
User Guide

4
5
7
7
7

10
12
14
14
16
18
23
23
25
26
40
41
41
42
44
44
44
44
45
45

Table of Contents
The Resource Arbiter in a Nutshell
Introduction and Motivation
Setting up the Resource Arbiter Server

Create your own PathWave Test Automation Plugin
Model your Instruments and DUTs
Setting up the Testbench
Setting up the Connections

Consuming the Resource Arbiter Service with PathWave Test Automation as a client
Setting up the PathWave Test Automation Client
Advanced Features
Example Programs

Using the Resource Arbiter Service without PathWave Test Automation as a client
Sample API Client
REST API Quick Reference
REST API Documentation

Visualizing Resource Utilization with the PathWave Test Automation Timing Analyzer
Using Resource Arbiter GUI

Installing and Accessing the Resource Arbiter GUI
Adding Resources
Updating Resources
Deleting Resources
Viewing Resource Utilization
Disabling Resources
Unlocking Resources
Resetting Utilization Counts

Page 2

Notices
DFARS/Restricted Rights Notice
If software is for use in the performance of a U.S. Government prime contract or subcontract, software is
delivered and licensed as “Commercial computer software” as defined in DFAR 252.227-7014 (June
1995), or as a “commercial item” as defined in FAR 2.101(a) or as “Restricted computer software” as
defined in FAR 52.227-19 (June 1987) or any equivalent agency regulation or contract clause. Use,
duplication or disclosure of Software is subject to Keysight Technologies’ standard commercial license
terms, and non-DOD Departments and Agencies of the U.S. Government will receive no greater than
Restricted Rights as defined in FAR 52.227-19(c)(1-2) (June 1987). U.S. Government users will receive
no greater than Limited Rights as defined in FAR 52.227-14 (June 1987) or DFAR 252.227-7015 (b)(2)
(November 1995), as applicable in any technical data.

Warranty
THE MATERIAL CONTAINED IN THIS DOCUMENT IS PROVIDED “AS IS,” AND IS SUBJECT TO BEING
CHANGED, WITHOUT NOTICE, IN FUTURE EDITIONS. FURTHER, TO THE MAXIMUM EXTENT PERMITTED BY
APPLICABLE LAW, KEYSIGHT DISCLAIMS ALL WARRANTIES, EITHER EXPRESS OR IMPLIED WITH REGARD
TO THIS MANUAL AND ANY INFORMATION CONTAINED HEREIN, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. KEYSIGHT
SHALL NOT BE LIABLE FOR ERRORS OR FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN
CONNECTION WITH THE FURNISHING, USE, OR PERFORMANCE OF THIS DOCUMENT OR ANY
INFORMATION

Technology Licenses
The hardware and/or software described in this document are furnished under a license and may be
used or copied only in accordance with the terms of such license.

© Keysight Technologies, Inc.

For support, go to the PathWave Test Automation Web page and click Contact an Expert.

Page 3

http://www.keysight.com/find/tap

The Resource Arbiter in a Nutshell
The Resource Arbiter is a service that enables the sharing of instruments between participating DUTs
without forcing the DUTs to know about each other, while also guaranteeing that they do not interfere
with each other in their use of the instruments.

The Resource Arbiter Server has the following functions and characteristics:

Lock/Allocate an instrument based on:
Instrument class (e.g. “Any DCA”) or a specific instrument
Available routes
Cost of switching

REST API for use from any client. An example that explains the API and its use has been provided.
Switch Operation:

Easily integrate any Switch by implementing a simple ISwitch interface for the Switch
Instrument driver
Routes for DUT <-> locked instruments automatically set

Visualize resource usage history with PathWave Test Automation Timing Analyzer
Statistical data via API:

Insight into the current usage state of the instruments as well as the pending requests to lock
them
Enables analysis of the overall utilization of your instruments

Robust in times of Client failures (crashes)
Special support for Instrument Service and Cloud Computing
Internally uses PathWave Test Automation and PathWave Test Automation related data structures

Resource Arbiter client integration for Test plans running on PathWave Test Automation (“Client”) offers
the following capabilities:

configure, enable/disable interaction with Resource Arbiter
automatically inject communication to Resource Arbiter
push/pull instrument/DUT configuration changes

Page 4

Introduction and Motivation
When faced with the challenge to test as many devices as possible in parallel, the obvious approach is
to buy one piece of measurement equipment per DUT that shall be tested in parallel. However, in cases
where one DUT must undergo a series of tests with different instruments, one quickly finds out that the
instruments are only utilized for fractions of the time.

The Resource Arbiter service enables you to test multiple devices in parallel, without the need to have
one instrument of each type per DUT. Instead the pool of instruments is shared among the devices
under test.

This sharing of devices has to happen in a manner that the different measurements do not interfere
with each other to avoid corruption of the results. The Resource Arbiter service provides such hardware
arbitration.

To better understand the underlying concept of the Resource Arbiter, let us first take a look at the basic
sequence of events that happen during the acquisition of measurement data.

Schema of a Test Step

There are three participants in this abstracted scenario. The central one (yellow) is the test step. This
test step can either be performed by a person or be completely automated. The entity to the left is the
device under test and the one to the right is the measurement equipment that is needed to perform the
required measurements.

The test step consists of three phases:

1. The DUT is set up in a state that enables it to send or receive the required data.
2. The Data is acquired with the measurement equipment. This includes setting up the instruments as

well as the reception of the results.
3. The returned results are processed, analyzed, or stored.

Note that this is a very abstracted view on a test step. A test step might consist of multiple cycles of
communication with the DUT and then acquisition with the measurement equipment but the overall
procedure is more or less identical.

As mentioned above, to be able to test more complex devices, one usually needs a number of test
steps, each using potentially different instruments. This leads to the concept of a test plan, which is
then executed by a test sequencer. The test plan consists of a number of test steps and is responsible
for the testing of one DUT. The test plan is also responsible to keep the order of the test steps, in case
of dependencies among test steps but is not aware of any other test plans running concurrently.

The Resource Arbiter is a central component, using which a test plan does not need to know about all
the other test plans in order to avoid the concurrent usage of one single instrument. The Resource

Page 5

Arbiter is configured to know about all DUTs and instruments that are present in the currently active
profile in the test station. Whenever a test step needs to use one or more instruments, it requests
permission to use them from the Resource Arbiter, instead of using them in an uncontrolled manner.
When the test step has finished its acquisition, it releases the lock of the instrument resources either
explicitly or based on the expiry of a predefined lock period. Note that it is not necessary to hold the
lock for the instruments for the Analysis phase (shown in green).

This procedure leads to the following sequence of events:

Test Step Sequence with locking

In red, you can see the Resource Arbiter. Before the test step executes, it makes a call to the Resource
Arbiter to request the desired instruments. This call happens via REST, which makes it possible to be
sent from almost every programming language and platform. The call only returns a response once the
requested instrument resources are available (as indicated by the orange note). This means that upon
receiving the response, the test step can execute its measurements without interfering with other test
steps. Once the test step has completed its acquisition, it releases the lock of the instruments (again via
a REST call) to free them up for use by other test steps that possibly operate on other DUTs. For a
detailed references on the REST API calls, refer to REST API Documentation .

Two use models are supported:

1. Calling the REST API from any client. This is described in Using the Resource Arbiter Service
without PathWave Test Automation as a client .

2. Using PathWave Test Automation as Test Sequencer, the communication to the Resource Arbiter
can be injected automatically. This is described in Consuming the Resource Arbiter Service with
PathWave Test Automation as a client .

Page 6

Setting up the Resource Arbiter Server
Perform the following steps to set up the Resource Arbiter Server:

1. Create your own PathWave Test Automation Plugin
2. Model your DUTs and Instruments
3. Setup the Testbench

Create your own PathWave Test Automation Plugin
As specified in the Installation instructions, it is highly recommended to use the PathWave Test
Automation SDK in order to create a custom plugin that contains all the components you need for the
use of the Resource Arbiter.

Perform the following steps to create a PathWave Test Automation plugin:

1. Open Visual Studio (version 2015 or later).
2. Select File -> New -> Project and select OpenTAP Plugin Project (.NET Framework) .

Note: Refer to the Installing PathWave Test Automation section in the Installation Guide.

Figure: PathWave Test Automation Project

Ensure that you have selected the correct .NET Framework (version 4.6.2). Click OK. You will get a new
PathWave Test Automation Plugin project with an automatically generated test step, called Step. You
will need this boilerplate step later on, but first create the Resources to be used within this test step.

Model your Instruments and DUTs
Model your DUT
Right-click your project in the Solution Explorer in Microsoft Visual Studio and select Add > New Item.

Page 7

In the following dialog, select OpenTAP DUT. For a thorough description of the offered possibilities,
please refer to the Keysight PathWave Test Automation Documentation.

Figure: PathWave Test Automation DUT

For the purpose of using the Resource Arbiter it is sufficient to specify the ports, that are present at the
DUT.
publicpublic InputPort Input1 { getget; privateprivate setset; }
publicpublic OutputPort Output1 { getget; privateprivate setset; }

will add an input and an output port to the DUT. In order to generate a complete model of the DUT,
please add as many InputPorts and OutputPorts as you will need to use on your device. Note that the
getter of the Ports has to be public, so that the test step will actually have access to these structures.

