The Next Generation of Test

LXI and Agilent Open
Major Test Challenges Today:

Cost
- Instruments, rack, cables, software, training, transitions

Performance
- Measurement accuracy/resolution/bandwidth, system throughput

Compatibility
- Application software, PC standard I/O, existing instruments

Flexibility
- Built-in measurements, personalities, test topologies, triggering

Longevity
- Measurement performance, PC standard I/O, support life

Ease of use
- Front panel operation, drivers, manuals, program monitoring

Size
- Sized for performance, reduce rack space, faceless modules (military)
Today’s Test System Architectures

<table>
<thead>
<tr>
<th></th>
<th>GPIB</th>
<th>VXI</th>
<th>PXI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>GPIB card and expensive cables</td>
<td>Cardcage, Slot 0, MXI card/cable</td>
<td>Cardcage, Slot 0, MXI card/cable</td>
</tr>
<tr>
<td>Measurement performance</td>
<td>Best measurement performance</td>
<td>Limited by module size power / cooling</td>
<td>Limited by module size power / shielding</td>
</tr>
<tr>
<td>I/O performance</td>
<td>Slow interface (1 MB/sec)</td>
<td>Fast backplane and I/O</td>
<td>Fast backplane and I/O</td>
</tr>
<tr>
<td>Compatibility</td>
<td>>90% of existing test systems, T&M I/O</td>
<td>Cardcage, non-standard I/O (MXI)</td>
<td>Cardcage, non-standard I/O (MXI)</td>
</tr>
<tr>
<td>Flexibility</td>
<td>Download personalities Limited to 14 instruments</td>
<td>13-slot Cardcage, Limited intelligence</td>
<td>17-slot cardcage, No intelligence</td>
</tr>
<tr>
<td>Longevity</td>
<td>All major vendors (>30 years)</td>
<td>Based on VME, limited suppliers</td>
<td>Based on C-PCI, data acquisition</td>
</tr>
<tr>
<td>Ease-of-use</td>
<td>Front panel, SCPI, drivers, built-in intelligence</td>
<td>No front panel, Mostly register-based</td>
<td>No front panel, Register-based</td>
</tr>
<tr>
<td>Size</td>
<td>Sized for performance with front panel</td>
<td>Large modules that require a cardcage</td>
<td>Small modules that require a cardcage</td>
</tr>
</tbody>
</table>
Why LXI?

PC backplanes change too rapidly
Test industry is moving to PC standard I/O (LAN, USB)
LAN has demonstrated longevity and backwards compatibility
Computer industry continues to improve LAN
LAN as the system backbone

Choose whatever software you prefer

LAN switch/router

LAN

LAN/GPIB converter

LAN Slot 0 or Embedded PC

VXI PKI

Cardcage Instruments

Classic Modular Synthetic

GPIB instruments

GPIB

Synthetic

Agilent Open

Agilent Technologies
LXI is widely endorsed

The LXI Consortium is a not-for-profit corporation made up of the leading companies in the Test and Measurement Industry.

LXI Consortium Members

Agilent	Anritsu	Teradyne
VXI Technology	Bruel & Kjaer	Tektronix
Keithley	Adlink	The Math Works
Rohde & Schwarz	California Instruments	Universal Switching
Pickering	Complete Networks	Ztec Instruments
National Instruments	Beijing Aerospace	Acqiris
Aeroflex	Beijing Institute of Metrology & Meas	AMREL
BAE Systems	Goepel	JDS Uniphase Corp
Xantrex Technology	Lambda	Intepro Systems
	EADS N. Am. Defense	Pacific Power Source
	LXInstruments	Com DEV, Ltd.
		Symmetricom
		Altera Corp.
		Holding Informtest
		SofTec Microsystems
		C&H Technologies
		Circuit Assembly Corp
		Data Patterns
		Data Translation
		Dept of Defense
		Geotest/Marvin
		Kepco
		Pacific MindWorks
		Hitech Group Intl.
		Symtx
		Yokogawa Electric
		Digalog Systems
		Rigol Technologies

Consortium President: Bob Rennard, Agilent
What is LXI?

LAN Extensions for Instruments
What is LXI?

