

Constant

The special '#VARIABLE' constant is used in the Length attribute of the
<FieldGroup> element to specify that, of the fields contained in the field
group, the length is variable. See "<FieldGroup>" on page 96.

Field and Bus/Signal Operand Names

Valid characters for operand names:

• Lowercase letters: a- z

• Uppercase letters: A- Z

• Underscore: _

• Period: .

• OpenBracket: [

• CloseBracket:]

• Colon: :

• Digits: 0- 9

Character Prefix Base Example

#b Binary Value==#b1

#d Decimal Value==#d3

#c Octal Value==#c6

#h Hex Value==#ha

None Decimal Value==10

128 Customizing Protocol Descriptions for Packet Viewer Online Help

7 Formula Reference

All field operands must begin with an upper/lowercase letter and can
contain any number of digits and letters or brackets. Spaces may be
included, but the operand must be enclosed in single quotes. If the
operand contains square brackets, then single quotes are also required.

Example TestName==#h1

'Test Name'==#h1

'Address[31:2]'==#h1

Ranging

Particular values of a bus/signal or field can be extracted for formula
execution through the use of ranges. Ranges are specified with square
brackets as follows:

Address[31:2]==10

This means that 30 bits from the address field will be used in the formula
calculation. To specify the field 'Address[31:2]', then quotes must surround
the field name and square brackets.

Look Around

Formulas can retrieve data from previous or future samples by using
braces as follows:

Bus{-1}==#h1

See Also • "To look around" on page 61

NOTE The name of fields and labels generally has fewer restrictions than the names required for
formulas. It may be that the name of the field cannot be used in the formula until the name
of the field is changed to be compliant with the formula operand restrictions.

NOTE Look around in conjunction with ranging is not supported.

 129

Customizing Protocol Descriptions for Packet Viewer
Online Help

Glossary

8

8B/10B encoding A block coding scheme for high- speed serial and
fiber- optic communication links that translates a block of data into a
longer block of data that has more transitions between 1's and 0's. The
8B/10B block code maps every byte (8 bits) into a 10- bit value (symbol)
that has 3- 8 transitions and a balanced number of 1's and 0's. (The
8B/10B block code was designed by IBM in the mid- 1980's and has been
used in FibreChannel communication links between computers and mass
storage devices.)

D

D character In 8B/10B coding, the 10- bit codes for the 256 8- bit values
are often referred to using "D" character names that come from the first 5
bits of the 8- bit value separated from the last 3 bits. For example:

D28.2 010 11100

D28.2 represents the encoding for the binary value above, where 28 is the
decimal representation of the first 5 bits, and 2 is decimal representation
of the last 3 bits.

K

K character In 8B/10B coding, in addition to the 10- bit codes for the 256
8- bit values, there are a few extra 10- bit codes called special characters.
Special characters are used for data delimiters like start- of- packet,
end- of- packet, idle, and configuration messages.

These special characters are often described with character names, but
they use a "K" character instead of a "D". The special characters are:

K28.0 K28.1 K28.2 K28.3 K28.4 K28.5 K28.6 K28.7 K23.7 K27.7 K29.7 K30.7

L

lane Describes one serial channel in situations where multiple serial
channels are bonded to transmit greater amounts of data.

130 Customizing Protocol Descriptions for Packet Viewer Online Help

8 Glossary

O

ordered set In 8B/10B, this refers to a specific combination of characters
(symbols). For example, a start- of- frame ordered set might be K25.8 D21.5
D22.2 D22.2.

S

symbol decoding Usually in reference to 8B/10B encoding, symbol decoding
describes how 8- bit values map to 10B character names and symbols.