Do not forget to initialize the Ports in the constructor of the DUT if you want to model connections
between your DUTs and instruments.
Input1 = newnew InputPort(thisthis, "The name that you want to be displayed");

This constructor will be automatically called when you later add a DUT of this type to your virtual work
bench inside PathWave Test Automation.

A sample DUT class that can be used by the Resource Arbiter could look like this:
namespacenamespace OpenTap.Plugins.YourPluginName
{
 [Display("ExampleDut", Group: "ExampleGroup", Description: "Add a description here")]
 publicpublic classclass ExampleDut : Dut
 {
 #region Ports
 // ToDo: Add property here for each parameter the end user should be able to change.
 publicpublic InputPort Input1 { getget; privateprivate setset; }
 publicpublic OutputPort Output1 { getget; privateprivate setset; }
 #endregion

Page 8

 /// <summary><summary>
 /// Initializes a new instance of this DUT class.
 /// </summary></summary>
 publicpublic ExampleDut()
 {
 // ToDo: Set default values for properties / settings.
 Name = "MyDUT";
 Input1 = newnew InputPort(thisthis, "Input1PortName");
 Output1 = newnew OutputPort(thisthis, "Output1PortName");
 }

 /// <summary><summary>
 /// Opens a connection to the DUT represented by this class
 /// </summary></summary>
 publicpublic overrideoverride void Open()
 {
 basebase.Open();
 // TODO: establish connection to DUT here
 }

 /// <summary><summary>
 /// Closes the connection made to the DUT represented by this class
 /// </summary></summary>
 publicpublic overrideoverride void Close()
 {
 // TODO: close connection to DUT
 basebase.Close();
 }
 }
}

Please specify all the classes of DUTs that you want to use in this manner, so that you will be able to
access them inside PathWave Test Automation.

Model your Instruments
In addition to defining the DUTs that you want to model in your test station, you need to model your
instruments in a similar way. Right-click your project in the Solution Explorer in Microsoft Visual Studio
and select Add > New Item. In the following dialog select OpenTAP Instrument.

Page 9

Figure: PathWave Test Automation Instrument

You will get a class with boilerplate code for an instrument. If you want to automatically get SCPI-
capabilities for this instrument, you should consider inheriting from the ScpiInstrument class instead of the
Instrument class. Next, define the Ports on the instruments that you want to use in a similar manner as
you did with the DUTs.

Additional Considerations for a switch

Resource Arbiter can interact with a switch and set the switch positions according to the DUT to
instrument connection that it assigns. In this case the Resource Arbiter needs to know how to set the
switch positions.

Implement ISwitch interface

Additionally derive your Instrument Driver from Keysight.Tap.Plugins.ResourceArbiter.Api.ISwitch and add a
reference to %TAP_PATH%\Packages\Resource Arbiter\Keysight.Tap.Plugins.ResourceArbiter.Api.dll. As an example
see %TAP_PATH%\Packages\Resource Arbiter\Resource Arbiter Examples\Example Classes\ExampleSwitch.cs. More
information about the needed methods and their description can be found there.

After performing the above steps, compile your code by building the solution. Once you successfully
build your solution, you will observe that your plugin gets added to the %TAP_PATH%\Packages directory
location.

Setting up the Testbench
Add Instruments and DUTs
In the previous steps you set up the classes of instruments and DUTs that you want to use. The following
section instructs you on how to instantiate the actual instruments that are physically present on your
test station.

Page 10

Perform the following steps in the PathWave Test Automation GUI:

1. Start the PathWave Test Automation program.

2. Select Settings > Bench > Instruments.

Select Bench Settings

3. In the following screen, add new instruments by clicking the “+” button to add instruments. In the
list that appears, you will find all the instrument types that are known in your PathWave Test
Automation environment. These should include the instruments that you set up previously.

4. Once you added an instrument, you are able to set all the properties contained in the instrument
class that have a public set method. As an example, you see the following screenshot of the
instrument settings screen, with an added simple SCPI-Instrument.

Page 11

Properties of an instrument

5. Add and customize all the instruments in the way you want to use them. Do not forget to add all
the switches that you want to use in your setup as instruments as well.

6. Proceed to the “DUTs” tab and do the same with the DUTs on you test station.

Setting up the Connections
The connection settings can be accessed by selecting Settings > Bench > Connections. For a profile
with no configured connections, the following window is displayed.

Empty Connection Settings

After double-clicking in any of the cells of the first row, choose the connection type that you want to add.
The new connection will appear in the list and you can then set all the properties that it exposes. Please
adhere to the following restrictions:

1. The Connection names must be unique.
2. To make the connections useful at all, both ports must be set. To set a port, click on the

corresponding field in the connection row and choose the port from the drop down. If you are not
offered any ports ensure that your testbench contains DUTs and instruments that own ports.

3. Add all the ViaPoints to the connection for all the devices that lie on the connection path to allow
the Resource Arbiter to ensure that no mutually exclusive connections are activated in parallel.

Here is an example for a sufficiently specified connection:

Page 12

Example of a single Connection

In addition to the mandatory settings, you can also specify the cable loss. You can also inherit from the
connection class and define your custom connections class to specify all the properties that you need to
associate with a connection.

Page 13

Consuming the Resource Arbiter Service with
PathWave Test Automation as a client
While you can consume the Resource Arbiter Service with the environment of your preference, as long
as it is capable of sending HTTP requests and receiving responses, it is very convenient to do so with
PathWave Test Automation as a client.
This section documents the setup and use of this scenario and concludes with information on some
advanced capabilities of this approach.

Setting up the PathWave Test Automation Client
The Resource Arbiter plugin seamlessly integrates with the PathWave Test Automation Platform (TAP).
In fact, the platform hides all the necessary communication from you in most cases.

The only requirement for a seamless use of the Resource Arbiter is that each instrument that a test step
requires must be declared as a public property.

When the Resource Arbiter client package is installed on your system, it automatically integrates its
settings with the other platform-related settings. To view the Resource Arbiter settings, click Settings
> Resource Arbiter from the menu bar. The Settings dialog showing the Resource Arbiter tab is
displayed.

Resource Arbiter Settings

Enrich Instruments and DUTs with Functionality
During the setup of the Resource Arbiter server you already specified the instruments and DUTs that
you want to use on your testbench. In addition to just defining them, you can implement all the
functions that you need for the resources in the DUT and instrument classes on the client side. Just copy
the dll from the server and reference it in your plugin on the client side. Please refer to the examples or
the PathWave Test Automation documentation regarding how to best leverage the instrument and DUT
constructs.

Page 14

Define your own Test Steps as a PathWave Test Automation Plugin
When you created the PathWave Test Automation plugin in the server setup, there was a test step
automatically generated. In these test steps you can define the behavior of your test cases, as well as
the resources that they need to perform their measurements. For additional examples please refer to
those given in the examples folder or take a look into the PathWave Test Automation documentation.

Specifying the Resource Arbiter Location
To use the Resource Arbiter service, you must ensure that it is enabled in the Settings window. Also,
the Settings window enables you to specify the server address where the Resource Arbiter service is
running. From the PathWave Test Automation GUI, click Settings > Resource Arbiter to access the
Settings window. Within this window, the Resource Arbiter tab is displayed. - Enter the Resource
Arbiter server address in the format shown in the Address box. - Ensure that the Use Resource
Arbiter check box is selected. - If you do not want to consider the connections between DUTs and
instruments, but are only interested in locking the required instruments, you can enable the “Only lock
Instruments” option.

Deciding for a Resource Strategy
When PathWave Test Automation is used as the client for the Resource Arbiter, the environment takes
care of the locking and unlocking of all the resources that are needed by the test steps. By default all
resources are locked for the entire Test Plan. To optimize the resource utilization, we recommend
changing this behavior to only lock the instruments for the duration of the Test Steps in which they are
actually used. The Resource Strategy setting is located at Settings > Engine. If you want the
instruments to be locked only for the duration of the test step that needs them, please set this property
to “Short Lived Connections”. Note that the Short lived Connections strategy will lead to a call of the
Open() method for all involved resources of each test step before the test step executes, as well as a
call to the Close() method of all involved resources after each test step. This means that you should
design your test steps in a way that they do not rely on any initial state of the instruments when using
this strategy. The assumption of the Resource Arbiter is that each test plan corresponds to one DUT.
Please note that the “default” option of the Resource Strategy can lead to errors when multiple DUTs
are used within one test plan. This can be mitigated by choosing the “Only lock Instruments” setting. As
all the needed resources are requested for the complete test plan, the connections will not be
automatically changed when different instruments need to be connected to the same DUT in different
test steps. If you want to use different instruments that need mutually exclusive connections in the
scope of a test plan, please select the “Only lock Instruments” option in the Resource Arbiter settings to
avoid errors.

Locking “ANY” Instrument, that matches a type
In many cases the test plan does not rely on a certain physical instrument, but will take anything, that is
able to perform the desired measurement. So in addition to requesting a set of specific instruments, the
Resource Arbiter allows you to request any instrument, that matches a specific type as well. To do that
with PathWave Test Automation as a client, you have to specify which of the instrument properties in
your test step are not relying on a specific piece of hardware. The concept here is called a placeholder,
which can be declared in the following two ways. First, you can declare it via the GUI. As soon as there
are multiple instruments on the test bench that match the instrument type that your test step uses, you
will be offered the “Any …” option in the drop-down menu for the respective instrument in the Step
Settings window. If the usage of the GUI is not an option, one can also declare an instrument property
as a placeholder via code as shown in the below code snippet.
TestStep step = newnew TestStep();
step.MyInstrument = nullnull;
step.GetResourcePlaceholders().Add(newnew ResourcePlaceholder{step,
TypeData.GetTypeData(step).GetMember("MyInstrument")});

If you specified any instruments as placeholders, these instruments will get substituted automatically by
the instruments that were chosen by the Resource Arbiter before the test step executes. This enables
you to treat a pool of instruments just like one instrument of that class. Once the test step finished, all
placeholders are reset and the instruments are released.