Applying proven standards to test & measurement

Physical standards
(IEC sizes, Power, Cooling, Front panel Indicators, Reset button)

Instrument web pages
(Information, Set-up, control, and data access from a web browser)

Interface standards
(IVI driver, VXI-11 discovery, Device locking, Security)

Ethernet standards
(TCP/IP, DHCP, URL / IP addresses, Dynamic DNS, Auto-MDIX)

Trigger standards (optional)
(LAN triggers, IEEE 1588 time synchronization, Trigger bus)
Major components of the LXI Standard

<table>
<thead>
<tr>
<th>Physical</th>
<th>Physical Consistency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronization & Triggering</td>
<td>New synchronization</td>
</tr>
<tr>
<td>Hardware Triggering</td>
<td>IVI drivers</td>
</tr>
<tr>
<td>Module to Module Communications</td>
<td>Ethernet</td>
</tr>
<tr>
<td>LXI Programming (Drivers)</td>
<td>Instrument pages</td>
</tr>
<tr>
<td>LAN Connection</td>
<td>LXI compliance</td>
</tr>
<tr>
<td>LAN Configuration</td>
<td></td>
</tr>
<tr>
<td>LAN Discovery</td>
<td></td>
</tr>
<tr>
<td>Web Interface</td>
<td></td>
</tr>
<tr>
<td>Security</td>
<td></td>
</tr>
<tr>
<td>Documentation</td>
<td></td>
</tr>
<tr>
<td>Trademark and licensing</td>
<td></td>
</tr>
<tr>
<td>Compliance</td>
<td></td>
</tr>
</tbody>
</table>
LXI allows flexible sizes

Classic Bench

Faceless modular

Remote devices

Remote operations
Physical standards for modules

- **Power**: (100-240Vac)
- **Ethernet**: 802.3 (RJ-45)
- **Trigger bus**: (Class A)
- **Indicator lights**: LAN status, Power status, IEEE 1588 status
- **Cooling**
- **Shielding**
- **Height**: (IEC rack units)
- **Width**: (IEC full or ½-rack)

NOTE: The LXI specification defines 1U, ½-rack modules and their rack mounting.
LXI devices serve a web page

Using any standard web browser

IP Address

Manufacturer
Model #
Serial #
Firmware rev.
IP Address
Domain name
etc.

Ability to change the IP address
LXI provides a programmatic interface – IVI driver required

Work in the software environment you prefer

Use industry standard drivers

Work with all types of instruments

Build a versatile system
Leverage your software

Classic Instruments

Same Software

Modular Equivalents

LXI

R&D

Design Validation

Depot Test/Manufacturing
Examples of standard, modular and compact instruments

- Power supplies
- RF Signal Generator
- Oscilloscope
- Power meter
- Time trigger
- Spectrum Analyzer
- Synthetic Instruments
- Switch/measure
- DMM
LXI increases I/O speed

- GPIB: 1.0 MB/s
- USB 1.0: 1.5 MB/s
- 100 Mb LAN: 12.5 MB/s
- USB 2.0: 60.0 MB/s
- VXI: 80.0 MB/s
- Gbit LAN: 125.0 MB/s

125x improvement

- ARPAnet: 3 Mb/s (1969)
- Ethernet: 10 Mb/s (1980)
- IEEE 802.3 Standard (1985)
- Ethernet 100 Mb/s (1990)
- Gbit Ethernet (2000)
- 10 Gbit Ethernet (2004)
LXI reduces overhead costs

System costs for up to 7 instruments (US$)

<table>
<thead>
<tr>
<th></th>
<th>VXI 13-slot</th>
<th>PXI 14-slot</th>
<th>GPIB</th>
<th>LAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface card</td>
<td>$50</td>
<td>$700</td>
<td>$500</td>
<td>$70*</td>
</tr>
<tr>
<td>(Firewire)</td>
<td></td>
<td>(MXI-4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cable</td>
<td>$</td>
<td>$125</td>
<td>$700</td>
<td>$25</td>
</tr>
<tr>
<td>Cardcage</td>
<td>$4400</td>
<td>$3500</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Slot 0</td>
<td>$2534</td>
<td>$800</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Total</td>
<td>$6984</td>
<td>$5125</td>
<td>$1200</td>
<td>$95</td>
</tr>
</tbody>
</table>