Customizing Protocol Descriptions for Packet Viewer Online Help 131

Index

Symbols

.aex (Agilent Encrypted XML) file extension, 11,
15, 22

#PACKET_LENGTH, 63, 127
#VARIABLE, 127
#VARIABLE length of fields, 96

Numerics

10bData type, 30, 98
8B/10B buses from analysis probe, 76
8B/10B encoding, 129
8bData type, 30, 98

A

add information to packet, 53
Address type field, 90
advanced Protocol Development Kit

features, 55
aligning lanes, 73
Any packet type, 107
ASCII decode output, 23, 35
automatically generated columns, 44, 86

B

big endian payload format, 92
binary numbers, 127
bit order requirements, 18
bitwise AND, 126
bitwise OR, 126
bitwise XOR, 126
Bonded type, 31, 98
bonding lanes, 73
boolean AND, 126
boolean OR, 126
Bus, protocol description XML element, 21, 28,

35, 60, 79
bus/signal operand names, 127
BusProtocol, protocol description XML

element, 29, 32, 81
byte order requirements, 18

C

cell highlighting for Lanes tab, 47
clock recovery bits, 121
clock signal, Serial To Parallel tool to extract, 58
color descriptions for Packet Viewer

window, 47, 102, 104, 105

colors for packet types, 47, 102
colors, available, 49
complement, 126
conditional decode, 51
constants, 127
CRC computation, 55, 91

D

D character, 129
data to be decoded, 28, 30
Data type, 30, 98
Data type field, 89
data, packet, 37
data, remultiplexing, 58
data, valid packet, 31
decimal numbers, 127
decode bus, 23, 29
decode errors, 70
decode information, adding, 45
decode, conditional, 51
DecodeRule attribute of Field element, 52, 92
DecodeString attribute of Field element, 52, 92
Default attribute, 36
Default, protocol description XML element, 45,

83
Description attribute in Field element, 91
Description attribute in PacketDisplay

element, 47, 102
Details tab, 42
Direction column in Packet Viewer window, 44,

86
DisplayDefaults, protocol description XML

element, 22, 27, 43, 85
DisplayField, protocol description XML

element, 86
DisplayLength attribute of Field element, 52, 92
divide, 126
DLL for TransformFunction, 57
DLL for ValueFunction, 55

E

editor, protocol description file, 10
EncodeRule attribute of Field element, 52, 92
endian, payload format, 92
end-of-packet, formulas to determine, 60
Enum, protocol description XML element, 45,

87
Enumset attribute in Field element, 45, 90
Enumset, protocol description XML

element, 45, 88
Eop attribute, 28, 99

equivalence, 126
error messages, 66
Event Editor, 36, 109, 110
existing protocol description, editing, 9

F

falling signals, formula to identify, 61
field operand names, 127
Field, protocol description XML element, 37,

44, 89
field, transforming the value of, 56
FieldContainer, protocol description XML

element, 95
FieldGroup, protocol description XML

element, 96
fields, packet, 37
formulas in bus/signal label descriptions, 60
formulas in field descriptions, 62
formulas that operate on other field values, 62
formulas, reference, 125
formulas, using, 59
framing options, insufficient, 57

G

general errors, 66
generated columns, 44, 86
GenerateLaneData attribute, 35, 79
glossary, 129
greater or equal, 126
greater than, 126

H

Header tab, 42
header, packet, 37
Header, protocol description XML element, 37,

97
hexadecimal numbers, 127
Hidden type field, 90

I

Idle type, 31, 98
index operator, 82
insufficient framing options, 57
inverse assembler to determine

start-/end-of-packet, 61

132 Customizing Protocol Descriptions for Packet Viewer Online Help

Index

K

K character, 129

L

Label, protocol description XML element, 28,
30, 32, 60, 98

lane, 73, 129
lane data in Listing window, 32, 35, 79
lane initialization, 73
Lanes tab, 30, 42, 103
Lanes tab, cell highlighting for, 47
Lanes tab, symbol decode for, 45
lanes, serial bus with, 32
layers, protocol, 39
least-significant bit (LSb) first ordering, 18
left shift, 126
less or equal, 126
less than, 126
library name for TransformFunction, 57
library name for ValueFunction, 55
license information, 10
licensing protocol descriptions, 115
link, 73
little endian payload format, 92
location of error, 66
logical lanes vs. physical lanes, 76
look around, 128
look around, determining start-of-packet, 51
look around, formulas to, 61
lookahead, field, 62, 90