Transfer of the test bench topology

Page 15

The Resource Arbiter service runs an instance of PathWave Test Automation from which it pulls the
bench settings such as instruments, DUTs and connections. If you run PathWave Test Automation on the
client side as well it is paramount that these settings are identical on the server and client side. In order
to achieve that, you can transfer the settings between machines by using the export and import
function of the PathWave Test Automation bench settings, which produces/consumes .TapSettings files.
This way, you do not have to take care of physically copying the settings files from your server to the
clients and vice versa. The Resource Arbiter Settings offer the exact same functionality via HTTP. The
“Import Settings from Server” function downloads the current test bench profile from the Resource
Arbiter server and changes the local bench settings to this profile. Note that the local settings will get
overwritten if they share the same name with the ones present on the server. This method also saves
the settings as a .TapSettings file at %TAP_PATH%\Settings\Temp\PROFILE_NAME.TapSettings. It is also possible to push
the local settings profile to the Resource Arbiter Server using the “Export Current Settings” button.
Please note that doing this might heavily impact other clients of the same Resource Arbiter instance, as
their settings will be out of sync with the server.

Advanced Features
For the majority of use cases the Resource Arbiter Client (PathWave Test Automation) Plugin takes care
of all the necessary communication with the server without further configuration. However there are a
couple of additional features that enable some advanced use cases.

Deferred Actions
As mentioned in the introduction, the instruments only have to be locked for the time it takes to acquire
the data. If this data has to be post processed, the instruments can and should be released before this
post processing starts. This post processing can be realized in a PathWave Test Automation test step by
using the Results.Defer() method. The use of this method will lead to an automatic release of all the
resources that the test step used, as soon as all code in the Run() method of the test step outside of this
deferred action has been executed. In the below code snipped taken from the examples, the test step
will release its resources before the Sleep and the multiplication.
Results.Defer(() =>
{
 TestPlan.Sleep(1000);
 ResultAfterCalculation = RawResult * RawResult;
});

Connections Placeholders
In some scenarios it is important to know what connections were actually made. Some examples where
this might be interesting:

accessing the calibration data attached to the connections to compensate for connection specific
losses.
specific initializations to the device or instrument are required to be performed, depending on what
switches were changed, e.g. to lock to a changed clock.
some code needs to be placed around the actual switching, e.g. powering down the device before
switching and then powering it up after switching.

This information is provided by the ConnectionsPlaceholders class in %TAP_PATH%\Packages\Resource
Arbiter\Keysight.Tap.Plugins.ResourceArbiter.Api.dll to get the information about the chosen connections
between the DUT and the instrument.

If you declare a property of this type with public setter and getter in your test step, the Resource Arbiter
Client will fill the list of names of the connections that were chosen by the Resource Arbiter Server along
with the list of actually changed VIAs before the test step executes. This way the test step can assume
this data to be contained in the list. To understand the usage of the ConnectionsPlaceholder class via an
example, refer to the code in ThreePortStep.cs available in %TAP_PATH%\Packages\Resource Arbiter\Resource Arbiter
Examples\Example Classes. Here are a few snippets from this example:
publicpublic ConnectionsPlaceholder MyConnections { getget; setset; }
....
....
 foreachforeach (var connectionNameAndViaIdxs inin MyConnections.ConnectionNamesAndViaIdxs)
 {

Page 16

 // locate the Connection data structure
 Connection connection = ConnectionSettings.Current.FirstOrDefault(conn => conn.Name ==
connectionNameAndViaIdxs.Item1);
 ifif (connection isis RfConnection)
 {
 // This is an RF connection. We can get the cable loss per frequency to compensate in our setup
 // Note: RfConnection and DirectionalRfConnection are PathWave Test Automation built-in types.
 // For other loss characteristics, derive your own class from Connection base class.
 RfConnection rfConnection = (RfConnection)connection;
 ifif (rfConnection.CableLoss.Count > 0)
 {
 var loss1e6 = rfConnection.GetInterpolatedCableLoss(1e6);
 // do something in the setup to compensate the loss
 Log.Info(Invariant($"Cable loss @1e6 = {loss1e6}"));
 }
 elseelse
 Log.Info(Invariant($"Cable loss - no table given."));
 }
....
....

Locking Resources for multiple test steps
The two basic resource strategies were introduced in the previous section. In addition to locking the
resources for the whole test plan or separately for each test step, which is both configurable via the
engine settings, it is also possible to lock them for several test steps combined. The basic idea is to
define the needed resources in one test step and then to make use of these resources in its child test
steps. Thus, the lock will be held for the execution of all child test steps. This feature basically allows for
arbitrary scopes for the resource locks and makes the use of PathWave Test Automation as a client
exceedingly flexible. For a more detailed example, please refer to the
ResourceArbiterExampleWithoutSwitchManagerAdvanced example. Please note that this mechanism depends on the
“Short Lived Connections” resource strategy and that you should not define the resources as properties
of the child steps again, because this might lead to a deadlock, since it would generate a blocking
request for an already locked resource.

Modeling multiport DUTs
By default, the Resource Arbiter will connect the DUT that is used in a test step with all the instruments
that are used in the same test step, as long as the connections between the DUT and the instruments
are unambiguous. This means that we recommend only adding those connections to the connections
list of PathWave Test Automation that you really consider activating over the course of your test plans.
For example if you have a data port and a clock port on both the DUT and the instrument, you should
only add a connection between the data port of the DUT and the clock port of the instrument (and vice
versa) if you really consider this connection to be valid in a test case.
While the above case can be mitigated by just connecting the data ports and the clock ports to avoid
ambiguous matchings, this mechanism fails in case of a DUT with multiple data ports, that have to be
connected to the same port of an instrument.
In cases like this we recommend modeling the multiport DUT as a set of DUTs that only contain one port
of each flavor and thus eliminating the ambiguity.

Complex locking scenarios
If the automatically injected communication with Resource Arbiter is not fulfilling all needs, the Rest API
can be used directly within a Test Step. More information about the Rest API can be found in Using the
Resource Arbiter Service without PathWave Test Automation as a client

Locking Compute Nodes
For doing longer lasting computations, it can be beneficial to offload the actual work to a compute node.
To allocate such a compute node, the Resource Arbiter can also be used. The ICompute interface in
%TAP_PATH%\Packages\Resource Arbiter\Keysight.Tap.Plugins.ResourceArbiter.Api.dll is intended to model the
available compute nodes, similar to how the instruments are modeled. The Lock / Unlock of such a
compute node is usually done in a Deferred Action , and needs to be done using the REST API directly.
See .The Lock / Unlock of such a compute node is usually done in a Deferred Action , and needs to be
done using the REST API directly. See Complex locking scenarios .

Page 17

Infinite Locking and Counted Locking
If an Instrument can be locked by multiple clients in parallel, the ICountedLock interface enables this
behavior. When an Instrument implements this interface it will expose two properties, one is a boolean
that can be set to true to allow this resource to be locked for an infinite amount of times simultaneously.
The other one is a number indicating, how often the resource can be locked simultaneously. This latter
number will only be taken into account, if the instrument is not marked as infinitely lockable.

Capabilities based Locking
In addition to locking instruments by name or by the Class/Interface that they inherit from, it is possible
to assign your instruments capabilities to later request an instrument that has a desired capability. This
can be achieved by implementing the IResourceCapabilities Interface, which will expose a Capabilities
string that will be interpreted as a comma separated list of Capability-identifiers. If, for example, an
instrument has the Capabilities “53GHz,CDR”, a request specifying either “53GHz” or “CDR” as an
instrumentIdentifier, will receive a lock for this instrument or any other instrument metching the
requested capability, once it becomes available.

Autostarting the Resource Arbiter
The Resource Arbiter can be configured to start automatically at system startup. This behavior can be
enabled by running the “Resource Arbiter Autostart.bat” at the Test Automation location (%TAP_PATH%)
as an administrator. This will configure the Resource Arbiter as a scheduled task.
With this scheduled task the Resource Arbiter will automatically start with the system, i.e. even before a
user is logged in. However, the Resource Arbiter will only start to work once the Keysight License
Service is running and a KS8108A License is found. To unregister this task please execute the “Resource
Arbiter Autostart Unregister.bat” as an administrator from the same location.

Example Programs
The Resource Arbiter comes with some example programs to demonstrate its resource arbitration
capabilities. There are two sets of example programs, those that come with the server-side package and
those that come with client-side package. The following sets of example programs ship with the client-
side package and are described in this section.

Resource Arbiter Example Without Switch Manager
Resource Arbiter Example Without Switch Manager2
Resource Arbiter Example Without Switch Manager Advanced

The Resource Arbiter Client API program ships with the server-side package and is described in the
Example REST API Client section.

These example programs are based on a few predefined DUTs, instruments, and test steps. These
predefined entities can be used to try out the REST API commands or for modeling your own DUTs,
instruments, and test steps. The .cs files for these example entities are available from
%TAP_PATH%\Packages\Resource Arbiter\Resource Arbiter Examples\Example Classes.