* No interface card required – use 16-port switch – Linksys SR216 ($70)
3 Classes of LXI

Class C (base class)
- Ethernet standards
- IVI driver
- Instrument web page
- Physical
 - Size / Shielding
 - Power / Cooling
 - Indicators / reset button

Class B
- Class C plus
- IEEE 1588 time sync
- LAN messaging

Class A
- Class B & C plus
- Hardware trigger bus
LXI Triggering

LAN triggers (Class B)

- **Switch/router**
- **LXI**

IEEE-1588 triggers (Class B)

- **Boundary Clock Switch**
- **Master Clock**
- **LXI**

Trigger Bus (Class A)

- **Trigger Bus**
- **LXI instruments**

Message

- Peer-to-peer
- Multi-cast
- < 1 ms

Time

- Time synchronization
- Time stamps
- < 100 ns

Hardware

- Instruments close together
- 5 ns/ meter

MCO Technology Forum
13 November 2007
Marlo Manaloto
What does IEEE 1588 give you?

Synchronization
- Start actions in a sequence
- Synchronize timing even when running at multiple rates
- Troubleshoot test sequences
- Correlate data

Time Stamps

- **Measurement 1**: 000000
- **Measurement 2**: 000200
- **Measurement 3**: 000300
- **Measurement 4**: 008000
- **Measurement 5**: 010000
- **Measurement 6**: 012000
- **Measurement 7**: 030000

- **Trigger 3**: 000310
- **Trigger 5**: 010000

- **Instrument #1**: 0100 15.11178
 - 0200 15.23422
 - 0300 16.00101

- **Instrument #2**: 0100 385443
 - 0200 386332
 - 0300 387119

- **Instrument #3**: 0100 000333
 - 0200 000335
 - 0300 000440
LXI is the Future of Test

<table>
<thead>
<tr>
<th></th>
<th>GPIB</th>
<th>VXI</th>
<th>PXI</th>
<th>LXI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>GPIB card and cables</td>
<td>Cardcage, Slot 0, MXI card/cable</td>
<td>Cardcage, Slot 0, MXI card/cable</td>
<td>LAN built into PC</td>
</tr>
<tr>
<td>Measurement</td>
<td>Best measurement performance</td>
<td>Limited functionality</td>
<td>Limited functionality</td>
<td>Best measurement performance</td>
</tr>
<tr>
<td>performance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I/O</td>
<td>Slow interface (1MB/sec)</td>
<td>Fast backplane and I/O</td>
<td>Fast backplane and I/O</td>
<td>Gbit LAN = 125x GPIB</td>
</tr>
<tr>
<td>performance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compatibility</td>
<td>>90% of existing test systems, T&M I/O</td>
<td>Cardcage, non-standard I/O (MXI)</td>
<td>Cardcage, non-standard I/O (MXI)</td>
<td>LAN as the backbone + converters for other architectures</td>
</tr>
<tr>
<td>Flexibility</td>
<td>Personalties, 14 instruments, Limited distance</td>
<td>13-slot cardcage, Limited intelligence</td>
<td>17-slot cardcage, Small modules, No intelligence</td>
<td>Intelligence, Long distances, Unlimited instruments, New triggering</td>
</tr>
<tr>
<td>Longevity</td>
<td>All major vendors (>30 years)</td>
<td>VME, limited suppliers</td>
<td>C-PCI, data acquisition</td>
<td>All major vendors + computer standards</td>
</tr>
<tr>
<td>Ease-of-use</td>
<td>Front panel + drivers</td>
<td>No front panel, Register-based</td>
<td>No front panel, Register-based</td>
<td>Front panels + drivers + web interface</td>
</tr>
<tr>
<td>Size</td>
<td>Front panel</td>
<td>Large modules require cardcage</td>
<td>Small modules require cardcage</td>
<td>Flexible sizes, Front panel or faceless</td>
</tr>
</tbody>
</table>

Legend
- **GPIB**: General Purpose Interface Bus
- **VXI**: Virtual Instrument Architecture
- **PXI**: Peripheral Component Interconnect
- **LXI**: Laboratorial eXtreme Interface
Agilent’s LXI Product Offering

