
Creating and
Downloading
User-Data
Files

Keysight Technologies
Signal Generators
E8663B RF Analog

E4428C/38C ESG RF
N5183A MXG Microwave
N8257D/67D PSG Microwave
N5161A/62A/81A/82A MXG RF

Notice: This document contains references to Agilent.
Please note that Agilent’s Test and Measurement
business has become Keysight Technologies. For
more information, go to www.keysight.com.

Notices

© Keysight Technologies, Inc.
2006-2015

No part of this manual may be
reproduced in any form or by any
means (including electronic storage
and retrieval or translation into a
foreign language) without prior
agreement and written consent from
Keysight Technologies, Inc. as
governed by United States and
international copyright laws.

Trademark Acknowledgments

Manual Part Number

E4400-90651

Printed Date

January 2015

Published in USA

Keysight Technologies
1400 Fountaingrove Parkway
Santa Rosa, CA 95403

Warranty

THE MATERIAL CONTAINED IN THIS
DOCUMENT IS PROVIDED “AS IS,”
AND IS SUBJECT TO BEING
CHANGED, WITHOUT NOTICE, IN
FUTURE EDITIONS. FURTHER, TO
THE MAXIMUM EXTENT PERMITTED
BY APPLICABLE LAW, KEYSIGHT
DISCLAIMS ALL WARRANTIES,
EITHER EXPRESS OR IMPLIED WITH
REGARD TO THIS MANUAL AND
ANY INFORMATION CONTAINED
HEREIN, INCLUDING BUT NOT
LIMITED TO THE IMPLIED
WARRANTIES OF
MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE.
KEYSIGHT SHALL NOT BE LIABLE
FOR ERRORS OR FOR INCIDENTAL
OR CONSEQUENTIAL DAMAGES IN
CONNECTION WITH THE
FURNISHING, USE, OR
PERFORMANCE OF THIS
DOCUMENT OR ANY INFORMATION
CONTAINED HEREIN. SHOULD
KEYSIGHT AND THE USER HAVE A
SEPARATE WRITTEN AGREEMENT
WITH WARRANTY TERMS
COVERING THE MATERIAL IN THIS
DOCUMENT THAT CONFLICT WITH
THESE TERMS, THE WARRANTY
TERMS IN THE SEPARATE
AGREEMENT WILL CONTROL.

Technology Licenses

The hardware and/or software
described in this document are
furnished under a license and may be
used or copied only in accordance
with the terms of such license.

Restricted Rights Legend

If software is for use in the
performance of a U.S. Government
prime contract or subcontract,
Software is delivered and licensed as
“Commercial computer software” as
defined in DFAR 252.227-7014 (June

1995), or as a “commercial item” as
defined in FAR 2.101(a) or as
“Restricted computer software” as
defined in FAR 52.227-19 (June
1987) or any equivalent agency
regulation or contract clause. Use,
duplication or disclosure of Software
is subject to Keysight Technologies’
standard commercial license terms,
and non-DOD Departments and
Agencies of the U.S. Government will
receive no greater than Restricted
Rights as defined in FAR
52.227-19(c)(1-2) (June 1987). U.S.
Government users will receive no
greater than Limited Rights as
defined in FAR 52.227-14 (June
1987) or DFAR 252.227-7015 (b)(2)
(November 1995), as applicable in
any technical data.

Safety Notices

CAUTION

A CAUTION notice denotes a hazard. It
calls attention to an operating
procedure, practice, or the like that,
if not correctly performed or adhered
to, could result in damage to the
product or loss of important data. Do
not proceed beyond a CAUTION
notice until the indicated conditions
are fully understood and met.

WARNING

A WARNING notice denotes a hazard.
It calls attention to an operating
procedure, practice, or the like that,
if not correctly performed or adhered
to, could result in personal injury or
death. Do not proceed beyond a
WARNING notice until the indicated
conditions are fully understood and
met.

Contents

iii

Table of Contents

. Creating and Downloading User–Data Files

Overview . 2

Signal Generator Memory. 3
Memory Allocation . 5
Memory Size . 6
Checking Available Memory . 7

User File Data (Bit/Binary) Downloads (E4438C and E8267D) . 9
User File Bit Order (LSB and MSB) . 10
Bit File Type Data . 10
Binary File Type Data . 13
User File Size . 15
Determining Memory Usage for Custom and TDMA User File Data . 16
Downloading User Files . 20
Command for Bit File Downloads . 23
Commands for Binary File Downloads . 24
Selecting a Downloaded User File as the Data Source . 25
Modulating and Activating the Carrier . 25
Modifying User File Data. 26
Understanding Framed Transmission For Real–Time TDMA . 28
Real–Time Custom High Data Rates . 32

Pattern RAM (PRAM) Data Downloads (E4438C and E8267D) . 33
Understanding PRAM Files . 34
PRAM File Size. 37
SCPI Command for a List Format Download . 39
SCPI Command for a Block Data Download . 39
Selecting a Downloaded PRAM File as the Data Source . 42
Modulating and Activating the Carrier . 43
Storing a PRAM File to Non–Volatile Memory and Restoring to Volatile Memory . 43
Extracting a PRAM File . 44
Modifying PRAM Files . 46