The following table briefly describes these .cs files.

Example file Description

OneOutputDut.cs
Declares OneOutputDut class with one output port
Output1. Also declares a sample Configure method
that introduces a time lag by making the test plan
sleep for 1000 milliseconds.

ShortMeasuringInstrument.cs

Declares ShortMeasuringInstrument with one input port
Input1. Also declares a sample MakeMeasurement()
method that introduces some processing time by
making the test plan sleep for 2500 milliseconds
and generates a random double as the
measurement result.
Declares one DUT of OneOutputDut class and one

Page 18

ShortMeasurementStep.cs

instrument of ShortMeasuringInstrument class. The
Short Measurement Step calls the Configure method
on DUT and MakeMeasurement method on the
Instrument. This class also demonstrates the use
of Defer method that is primarily used to release
the resources and perform post-processing tasks.

LongMeasuringInstrument.cs

Declares LongMeasuringInstrument with one input port
Input1. Also declares a sample MakeMeasurement()
method that introduces some processing time by
making the test plan sleep for 8000 milliseconds
and generates a random double as the
measurement result.

LongMeasurementStep.cs

Declares one DUT of OneOutputDut class and one
instrument of LongMeasuringInstrument class. The Long
Measurement Step calls the Configure method on
DUT and MakeMeasurement method on the Instrument.
This class also demonstrates the use of Defer
method that is primarily used to release the
resources and perform post-processing tasks.

ThreePortResources.cs

Declares ThreeOutputDut with three output ports –
ClockOut, TriggerOut, and DataOut. Declares a
sample Initialize method that introduces a time
lag of 1000 milliseconds. Declares an example
IThreePortInst interface to show that it is possible to
create extensive instrument inheritance
hierarchies and then let test steps decide which
kind of specialization they need in order to
perform their measurements. The IThreePortInst
interface declares three input ports ClockInput,
TriggerInput, and DataInput and a MakeMeasurement
function. Further, an example implementation of
the interface is available that declares the three
instrument ports and adds functionality to the
method by introducing processing time of 1000
milliseconds.

ThreePortStep.cs

Declares ThreeOutputDut, IThreePortInst, and
ConnectionsPlaceholder objects. In this test step, the
Instrument is already assigned to the Test Step by
the Resource Arbiter. However, the Resource
Arbiter does not take care of switching the needed
connections (as in this case, Switch Manager is not
being utilized). The Resource Arbiter populates
the connections placeholder with the names of the
chosen Connections. These are then manually
switched on the respective instruments to
guarantee the correct signal flow.

ExampleSwitch.cs

This is an abstract base class for a matrix switch.
This instrument enables setting a switching cost
value that will be used by the Resource Arbiter to
prioritize those request that have a comparably
low total switching cost.

LockInstrumentsMultipleSteps.cs

Declares multiple Test Step classes.
LockInstrumentsMultipleSteps demonstrates how two
instruments of type ShortMeasuringInstrument and
LongMeasuringInstrument can be locked, and used by
child steps UseLockedShortInstrumentStep,
UseLockedLongInstrumentStep and
UseLockedShortAndLongInstrumentStep. Additionally two
test steps LongMeasurementOnTwoOutputDutStep and

Example file Description

Page 19

ShortMeasurementOnTwoOutputDutStep that show how a
single instrument LongMeasuringInstrument and
ShortMeasurementOnTwoOutputDutStep can be used.

TwoOutputDut.cs
Declares TwoOutputDut class with two output ports
Output1 and Output2. Also declares a sample Configure
method that introduces a time lag by making the
test plan sleep for 1000 milliseconds.

Example file Description

The following tables display the relevant details of the example programs.

Parameter Resource Arbiter Example Without
Switch Manager

Resource Arbiter Example Without
Switch Manager2

Location %TAP_PATH%\Packages\Resource Arbiter\Resource
Arbiter Examples\Without Switch Manager

%TAP_PATH%\Packages\Resource Arbiter\Resource
Arbiter Examples\Without Switch Manager2

Profile ResourceManagerExampleWithoutSwitchManager.TapSe
ttings

ResourceManagerExampleWithoutSwitchManager2.TapS
ettings

Test Plan ThreePort_Dut1.TapPlan, ThreePort_Dut2.TapPlan,
ThreePort_Dut3.TapPlan, ThreePort_Dut4.TapPlan

ExampleDut1.TapPlan, ExampleDut2.TapPlan,
ExampleDut3.TapPlan, ExampleDut4.TapPlan

DUTs 3 Output Dut1, 3 Output Dut2, 3 Output Dut3, 3
Output Dut4

OneOutputDut, OneOutputDut1, OneOutputDut2,
OneOutputDut3

Instruments Three Port Instrument 1, Three Port Instrument
2, Clock Switch, Trigger Switch, Data Switch

Long Measuring Instrument, Long Measuring
Instrument1, Short Measuring Instrument, Matrix

Each of these example folders contains a .TapSettings file. The .TapSettings file is a profile file that contains
predefined entities – DUTs and Instruments. All you need to do is to import the profile file by performing
the following steps illustrated using “Resource Arbiter Example Without Switch Manager2”:

1. Click Settings > Bench > DUT. The Bench Settings dialog is displayed.

2. Click Import settings profile icon.
3. Navigate to %TAP_PATH%\Packages\Resource Arbiter\Resource Arbiter Examples\Without Switch Manager2.
4. Open the .TapSettings profile.
5. Specify an alternative name for the profile (if required) and click Add to add the new settings

profile.
6. Notice the addition of new DUTs and new Instruments in the Bench Settings window. Also notice

Page 20

the Connections tab to view the connections between the DUTs, switch matrix, and Instruments.

7. Close the Bench Settings window.

Running Sample Test Plans

Once the profile is loaded, you can run the sample test plans provided with the examples. Perform the
following steps:

1. From the PathWave Test Automation GUI, click File > Open.

2. Navigate to %TAP_PATH%\Packages\Resource Arbiter\Resource Arbiter Examples\Without Switch Manager2.

Opening Test Plans

3. Select the appropriate PathWave Test Automation Test Plan and click Open. The Test Plan displays
the associated test steps.

Test Plan Details

4. Click the Run icon to run the test plan. The Test Plan runs and the logs display the relevant
messages.

The following tables further describe the respective test plans.

Resource Arbiter Example Without Switch Manager

Page 21

Test Plan Description

ThreePort_Dut1.TapPlan
Consists of single test step ThreePortSetp running on
3 Output Dut1. Any instrument Three Port Instrument 1
or Three Port Instrument 2 is used.

ThreePort_Dut2.TapPlan
Consists of single test step ThreePortSetp running on
3 Output Dut2. Any instrument Three Port Instrument 1
or Three Port Instrument 2 is used.

ThreePort_Dut3.TapPlan
Consists of single test step ThreePortSetp running on
3 Output Dut3. Any instrument Three Port Instrument 1
or Three Port Instrument 2 is used.

ThreePort_Dut4.TapPlan
Consists of single test step ThreePortSetp running on
3 Output Dut4. Any instrument Three Port Instrument 1
or Three Port Instrument 2 is used.

Resource Arbiter Example Without Switch Manager2

Test Plan Description

ExampleDut1.TapPlan

Consists of two steps that run in parallel threads.
The Long Measurement Step and Short Measurement Step.
Both the steps operate on the same DUT
(OneOutputDut) but using Long Measuring Instrument
and Short Measuring Instrument, respectively.

ExampleDut2.TapPlan

Consists of two steps that run in parallel threads.
The Long Measurement Step and Short Measurement Step.
Both the steps operate on the same DUT
(OneOutputDut1) but using Long Measuring Instrument
and Short Measuring Instrument, respectively.

ExampleDut3.TapPlan

Consists of two steps that run in parallel threads.
The Long Measurement Step and Short Measurement Step.
Both the steps operate on the same DUT
(OneOutputDut2) but using Long Measuring Instrument
and Short Measuring Instrument, respectively.

ExampleDut4.TapPlan

Consists of two steps that run in parallel threads.
The Long Measurement Step and Short Measurement Step.
Both the steps operate on the same DUT
(OneOutputDut3) but using Long Measuring Instrument
and Short Measuring Instrument, respectively.

Resource Arbiter Example Without Switch Manager Advanced

Test Plan Description

Example_Dut1.TapPlan

Consists of multiple steps that run in parallel
threads, testing TwoOutputDut 1. It is demonstrated
how Instruments can be locked for multiple test
steps, by locking them in the parent test step
LockInstrumentMultipleSteps

Example_Dut2.TapPlan

Consists of multiple steps that run in parallel
threads, testing TwoOutputDut 2. It is demonstrated
how Instruments can be locked for multiple test
steps, by locking them in the parent test step
LockInstrumentMultipleSteps

Page 22

Using the Resource Arbiter Service without
PathWave Test Automation as a client
Since the Resource Arbiter is a REST service, it is able to interact with every platform that is able to
send and receive HTTP requests and responses. To integrate the Resource Management into your
existing system make sure to implement a blocking POST call to the LockRequests resource that
contains the identifiers of the instruments you want to lock. Alternatively, if it suits your application
better or if your environment does not support this mechanism, you can send a POST request that
specifies a 0 timeout. This will return a LockResponse object that only contains the token that was
assigned to your request. You can then use this token to periodically poll the availability of the
requested instruments, using this GET call . This will only return empty LockResponse objects until the
resources have been successfully locked for the request identified by the token. Once you received a
non empty LockResponse from the server, your application can start using the instruments. If you do not
require the locked instruments to be one specific physical instance of that type, you can instead not use
the identifier of the resource, but the names of the classes of the instruments that you want to use. If
you want to make use of the connection concept of PathWave Test Automation, or even use the
resource arbiter, you should specify the DUT identifier of the device that you want to test as well. If
there is no unambiguous way to connect the DUT with the instruments, you must specify the pairs of
ports that shall be connected with each other.