LXI Class C

- MXA Spectrum Analyzer
- Digital Multimeters (34410A / 34411A)
- Oscilloscopes 8000, 80000 Series
- Oscilloscopes 6000A, 5000A Series
- Multi-Output Modular Power Supplies (N6700B)
- Single-Output Power Supplies Family (N5700A)

LXI Class B

- LXI class B trigger Box (E5818A)
- Power Meters (N8262A, N1911/12A)
- 20 GHz Analog Up Converter (N8211A)
- 20 GHz Vector Up Converter (N8212A)
- 26.5 GHz Down Converter (N8201A)
- 40 GHz Analog Up Converter (N8211A)
- 30 MS/s IF Digitizer (N8221A)
- 1.25 GHz AWG (N8241A)

LXI Class A

- EXA Spectrum Analyzer
- ENA, ENA-L Network Analyzers
- Digital Multimeter (L4411A)
- Oscilloscopes 6000L Series
- ENA, ENA-L Network Analyzers
- Oscilloscopes 8000, 80000 Series

>100 products
Agilent Open simplifies the process of connecting and programming test systems to help engineers design, validate and manufacture electronic products.
Simpler computer control with Agilent Open

✓ Software included for free
 • Graphical Web Interface
 • New I/O Library Suite 15.0
 • IVI-COM, IVI-C, NI LabVIEW drivers

✓ Compatible with standard programming environments including:
 - Visual Basic
 - C/C++
 - Agilent VEE Pro
 - Visual Studio.NET with Agilent T&M Toolkit 2.0
 - LabVIEW

Remote access and control via standard Web Browser
Agilent LXI interfaces do more

- Monitor communications
- Control the instrument
- Download and Retrieve data
Tools for fast startup: Agilent Suite 15

System set-up in < 15 minutes

- Identify and set up LAN, USB, GPIB, and converter interfaces
- Identify and communicate with instruments
- Monitor IO activity
- Change addresses and set interface aliases
- Works with NI-488 software and NI VISA I/O library
Compatibility modes make conversion from GPIB instrument to LAN simple

#include "stdafx.h"
#include <atlstr.h>
#include <atlsafe.h>

int _tmain(int argc, _TCHAR* argv[]) {
 ::CoInitialize(NULL);
 try {
 try {
 IIviDriverPtr spDriver34410(__uuidof(Agilent34410));
 IIviDriverPtr spDriver34980(__uuidof(Agilent34980A));

 // Setup IVI-defined initialization options
 CString strStandardInitOptions =
 "Cache=true, InterchangeCheck=false, QueryInstrStatus=true,
 RangeCheck=true, RecordCoercions=false, Simulate=false";

 // Initialize Agilent 34410A/11A and 34980A IVI drivers
 spDriver34410->Initialize("TCPIP0::156.140.71.39::INSTR", VARIANT_FALSE,
 VARIANT_FALSE, LPCTSTR(strStandardInitOptions));
 spDriver34980->Initialize("TCPIP0::156.140.69.216::INSTR", VARIANT_FALSE,
 VARIANT_FALSE, LPCTSTR(strStandardInitOptions));

 IAgilent34410Ptr spAgilent34410 = spDriver34410;
 IAgilent34980A2Ptr spAgilent34980 = spDriver34980;
 }

 Replace the existing string "GPIB0::9::INSTR" with
Agilent Instruments have multiple interfaces