M

meaningful strings, assigning to values, 45
messages, error, 66
Meta attribute in Label element, 99
MetaData type, 30, 99
MetaField, protocol description XML

element, 101
minimal protocol description, 20
minus, 126
modulo, 126
most-significant bit (MSb) first ordering, 18
multi-lane serial link concepts, 73
multi-lane serial link, probing with logic

analyzer, 75
multiple, 126

N

negative, 126
new protocol descriptions, creating, 17
not, 126
not equivalence, 126
notices, 2
number of serial channels in a link, 73

O

octal numbers, 127
operand names, 127
operands, 127
operators, 126
ordered set, 130
ordered set decoding, 112

P

Packet Bytes base, 71
packet data, 37
packet data, valid, 31
Packet Decode column in Listing, 24
Packet Decoder tool, 3, 22, 44, 86, 109
packet fields, packet, 37
packet header, 37
packet trailer, 37
packet triggers, 36
packet type colors, 47, 102
packet types, 35, 110
Packet Viewer window, 3, 24, 36, 42
Packet Viewer window, color descriptions

for, 47
Packet Viewer window, default columns, 43
Packet Viewer window, insert/delete

columns, 44
Packet Viewer window, protocol errors, 46, 71
Packet Viewer window, ValueErrors in, 83, 87,

117
PacketData attribute, 31, 100
PacketDisplay, protocol description XML

element, 47, 102
PacketHighlightRule, protocol description XML

element, 47, 103
PacketHighlightRules, protocol description XML

element, 47, 105
PacketMask, protocol description XML

element, 36, 106
PacketType, protocol description XML

element, 35, 107
PacketTypeGroup, protocol description XML

element, 35, 36, 109
PacketTypes, protocol description XML

element, 21, 29, 35, 36, 110
parentheses, 126
parsing checks of protocol description file, 14
parsing errors, 66
Payload tab, 42
Payload type field, 89
Payload, protocol description XML element, 37,

111
PDK, see Protocol Development Kit
physical lanes vs. logical lanes, 76
plus, 126
positive, 126
problems, solving, 65
protocol description errors, 66
protocol description file, 3
protocol description file editor, 10
protocol description file, checking edits, 14

protocol description file, editing, 13
protocol description file, loading, 3
protocol description file, opening, 11
protocol description file, parsing checks, 14
protocol description file, refreshing in the

application, 16
protocol description file, saving, 15, 22
protocol description file, validation checks, 14
protocol description XML elements, 77
protocol description, editing existing, 9
protocol description, minimal, 20
protocol descriptions, creating new, 17
Protocol Development Kit, at a glance, 3
Protocol Development Kit, editor features, 13
Protocol Development Kit, editor window, 11
protocol errors in Packet Viewer window, 46,

71
protocol errors, describing, 46
protocol family, 22, 27
protocol family name, 27
Protocol type field, 38, 41, 89
Protocol, protocol description XML

element, 21, 29, 32, 37, 112
ProtocolError, protocol description XML

element, 46, 113
ProtocolErrors, protocol description XML

element, 46, 114
ProtocolFamily Packet column in Packet Viewer

window, 44, 86
ProtocolFamily, protocol description XML

element, 27, 115
ProtocolField type field, 38, 89

R

range operator, 82
Range, protocol description XML element, 45,

117
ranging, 128
remultiplexing data, Signal Extractor tool, 58
reorder LSb first bits, 19
RepetitiveFields, protocol description XML

element, 118
Reserved type field, 89
right shift, 126
rising signals, formula to identify, 61

S

Sample Number column in Packet Viewer
window, 44, 86

Segment type field, 90
Segment, protocol description XML

element, 120
SegmentedField, protocol description XML

element, 121
Select attribute in Field element, 51, 91
Select attribute in Label element, 31, 99
Select attribute in RepetitiveFields

element, 118
serial bus with lanes, 32

Index

Customizing Protocol Descriptions for Packet Viewer Online Help 133

Serial To Parallel tool to extract clock signal, 58
Signal Extractor tool to remultiplex data, 58
signed decimal integer, 53
simulate loading file, 14
single-byte character, 53
Sop attribute, 28, 99
start-of-packet, formulas to determine, 60
start-of-packet, using look around to

determine, 51
startup messages, 66
strings, assigning to values, 45
striping packet data across lanes, 74
symbol decoding, 130
SymbolDecode, protocol description XML

element, 45, 122

T

Time column in Packet Viewer window, 44, 86
toggling signals, formula to identify, 61
tool tips in Packet Viewer window, 47, 91, 102
trademarks, 2
trailer, packet, 37
Trailer, protocol description XML element, 37,