Please make sure to refresh the timeout of your resource usage, in cases where you need the resource
longer than initially stated, by making this PUT call.

For a thorough introduction to the REST API, please refer to the dedicated part of the REST API
documentation .

Additionally the Resource Arbiter package contains an example program that shows how the REST API
can be consumed with a client application. This example will by default be installed to
%TAP_PATH%\Packages\Resource Arbiter\Resource Arbiter Examples\Non-Tap Client and is introduced in the following
section.

Sample API Client
The Sample API Client is an auto-generated C# client library generated using the NSwag tool chain.

Along with the client library, there is a sample Program.cs file that demonstrates the use of various
methods from the C# client library. These methods correspond to the REST API calls.

In order to run this sample program, ensure that the ResourceArbiterExampleWithoutSwitchManager
profile is the active profile. You can use the GET API call to determine the current profile.

The Sample API Client program performs the following steps:

1. Prompt the user to type the address of the machine on which the Resource Arbiter service is
running. If the Resource Arbiter service is to be accessed locally (on the same machine as client),
the user must simply press Enter.

2. Create a new client object.
client = newnew Client(address);

Lock and unlock instruments
Note: Getting the snapshot commands have been inserted here multiple times to verify the behavior of
the lock and unlock calls. Otherwise, these are not mandatory.

1. Get the snapshot before making a request for locking an instrument.
var snapshot = client.Snapshot_Get();

This snapshot contains the lock state of all the instruments as well as the number of currently
queued requests for instruments.

Page 23

2. Create a LockRequest object and place a request for locking Three Port Instrument 1 as well as all
connections between 3 Output Dut1 and Three Port Instrument 1. The response is captured using a
LockResponse object.
ObservableCollection<SourceAndDestination> entries = newnew ObservableCollection<SourceAndDestination>();
entries.Add(newnew SourceAndDestination { DutIdentifier = "3 Output Dut1", InstrumentIdentifier = "Three Port
Instrument 1" });
LockRequest lockRequest = newnew LockRequest { Entries = entries, MaxLockDurationSeconds = 10.0 };
LockResponse response = client.LockRequests_Post(lockRequest, 7);

3. Get the snapshot after making request for locking the instrument.
snapshot = client.Snapshot_Get();

The snapshot now shows that the Instrument “Three Port Instrument 1” is no longer free, but
locked.

4. Wait until the lock time of the instrument has passed to demonstrate that the instrument will be
unlocked after that time.

5. View snapshot after the instrument lock time expires.
snapshot = client.Snapshot_Get();

The snapshot shows that the instrument has been released after the lock time has elapsed.

View the utilization statistics
1. Place a request to view the utilization statistics of the instruments. The utilization statistics shows

the total time elapsed and utilization time per instrument.
var utilization = client.Utilization_Get();

It will be observed that the usage of the instrument locked in the previous steps has been
registered.

Use the refresh timeout feature
1. Place the same request as in a previous step but for a maximum lock duration of 3 seconds.

lockRequest.MaxLockDurationSeconds = 3.0;

response = client.LockRequests_Post(lockRequest, 7);

2. Just before the maximum lock duration expires, refresh the instrument timeout by 60 sec. Use the
LockToken received from the response from Resource Arbiter to identify the instrument whose
timeout period is to be refreshed.
client.LockRequests_ResetTimeout(response.LockToken, 60.0);

3. Wait for at least 5 seconds. But the initial lock on the instrument was for only 3 seconds (see step
1)

4. Get the snapshot to see if timeout refresh helped.
snapshot = client.Snapshot_Get();

The snapshot shows that the instrument is locked.

Explicitly unlock the instrument
1. Unlock the instrument. Otherwise, the instrument gets unlocked by itself after the timeout.

client.UnlockRequests_Post(response.LockToken);

2. Get the snapshot after the instrument is released.
snapshot = client.Snapshot_Get();

Page 24

The snapshot shows that the instrument has been released.

Poll for availability of the instrument status
1. Try locking the same instrument twice.

First call:
lockRequest.MaxLockDurationSeconds = 15;
response = client.LockRequests_Post(lockRequest, 7);

Second call:
lockRequest.MaxLockDurationSeconds = 2;
var delayedResponse = client.LockRequests_Post(lockRequest, 5);

Note that the second parameter in the call represents the time to wait in the blocking call. After
this time period has elapsed, the Resource Arbiter will send a response regardless of the
availability of the instrument. The LockResponse that we received for the second call should only
contain a LockToken and not much else.

2. Poll the state of the LockRequest.
whilewhile (delayedResponse.AssignedInstrumentIdentifiers == nullnull)
 {
 Console.WriteLine("Polled the state of the LockRequest");
 delayedResponse = client.LockRequests_PollToken(delayedResponse.LockToken, 1);
 }

 Console.WriteLine("The polling succeeded in acquiring the LockRequest");

3. Unlock the instrument.
client.UnlockRequests_Post(delayedResponse.LockToken);

4. Get the snapshot after the instrument is released.
snapshot = client.Snapshot_Get();

Requesting for instruments that match a category
1. If you do not depend on a specific instance of an instrument type but any instrument of a given

type will serve the purpose, you can specify that by not providing the name of the instrument in
the LockRequest object, rather providing the name of the class of the instrument. In our example,
there are two instruments of type Three Port Instrument present on the Test Bench, and this
implements the interface IThreePortInst. Simply change the requested instrument identifier to the
name of the class or interface that you want to request.
lockRequest.Entries[0].InstrumentIdentifier = "Keysight.Tap.Plugins.ResourceArbiter.Examples.IThreePortInst";
lockRequest.MaxLockDurationSeconds = 5;
Console.WriteLine("Requesting two Instruments that implement the interface IThreePortInst. We do not care which
one we get with which request.");

var firstResponse = client.LockRequests_Post(lockRequest, 10);

2. To avoid using the already locked connection between the DUT from the first call and the
instrument from the first call, change the DutIdentifier and send another request to the
IThreePortInst interface.
lockRequest.Entries[0].DutIdentifier = "3 Output Dut2";
var secondResponse = client.LockRequests_Post(lockRequest, 10);

3. Get the snapshot.
snapshot = client.Snapshot_Get();

REST API Quick Reference

Page 25

REST API Quick Reference

REST API Documentation
The Resource Arbiter offers a lean but powerful REST API.

Overview

Status

[GET] /Status : Returns success if the Resource Arbiter service is running.

Testbench

[GET] /Testbench?content=name : Returns the name of the current testbench profile on the server-side
as a string.

[GET] /Testbench : Returns the current PathWave Test Automation settings profile on the server-side as
a .TapSettings file.

[POST] /Testbench : Takes a .TapSettings file in multipart/formdata format and updates the testbench
profile on the Resource Arbiter server based on the profile contained in the file.

Page 26

LockRequests

[GET] /api/LockRequests : Returns all the LockRequests that are currently in the queue.

[POST] /api/LockRequests : Enqueues the LockRequest that is in the body of the HTTP message.

[GET] /api/LockRequests/{token} : This method is used to poll the state of an ongoing request.

[PUT] /api/LockRequests/{token} : Extends the timeout of the already granted request with the given
token.

UnlockRequests

[POST] /api/UnlockRequest/{token} : Unlocks all the resources that are associated with the given token.

Resources

[GET] /api/Resources : Returns a list of all the available resources with their public properties.

[POST] /api/Resources : Adds a new resource to the setup. Please note that this is currently working with
resources of type ResourceNode only, as used by disaggregated compliance applications.

[DELETE] /api/Resources/{name}?force=boolean : Removes the resource with the given name from the
setup.

[PUT] /api/Resources/{name} : Updates the specified resource. Please note that this is currently working
with resources of type ResourceNode only, as used by disaggregated compliance applications.

[POST] /api/Resources/{name}/release : Releases all the current locks of the specified resource.

Snapshot

[GET] /api/Snapshot : Returns the current state of all managed resources.

Utilization

[GET] /api/Utilization : Returns for each instrument, the time in seconds that it has been utilized since
the start of the Resource Arbiter service as well as the time that expired since the service was started.
This enables the calculation of a utilization ratio per instrument.

[POST] /api/Utilization : Resets the utilization clocks for all the resources.

Status (/Status)

[GET] Method:

Returns success if the Resource Arbiter service is running.

Parameters:

No parameters

Request Example:

http://127.0.0.1:55441/Status

Response Example:

Response Code Description
200 Success

Testbench (/testbench?content=name)

Page 27

[GET] Method:

Returns the name of the current testbench profile on the server-side as a string. Tip: You can use this to
verify that your client has the same local settings profile as the server.

Parameters:

content

Example Request:

http://127.0.0.1:55441/testbench?content=name

Example Response:

ResourceArbiterExampleWithoutSwitchManager

Response Code Description
200 Success

Testbench (/Testbench)

[GET] Method:

Returns the current PathWave Test Automation settings profile on the server-side as a .TapSettings file.
You can then import this file in your local PathWave Test Automation instance.