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E5061/62A</td>
<td>ENA-L RF Network Analyzers</td>
</tr>
<tr>
<td>E5071C</td>
<td>ENA Network Analyzer</td>
</tr>
<tr>
<td>34410/11A</td>
<td>Digital Multimeters / Digitizer</td>
</tr>
<tr>
<td>34980A</td>
<td>Switch / Measure Unit</td>
</tr>
<tr>
<td>33220A</td>
<td>Function Generator</td>
</tr>
<tr>
<td>N6705A</td>
<td>Power Analyzer</td>
</tr>
<tr>
<td>N6700B</td>
<td>Modular Power Supplies</td>
</tr>
<tr>
<td>N5700A</td>
<td>DC Power Supply Family</td>
</tr>
<tr>
<td>E836xx</td>
<td>PNA Microwave Network Analyzers</td>
</tr>
<tr>
<td>DSO6000</td>
<td>Digital Oscilloscopes</td>
</tr>
<tr>
<td>MSO6000</td>
<td>Mixed Signal Oscilloscopes</td>
</tr>
<tr>
<td>86100C</td>
<td>Digital Communications Analyzer</td>
</tr>
<tr>
<td>N1910A/11A</td>
<td>Power Meters</td>
</tr>
<tr>
<td>E8257/67D</td>
<td>PSG Signal Generators</td>
</tr>
<tr>
<td>E4438C</td>
<td>ESG Vector Signal Generator</td>
</tr>
<tr>
<td>E444xA</td>
<td>PSA Spectrum Analyzers</td>
</tr>
<tr>
<td>81140A Series</td>
<td>Pulse / Pattern Generators</td>
</tr>
<tr>
<td>83141A/42A</td>
<td>Pulse / Pattern Generators</td>
</tr>
<tr>
<td>N9020A</td>
<td>MXA Signal Analyzers</td>
</tr>
<tr>
<td>N5181/2A</td>
<td>MXG RF Signal Generators</td>
</tr>
<tr>
<td>N1996A</td>
<td>CSA Spectrum Analyzer</td>
</tr>
<tr>
<td>E4980A</td>
<td>Precision LCR Meter</td>
</tr>
</tbody>
</table>
Agilent provides converters

- USB/GPIB
- LAN/RS-232
- LAN/USB
- LAN/GPIB

Re-use existing instruments
Agilent provides built-in intelligence

N6700B Modular DC power supply
- 4 power “bricks” – synchronize outputs
- Ramp up/down
- Sense/Source voltage and current

34411A Digital Multimeter
- Selectable speed/resolution (1Ks/sec to 50Ks/sec)
- Data logging to memory (50K readings)
- Built-in temperature compensation algorithms
- Dual display / built-in peak measurements

34980A Switch/Measure Unit
- Scan lists (built-in DMM)
- Switch set-ups
- Relay switch counter
Smart instrument advantages:

Performance:

• Ability to **pre-load** repetitive setups speeds execution and limits communication “chatter”

• Decentralized computing allows **parallel operations**

• Common functions are handled automatically speeding execution and simplifying programming.

Programming/debugging:

• Built-in web pages assist debugging, make system monitoring easier

• Built-in help systems make programming easier.
Characterize your system performance
“System level MSO”
Agilent E5818A LXI Class B Trigger Box

- “Any Instrument” to Class B
- Two Channels
 - Time Stamp Inputs
 - Time Trigger Outputs
- Alarm
 - Start time
 - N pulses
 - Period
- P2P Messages
- External Trig to
 - P2P Message
 - Delayed Trigger

NEW!
It's About Time!

Agilent Technologies
LXI opens new possibilities

Existing Test

- Control
- Data
- Proprietary I/O

- Commands sent one at a time
- One module working at a time
- Wait states and queries
- All data sent to the PC
- Expert programming required

Next Generation Test

- Intelligent instruments leverage expertise
- LAN messaging makes it flexible
- Time-based triggering keeps control

- 10 Gbit LAN
- 1 Gbit
- 1 Gbit
- 54 Mbit
- 100 Mbit
- 100 Mbit
- 100 Mbit
- 10 Gbit

Distributed

Computer-centric

LXI

Agilent Technologies
LXI Possibilities

- Long distance operations
- Expert Troubleshooting
- Parallel operations
- Reduce programming
- Smart instruments
- Higher throughput
- No trigger wires
- Flexible triggering
- Eliminate latency
- Timestamp all data
- Asset Management
- Internal network
The Future of Test

Choose the software you prefer

SCPI

Suite 15

LAN switch/router

System Developer Center
www.agilent.com/find/open

LAN

LAN Slot 0 or Embedded PC

VXI PXI

GPIB instruments

GPIB converter

Cardcage Instruments

Classic Modular Synthetic

Agilent Technologies

MCO Technology Forum
13 November 2007
Marlo Manaloto