123
TransformFunction attribute of Field

element, 56, 92
TransformFunction DLL file location, 57
TransformFunction, using, 56
TransmissionOrder attribute, 19
Type attribute, 30

U

Unexpected End Of Packet, 71
Unknown Packet Type, 71
unmangled names in TransformFunction, 57
unmangled names in ValueFunction, 55
unsigned decimal integer, 53
unsigned hexadecimal integer, 53
unsigned octal integer, 53

V

valid data, formulas to determine, 60
valid packet data, 31
Valid type, 31, 98
validation checks of protocol description file, 14
ValueError attribute, 46, 83, 87, 117
ValueFunction attribute of Field element, 55, 91
ValueFunction DLL file location, 55
ValueFunctions, 55
variable-length packets, 63
Version attribute, 27, 115

W

wide character, 53

134 Customizing Protocol Descriptions for Packet Viewer Online Help

Index

	Protocol Development Kit (PDK)—At a Glance
	Contents
	Editing an Existing Protocol Description
	Starting the Protocol Description File Editor
	Opening Protocol Description Files
	Editing Protocol Description Files
	Checking Protocol Description File Edits
	Saving Protocol Description Files
	Refreshing Protocol Files in the Application

	Creating a New Protocol Description
	Before You Get Started
	Byte/Bit Order Requirements

	Getting Started, Using a Simple Example
	Step 1: Open the protocol description editor
	Step 2: Start with a minimal protocol description
	Step 3: Save the description to the Protocols directory
	Step 4: Look at results in the user interface

	Getting Started, Describing Your Protocol
	Step 5: Choose a unique protocol family name
	Step 6: Describe the bus to be decoded
	Step 7: Describe the packet types
	Step 8: Describe the protocol's headers, data, trailers, and fields
	Step 9: Describe the columns displayed in Packet Viewer by default
	Getting Started Summary

	Adding Decode Information
	Assigning Meaningful Strings to Values
	Describing Protocol Errors
	Adding Color Descriptions (for Packet Viewer)

	How to ...
	To decode conditionally based on packet bits
	To determine serial data start of packet by using look around
	To display and use full values for partial bit fields
	To decode fields with printf-style format strings
	To add information to a packet

	Using Advanced Features
	Using ValueFunctions
	Using TransformFunctions
	When the Framing Options are Not Sufficient

	Using Formulas
	Using Formulas in Bus/Signal Label Descriptions
	To determine the start-/end-of-packets
	To determine valid data
	To look around
	To identify rising/falling/toggling signals

	Using Formulas in Field Descriptions
	To operate on other field values
	To look ahead
	To get the length of variable-length packets

	Solving Problems
	Protocol Description Errors when Application Starts
	Decode Errors
	Pre-Defined Protocol Errors that Appear in Packet Viewer

	Multi-Lane Serial Link Concepts
	XML Element Reference
	<Bus>
	<BusProtocol>
	<Default>
	<DisplayDefaults>
	<DisplayField>
	<Enum>
	<Enumset>
	<Field>
	<FieldContainer>
	<FieldGroup>
	<Header>
	<Label>
	<MetaField>
	<PacketDisplay>
	<PacketHighlightRule>
	<PacketHighlightRules>
	<PacketMask>
	<PacketType>
	<PacketTypeGroup>
	<PacketTypes>
	<Payload>
	<Protocol>
	<ProtocolError>
	<ProtocolErrors>
	<ProtocolFamily>
	<Range>
	<RepetitiveFields>
	<Segment>
	<SegmentedField>
	<SymbolDecode>
	<Trailer>

	Formula Reference
	Operators
	Operands
	Constants
	Field and Bus/Signal Operand Names
	Ranging
	Look Around

	Glossary
	Index