Request Example:

http://127.0.0.1:55441/Testbench

Response:

Response Code Description
200 Success

Testbench (/testbench)

[POST] Method:

Takes a .TapSettings file in multipart/formdata format and updates the testbench profile on the
Resource Arbiter server based on the profile contained in the file. This leads to a “soft update” of the
DUT and instruments on the server, which means that the locking state of all the DUTs, Instruments and
Connections sharing the same names in the previous settings profile and are still present (by Name) on
the new settings profile is preserved. However, all instruments and DUTs, as well as connections that
are not contained in the new settings profile will no longer be accessible via the Resource Arbiter server.
This will lead to the failure of requests that demand for the no longer available resources. So, ensure
that all the clients are aware of the change in settings. All DUTs, instruments and connections that are
present on the new settings profile will be available on the Resource Arbiter server after the request is
successfully processed. To sum up, all new resources will be free and all already existing resources (if
any) will maintain their lock state.

LockRequests (/api/LockRequests)

[GET] Method:

Retrieves a list of all the currently queued lock requests. Requests under process are not returned. This
call can be used for debugging purposes.

Page 28

Parameters:

No parameters

Request example:

http://127.0.0.1:55441/api/LockRequests

Response example:

The list is formatted as a JSON list of LockRequest objects, as specified here .

An example is shown below.
[
 {
 "entries": [
 {
 "dutIdentifier": "OneOutputDut",
 "instrumentIdentifier": "Long Measuring Instrument",
 "dutPortName": "Output1",
 "instrumentPortName": "Input 1"
 }
],
 "maxLockDurationSeconds": 300,
 "token": "1b9b4316-0b85-4e09-8ba9-e5477cc4dcb0"
 }
]

Response Code Description
200 Success. Returns a response in JSON format.
202 Success
400 Bad Request
404 Not Found

LockRequests (/api/LockRequests)

[POST] Method:

Creates a resource lock request. Upon posting a LockRequest object in the body, the client will receive a
LockResponse object. These objects have to be formatted in JSON and look like follows:

LockRequest:
{
 "entries": [
 {
 "dutIdentifier": "string",
 "instrumentIdentifier": "string",
 "dutPortName": "string",
 "instrumentPortName": "string"
 }
],
 "maxLockDurationSeconds": doubledouble,
 "token": "string"
}

An example:
{
 "entries": [
 {
 "dutIdentifier": "OneOutputDut",
 "instrumentIdentifier": "Short Measuring Instrument",
 "dutPortName": "Output1",
 "instrumentPortName": "Input 1"

Page 29

 }
],
 "maxLockDurationSeconds": 300,
 "token": "firstRequest"
}

Semantics of the parameters:

parameter meaning

entries A list of 4-tuples that describes which resources
are requested

dutIdentifier(optional) The unique name of the DUT that is to be tested
with the requested resources.

instrumentIdentifier
The unique name of the instrument that should be
locked by this request. This may also be a unique
name of a class of instruments.

dutPortName(optional) The name of the Port that should be connected on
the DUT side. (must be unique per DUT)

instrumentPortName(optional)
The name of the Port that should be connected on
the instrument side. (must be unique per
instrument)

MaxLockDurationSeconds(optional)

Specifies the maximum time duration for which
the instruments will be required. After expiration
of this time period, the instruments are
automatically released. If no such duration is
specified, the resources will be locked infinitely or
until an UnlockRequest is received for these
resources. The maximum value for this parameter
is 922337203685.4775.

LockResponse:
{
 "lockToken": "string",
 "unlockUrl": "string",
 "maxLockDurationSeconds": doubledouble,
 "assignedInstrumentIdentifiers": ["string"],
 "assignedConnectionsAndSwitchedViaIdxs": [
 {
 "item1": "string",
 "item2": [0]
 }
 "Resources":: [
 {
 "propertyName1" : "value1", "propertyName2" : "value2"
 }
]
}}

An example:
{
 "lockToken": "d9b5fcf9-be00-447d-b494-c221fdbd9b13",
 "unlockUrl": "http://156.141.0.191:55441/api/UnlockRequests/d9b5fcf9-be00-447d-b494-c221fdbd9b13",
 "maxLockDurationSeconds": 300,
 "assignedInstrumentIdentifiers": [
 "Three Port Instrument 2",
 "Three Port Instrument 2",
 "Three Port Instrument 2"
],
 "assignedConnectionsAndSwitchedViaIdxs": [
 {
 "item1": "Clock_1_2",
 "item2": [
 1
]

Page 30

 },
 {
 "item1": "Trigger_1_2",
 "item2": [
 1
]
 },
 {
 "item1": "Data_1_2",
 "item2": [
 1
]
 }
]
 "Resources":: [
 { "Name" : "Three Port Instrument 2", "Address" : "123.456.789" }
]
}

Semantics of the parameters:

parameter meaning

lockToken
A unique string that identifies the enqueued
request. This string will be used for the unlock
operation as well as for polling and the refreshing
of timeouts.

unlockUrl The complete URL where an empty post message
will lead to the release of the resources.

MaxLockDurationSeconds(optional)

Specifies the maximum time duration for which
the instruments will be required. After expiration
of this time period, the instruments are
automatically released. If no such duration is
specified, the resources will be locked infinitely or
until an UnlockRequest is received for these
resources. The maximum value for this parameter
is 922337203685.4775.

assignedInstrumentIdentifiers The list of names of the assigned instruments that
were successfully locked.

assignedConnectionsAndSwitchedViaIdxs

The list of names of the connections and for each
connection the activated VIAs that were locked, or
in the presence of a Switch Instrument
implementing ISwitch interface activated. This can
be used in order to retrieve calibration data (i.e. S-
parameter files) for the chosen connections.

Resources

A List that contains key-value pairs for all public
properties of each instrument that was
successfully locked. This is especially useful when
TAP is not used as a client to consume the REST
API. This way any client can access all the
information that is present on the TAP test bench
without replicating the Test Bench itself on the
client machine.

Depending on which of the optional parameters were specified in the lock request, the request has
different meanings:

1. Only instrumentIdentifiers are specified: In this case only the instruments will be locked for use.
2. instrumentIdentifiers and dutIdentifiers are specified: In this case the instruments will get locked

and all connections between corresponding DUT and instrument will be switched. For this case, all
connections have to be unambiguous. This means that for each port on the instrument side there
is only one port on the DUT side, that can be connected and vice versa.

3. All four parameters are specified: In this case the instruments get locked and connections between
all pairs of ports, that were specified are switched.

Page 31

In addition to the described data structures that are transferred in the bodies of the HTTP messages,
one can specify another parameter, which is provided as a query parameter. This parameter is called
timeout and specifies the time, in seconds, for which the HTTP reply will be awaited. If this is not
provided, the result is awaited infinitely. This ensures that the request really waits until the locks are
granted. A shorter timeout might be useful for reacting earlier, for example when the user wants to stop
test plan execution earlier. In this case, use a very short timeout here (e.g. 0). This guarantees a fast
response giving the lockToken. With this lockToken you can then Poll to actually get a lock or Cancel to
take back the lock request. The maximum value for this parameter is 922337203685.4775.

Due to the timeout parameter, the HTTP endpoint looks like the following:

/api/LockRequests?timeout=’’

Example Request

http://127.0.0.1:55441/api/LockRequests?timeout=60

Example Response

{
 "lockToken": "d9b5fcf9-be00-447d-b494-c221fdbd9b13",
 "unlockUrl": "http://156.141.0.191:55441/api/UnlockRequests/d9b5fcf9-be00-447d-b494-c221fdbd9b13",
 "maxLockDurationSeconds": 300,
 "assignedInstrumentIdentifiers": [
 "Three Port Instrument 2",
 "Three Port Instrument 2",
 "Three Port Instrument 2"
],
 "assignedConnectionsAndSwitchedViaIdxs": [
 {
 "item1": "Clock_1_2",
 "item2": [
 1
]
 },
 {
 "item1": "Trigger_1_2",
 "item2": [
 1
]
 },
 {
 "item1": "Data_1_2",
 "item2": [
 1
]
 }
]
 "Resources":: [
 { "Name" : "Three Port Instrument 2", "Address" : "123.456.789" }
]
}

Response Code Description
200 Success
201 Returns the newly created item

400 If the Body of the request does not contain a valid
LockRequest object

404 If an Instrument or DUT of the request is not
known

408 If the lock was not granted before the given
timeout

LockRequests (/api/LockRequests/{token})

Page 32

GET{token}

Retrieves the LockResponse for the LockRequest that was assigned the given token. As this token is
only known after the response of the Resource Arbiter on the POST of said LockRequest was retrieved,
this method should be used in polling scenarios only.

Parameters:

token
timeout

Example Request:

http://127.0.0.1:55441/api/LockRequests/ba866042-8927-4367-b222-8f7b698233d0?timeout=300

Example Response:

{
 "lockToken": "ba866042-8927-4367-b222-8f7b698233d0",
 "unlockUrl": nullnull,
 "maxLockDurationSeconds": 10,
 "assignedInstrumentIdentifiers": nullnull,
 "assignedConnectionsAndSwitchedViaIdxs": nullnull
}

Response Code Description
200 Success
404 Not Found
408 Request Timeout

LockRequests (/api/LockRequests{token}?timeout=‘doubleInSeconds’)

[PUT] Method:

Refreshes the timeout for the request with the given token and sets it to the new timeout that is
specified as a query parameter. This query parameter is of type double and represents the timespan in
seconds.

This interplays with the overall procedure in the following way: In the POST method, one can specify the
timespan for which the resources should be locked. Since an unlock request can be sent at any time,
that will release the lock. It is a good practice to be rather generous with the timespan that is specified
in the POST method. However, should something unforeseen happen, the PUT method enables you to
keep the lock for resources longer than initially demanded.

Parameters

token
timeout

Example Request:

http://127.0.0.1/:55441/api/LockRequests/e361a939-a40e-493c-bfdb-8099a4d47464?timeout=720

Example Response:

Response Code Description
200 Success
400 Bad Request

Page 33

Snapshot (/api/Snapshot)

[GET] Method:

Gathers the current locking state of all the managed instruments as well as the size of the queue of
LockRequests. It returns the desired data in the body of the HTTP response in the following
format(JSON):
{
 "lockedInstruments": [],
 "freeInstruments": [],
 "sizeOfQueue": 0
}

Semantics of the parameters:

parameter meaning

lockedInstruments A list of all the unique instrument identifiers of
instruments that are currently locked.

freeInstruments
A list of all the unique instrument identifiers of
instruments that are currently not locked and thus
available for use.

sizeOfQueue An integer parameter that represents the number
of LockRequests that are currently in the queue.

Request Example:

http://127.0.0.1:55441/api/Snapshot

Response Example:

{
 "lockedInstruments": [
 "Short Measuring Instrument"
],
 "freeInstruments": [
 "Long Measuring Instrument",
 "Long Measuring Instrument1"
],
 "sizeOfQueue": 0
}

Response Code Description
200 Success

Utilization (/api/Utilization)

[GET] Method:

Returns for each instrument, the time in seconds for which it has been utilized since the start of the
Resource Arbiter service as well as the time that expired since the service was started. This enables the
calculation of a utilization ratio per instrument.

Parameters

No parameters

Request Example:

http://127.0.0.1:55441/api/Utilization

Page 34

Response Example:

The data is provided in the body of the HTTP response and is in the following JSON format:
{
 "totalElapsedTime": "double",
 "utilizationPerInstrument": {
 "instrumentIdentifier": "double"
 }
}

Semantics:

parameter meaning

totalElapsedTime Elapsed time in seconds since the Resource
Arbiter service was started.

utilizationPerInstrument
A dictionary containing a double value that
represents the time in seconds for each managed
instrument that the instrument was locked (and
thus hopefully used).

The following is an example of a response to this request.
{
 "totalElapsedTime": 947.2101341,
 "utilizationPerInstrument": {
 "Long Measuring Instrument": 0,
 "Long Measuring Instrument1": 0,
 "Short Measuring Instrument": 300.52365510000004
 }
}

Response Code Description
200 Success

Utilization (/api/Utilization)

[POST] Method:

Resets the utilization clocks for all the resources.

Parameters

No parameters

Request Example:

http://127.0.0.1:55441/api/Utilization

Response Example:

Response Code Description
200 Success

UnlockRequests (/api/UnlockRequests/{token})

[POST] Method:

Releases the lock for all the resources assigned with the LockResponse that contained the given token.

After sending this request to the Resource Arbiter, the client should not use the instruments any further,
since the instruments might be assigned to the next user. To use the instruments again, the client must

Page 35

place a fresh Lock request.

Parameters

No parameters

Request Example:

http://127.0.0.1:55441/api/UnlockRequests/58561477-aeab-48a9-8f53-3cac64a13942

Response Example:

Response Code Description
200 Success. “Instruments unlocked”
404 Not Found

Resources (/api/Resources)

[GET] Method:

Returns a list of all the available resources with their public properties.

Parameters

No parameters

Request Example:

http://127.0.0.1:55441/api/Resources

Response Example:

The data is provided in the body of the HTTP response and is in the following JSON format:

[

 {

 "Address": "123.456.789",

 "Capabilities": "PCI",

 "IsInfinitelyLockable": falsefalse,

 "MaxLockCount": 2,

 "IsEnabled": truetrue,

 "Name": "PCI2",

 "CurrentLockCount": 0,

 "Utilization": 0

 },

 {

 "Address": "http://somethinginteresting:2500",

Page 36

 "Capabilities": "PCI",

 "IsInfinitelyLockable": falsefalse,

 "MaxLockCount": 3,

 "IsEnabled": truetrue,

 "Name": "PCI3",

 "CurrentLockCount": 0,

 "Utilization": 0

 }

]

Response Code Description
200 Success

Resources (/api/Resources)

[POST] Method:

Adds a new resource to the setup. Please note that this is currently working with resources of type
ResourceNode only, as used by disaggregated compliance applications.

The POST HTTP message sent to the server must contain a JSON body with this content:
{
 "Address": "string",
 "Capabilities": "string",
 "IsInfinitelyLockable": truetrue,
 "MaxLockCount": 0,
 "IsEnabled": truetrue,
 "Name": "string",
}

Semantics of the parameters:

Page 37

parameter meaning

Name

The name of the resource that gets added to the
test bench. You must use unique resource names.
This name must also not be the same as any
capability name that is already present on the test
bench.

Address The VISA address, IP Address, or the Host name of
the resource.

Capabilities
A string of comma-separated capabilities. Once
resources are present on the Setup, you can lock
them by using these capabilities strings.

IsInfinitelyLockable
If this is set to true, the resource can be locked by
an arbitrary number of clients in parallel. If set to
false, the resource will be available for
“MaxLockCount” clients, in parallel.

MaxLockCount

The number of clients that should be able to lock
this resource in parallel. This parameter will be
taken into account only if IsInfinitelyLockable is
set to false. A Count of 0 will lead to this resource
never being locked. All negative counts will be
trimmed to 0 automatically.

IsEnabled
If set to true, this resource can be locked by
clients. If set to false, this resource cannot be
locked by clients. This function is supposed to be
used for maintenance or downtimes.

Response Example:

Response Code Description
200 Success
400 Bad Request

Resources (/api/Resources/{name}

[PUT] Method:

Updates the specified resource. The expected body of this method is identical to the POST method.
However, properties that should not change can be omitted from the body and will remain unchanged.

Please also note that this is currently working with resources of type ResourceNode only, as used by
disaggregated compliance applications.

Parameters

name

Response Example:

Response Code Description
200 Success
400 Bad Request
404 Error: Not Found

Resources (/api/Resources/{name}?force=boolean)

Page 38

[DELETE] Method:

Removes the resource with the given name from the setup. This request will produce a response with
HTTP status code 200, if the resource was successfully deleted and produce a 204 status code, if the
resource was already deleted or not found in the setup. If the resource is currently locked, it will not be
deleted to avoid interference with measurement execution. To override this behavior, an additional
query parameter to force the deletion can be set. Be absolutely sure that you want to delete the
resource immediately, regardless of its lock state, when using this force parameter.

Parameters

name

Request Example:

http://127.0.0.1/:55441/api/Resources/PCI_Worker1?force=true

Response Example:

Response Code Description
200 Success. The resource was successfully deleted.

204 The resource has already been deleted or was not
found in the setup.

Resources (/api/Resources/{name}/release

[POST] Method:

Releases all the current locks of the specified resource.

CAVEAT: This call may severely impact measurement execution, as another client will then be able to
lock the resource and might interfere with the process that held the lock before. This method should
only be used when you are certain that the client holding the lock has crashed.

Example Request

http://127.0.0.1:55441/api/Resources/PCI_Worker1/release

Response Code Description
200 Success
404 Error: Not Found

Page 39

Visualizing Resource Utilization with the PathWave
Test Automation Timing Analyzer
In addition to using the REST call to retrieve information about the resource utilization, one can also use
the PathWave Test Automation Timing Analyzer tool. It can be found in the PathWave Test Automation
GUI via Tools > Timing Analyzer.
Once the tool has started you can select the log file that shall be used to analyze the timing behavior via
File > Open Log File(s). You can find the logs of the Resource Arbiter in the directory:
%TAP_PATH%\SessionLogs\tap.
When you load a log file into the Timing Analyzer, you can select which sources of logs you want to be
displayed by clicking View > Sources. By default, every possible source of logs will be selected. The
Resource Arbiter creates one log source for every DUT and non switch instrument on the testbench.
Whenever an instrument is logged you will see a blue bar that indicates the duration of the lock in the
swim lane that corresponds to the respective instrument.
Additionally, you will also see one such blue bar in the swim lane of the DUT that was able to acquire the
lock for the instruments. The text in the blue bars indicates the instrument that was assigned to the DUT
and vice versa.

In the example of one such Timing Analyzer view below you can see the bars that indicate the resource
usage. Please note that you can also see the utilization for a region indicated as percent directly behind
the name of each resource by dragging the mouse over the interested region.

If you only want to track instrument usage, you can of course simply disable all logs, except those that
correspond to instruments.

Example Screenshot of the Timing Analyzer

Note that you can only access the logs on the machine that runs the Resource Arbiter server.

Page 40

Using Resource Arbiter GUI
The Resource Arbiter GUI enables you to add and configure your resources (including acquisition engine
or oscilloscope and processing and results collection PCs) for use in measurement disaggregation. You
can define your resource by specifying the following:

Name
Domain Name or IP address or VISA address
Capabilities (strings that define the application names and whether the resources will be used for
waveform acquisition, measurement processing, or results collection)
The number of times a resource can be locked. You can also specify unlimited locking capability for
a resource.

Installing and Accessing the Resource Arbiter GUI

You can perform the following functions from the Resource Arbiter GUI:

Adding Resources
Updating Resources
Deleting Resources
Viewing Resource Utilization
Disabling Resources
Unlocking Resources
Resetting Utilization Counts

Installing and Accessing the Resource Arbiter GUI
The Resource Arbiter GUI can be installed by running the Resource Arbiter server installer (a .exe file)
available on keysight.com. There is no prerequisite for installing the PathWave Test Automation, in this
case.

When installing the Resource Arbiter GUI from the .exe file, it is strongly recommended to install the
application on a machine with no prior PathWave Test Automation installation. Existing PathWave Test
Automation users intending to make use of the Resource Arbiter web GUI are strongly recommended to
install Resource Arbiter server version 1.1 from the .TapPackages file and follow the steps for accessing
the web GUI.

Before you can access the Resource Arbiter GUI, install the KS8108A license using Keysight License
Manager, on the machine that has the Resource Arbiter installed.

Accessing the Resource Arbiter GUI
You can access the Resource Arbiter GUI by performing the following steps:

1. Start the Resource Arbiter server using ANY of the following techniques:

Use the ResourceArbiter.bat shortcut in the Start Menu: Start > Keysight Test Automation >
Keysight Resource Arbiter
Start the ResourceArbiter.bat batch file from your Keysight Test Automation installation folder.
The default location for this batch file is C:/Program Files/Keysight/Test Automation
Start the Resource Arbiter service by entering the following commands on a command line:

 cd %TAP_PATH%
 tap resourcearbiter

2. Access the following url from your web browser:

http://<serverIP_or_hostname>:55441/

Note: The Internet Explorer web browser is not recommended for accessing the Resource Arbiter
GUI.

If you are accessing the Resource Arbiter GUI from the same machine on which you started the
Resource Arbiter service, access the GUI from the following url: http://localhost:55441/

Page 41

The Resource Arbiter GUI is displayed:

Resource Arbiter GUI

Adding Resources
Perform the following steps to add resources to your system using the Resource Arbiter GUI.

Page 42

Adding Resources

1. Click inside the Name field and specify a name for the resource. Note that the name must be
unique amongst all the resources and must not be identical to any capabilities that exist on the
setup. Furthermore, the Name field must not be empty.

2. Click inside the Address field and enter the domain name or IP address or VISA address of the
resource.

3. Select Unlimited from the Locking drop-down list if the resource can be locked for an unlimited
number of times. You can unlock a locked resource anytime subject to some conditions.

4. If you do not select Unlimited from the Locking drop-down list, in the Lock Count field, specify
the maximum number of times that the resource can be locked. If you specify a number smaller
than 1, the Resource Arbiter will never assign this resource to an incoming request.

5. Click inside the Capabilities field to display the available capabilities of the resource. These
include strings for acquisition, processing, and report collection capabilities.

6. To add a new capability, click inside the Add Capability field and enter a name for the capability.
Click the + button. Note that a new capability cannot be an empty string and must not be identical
to an already existing resource name. In case of invalid inputs, the + button will be disabled.

7. Click Add Resource. The newly added resource appears in the list above. The Add Resource
button is disabled in case of any invalid input. Note that the In Use field displays two characters
separated by a “/”. The first character shows the number of times that the specified resource is
currently locked and the second character shows the maximum number of times that the resource
can be locked. For Unlimited Locking, the second character is displayed as ∞ (infinity).

8. Click Clear Entry to clear the editable fields below the list of resources.

Page 43

Please note that this procedure is currently working with resources of type ResourceNode only, as used
by disaggregated compliance applications.

Updating Resources
1. Click the row of the resource that needs to be updated. The values for the resource attributes are

displayed under the list of resources.
2. Make appropriate changes in the editable fields.
3. Click Update Resource.

Updating Resources

Please note that this procedure is currently working with resources of type ResourceNode only, as used
by disaggregated compliance applications.

Deleting Resources
1. Click the row of the resource that needs to be deleted. The values for the resource properties are

displayed under the list of resources.
2. Click Delete Resource. You are prompted to confirm whether you want to permanently delete the

resource.
3. Click Yes to confirm.

Deleting Resources

Viewing Resource Utilization
The Resource Arbiter GUI displays the utilization percentage of the resource. The utilization is
calculated as a ratio of the time the instrument was locked and the elapsed time since the start of the
Resource Arbiter service. If a resource can be locked more than once at the same time, this percentage
will show the utilization in contrast to the full utilization of all lock counts. This means that if a resource
that is configured to be lockable by two clients in parallel is constantly locked once, this percentage will
show as 50%. For infinitely lockable resources, this percentage will be calculated as if the resource was
lockable only once at a time. The Utilization percentage of the resource is displayed in the Utilization
(last column) of the list of instruments.

Disabling Resources
Sometimes, you might not need a resource. Rather than deleting it from the list of resources and adding
it again when you require it, you can temporarily disable it. Note that disabling will keep all current locks
intact, but prevent any other clients from acquiring new locks for this resource.

Uncheck the Enabled check box on the left of the resource name that needs to be disabled.

Disabling resources is an efficient way for performing maintenance on a system. You might disable a
resource, wait until all locks are gone, shut it down, repair it, bring it up again, and then enable it by
selecting the Enabled check box.

Page 44

Disabling Resources

Unlocking Resources
In situations like a machine crash, you might want to forcefully unlock a resource irrespective of its lock
count or current locking state.

Click the Lock icon in the In Use field corresponding to the resource that must to be unlocked and
confirm that you really want to unlock this resource in the ensuing prompt.

CAVEAT: This forceful unlocking might severely interfere with measurement execution. If the process
that acquired the lock before was not indeed faulty, the measurement or computation of this process
will most likely be interfered with by the next client that acquires the lock. Moreover, the execution of
the next client’s task might as well suffer from interference from the previous process that held the lock
if it had not crashed but continues execution.

Unlocking Resources

Resetting Utilization Counts
To reset the utilization data, click the Reset icon next to the column name.

Resetting Utilization Counts

Page 45

	User Guide
	Table of Contents
	Notices
	DFARS/Restricted Rights Notice
	Warranty
	Technology Licenses

	The Resource Arbiter in a Nutshell
	Introduction and Motivation
	Setting up the Resource Arbiter Server
	Create your own PathWave Test Automation Plugin
	Model your Instruments and DUTs
	Model your DUT
	Model your Instruments
	Additional Considerations for a switch

	Setting up the Testbench
	Add Instruments and DUTs

	Setting up the Connections

	Consuming the Resource Arbiter Service with PathWave Test Automation as a client
	Setting up the PathWave Test Automation Client
	Enrich Instruments and DUTs with Functionality
	Define your own Test Steps as a PathWave Test Automation Plugin
	Specifying the Resource Arbiter Location
	Deciding for a Resource Strategy
	Locking “ANY” Instrument, that matches a type
	Transfer of the test bench topology

	Advanced Features
	Deferred Actions
	Connections Placeholders
	Locking Resources for multiple test steps
	Modeling multiport DUTs
	Complex locking scenarios
	Locking Compute Nodes
	Infinite Locking and Counted Locking
	Capabilities based Locking
	Autostarting the Resource Arbiter

	Example Programs
	Running Sample Test Plans

	Using the Resource Arbiter Service without PathWave Test Automation as a client
	Sample API Client
	Lock and unlock instruments
	View the utilization statistics
	Use the refresh timeout feature
	Explicitly unlock the instrument
	Poll for availability of the instrument status
	Requesting for instruments that match a category

	REST API Quick Reference
	REST API Documentation
	Overview
	Status
	Testbench
	LockRequests
	UnlockRequests
	Resources
	Snapshot
	Utilization

	Status (/Status)
	[GET] Method:

	Testbench (/testbench?content=name)
	[GET] Method:

	Testbench (/Testbench)
	[GET] Method:

	Testbench (/testbench)
	[POST] Method:

	LockRequests (/api/LockRequests)
	[GET] Method:

	LockRequests (/api/LockRequests)
	[POST] Method:

	LockRequests (/api/LockRequests/{token})
	GET{token}

	LockRequests (/api/LockRequests{token}?timeout=‘doubleInSeconds’)
	[PUT] Method:

	Snapshot (/api/Snapshot)
	[GET] Method:

	Utilization (/api/Utilization)
	[GET] Method:

	Utilization (/api/Utilization)
	[POST] Method:

	UnlockRequests (/api/UnlockRequests/{token})
	[POST] Method:

	Resources (/api/Resources)
	[GET] Method:

	Resources (/api/Resources)
	[POST] Method:

	Resources (/api/Resources/{name}
	[PUT] Method:

	Resources (/api/Resources/{name}?force=boolean)
	[DELETE] Method:

	Resources (/api/Resources/{name}/release
	[POST] Method:

	Visualizing Resource Utilization with the PathWave Test Automation Timing Analyzer
	Using Resource Arbiter GUI
	Installing and Accessing the Resource Arbiter GUI
	Accessing the Resource Arbiter GUI

	Adding Resources
	Updating Resources
	Deleting Resources
	Viewing Resource Utilization
	Disabling Resources
	Unlocking Resources
	Resetting Utilization Counts