FIR Filter Coefficient Downloads (N5162A, N5182A, E4438C and E8267D) . 47
Data Requirements . 47
Data Limitations . 47
Downloading FIR Filter Coefficient Data . 48
Selecting a Downloaded User FIR Filter as the Active Filter . 49

Using the Equalization Filter (N5162A and N5182A with Options 651, 652, 654 Only) . 51

Save and Recall Instrument State Files . 52
Save and Recall SCPI Commands . 52
Save and Recall Programming Example Using VISA and C# . 53

User Flatness Correction Downloads Using C++ and VISA . 66

Data Transfer Troubleshooting (N5162A, N5182A, E4438C and E8267D Only) . 71
User File Download Problems . 71
PRAM Download Problems . 73
User FIR Filter Coefficient File Download Problems. 74

iv

Contents

 1

Keysight Technologies Signal Sources
E8663B, E4428C/38C, N5183A, E8257D/67D, and
N5161A/62A/81A/82A

Creating and Downloading User-Data Files

Creating and Downloading User–Data Files

NOTE Some features apply to only the E4438C with Option 001, 002, 601, or 602
and E8267D with Option 601 or 602. These exceptions are indicated in the
sections.

On the Agilent MXG, the internal baseband generator speed upgrade Options
670, 671, and 672 are option upgrades that require Option 651 and 652 to
have been loaded at the factory (refer to the Data Sheet for more
information). Any references to 651, 652, or 654 are inclusive of 671, 672, and
674.

The following sections and procedures contain remote SCPI commands. For
front panel key commands, refer to the User’s Guide, Key and Data Field
Reference (ESG, PSG, and E8663B), or to the Key Help in the signal
generator.

For the N5161A/62A the softkey menus and features mentioned in this
manual are only available through the Web–Enabled MXG or through SCPI
commands. Refer to the Programming Guide and to the SCPI Command
Reference.

This manual explains the requirements and processes for creating and
downloading user–data, and contains the following sections (This information
is also available in the Programming Guide):

— User File Data (Bit/Binary) Downloads (E4438C and E8267D) on page 9

— Pattern RAM (PRAM) Data Downloads (E4438C and E8267D) on page 33

— FIR Filter Coefficient Downloads (N5162A, N5182A, E4438C and
E8267D) on page 47

— Using the Equalization Filter (N5162A and N5182A with Options 651, 652,
654 Only) on page 51

— Save and Recall Instrument State Files on page 52

— User Flatness Correction Downloads Using C++ and VISA on page 66

— Data Transfer Troubleshooting (N5162A, N5182A, E4438C and E8267D
Only) on page 71

 2 Signal Sources Creating and Downloading User-Data Files

Creating and Downloading User–Data Files
Overview

Overview
User data is a generic term for various data types created by the user and
stored in the signal generator. This includes the following data (file) types:

Bit This file type lets the user download payload data for
use in streaming or framed signals. It lets the user
determine how many bits in the file the signal generator
uses.

Binary This file type provides payload data for use in streaming
or framed signals. It differs from the bit file type in that
you cannot specify a set number of bits. Instead the
signal generator uses all bits in the file for streaming
data and all bits that fill a frame for framed data. If there
are not enough bits to fill a frame, the signal generator
truncates the data and repeats the file from the
beginning.

PRAM With this file type, the user provides the payload data
along with the bits to control signal attributes such as
bursting. This file type is available for only the real–time
Custom and TDMA modulation formats.

FIR Filter This file type stores user created custom filters.

State This file type lets the user store signal generator
settings, which can be recalled. This provides a quick
method for reconfiguring the signal generator when
switching between different signal setups.

User Flatness
Correction This file type lets the user store amplitude corrections

for frequency.

Prior to creating and downloading files, you need to take into consideration the
file size and the amount of remaining signal generator memory. For more
information, see “Signal Generator Memory” on page 3

Signal Sources Creating and Downloading User-Data Files 3

Creating and Downloading User–Data Files
Signal Generator Memory

Signal Generator Memory
The signal generator provides two types of memory, volatile and non–volatile.

NOTE User BIT, and User PRAM references are only applicable to the E4438C with
Options 001, 002, 601, or 602, and E8267D with Options 601 or 602.

User FIR references are only applicable to the N5162A and N5182A with
Options 651, 652, or 654, E4438C with Options 001, 002, 601, or 602, and
E8267D with Options 601 or 602.

Volatile Random access memory that does not survive cycling
of the signal generator power. This memory is
commonly referred to as waveform memory (WFM1) or
pattern RAM (PRAM). Refer to Table 1 for the file types
that share this memory:

Non–volatile Storage memory where files survive cycling of the signal
generator power. Files remain until overwritten or
deleted. Refer to Table 2 on page 4 for the file types
that share this memory:

Table 1 Signal Generators and Volatile Memory File Types

Volatile Memory Type Model of Signal Generator

N5162A
N5182A with
Option 651,
652, or 654

E4438C with
Option 001,
002, 601, or
602

E8267D
Option 601
or 602

All Other
models1

I/Q x x x –

Marker x x x –

File header x x x –

User PRAM – x x –

User Binary x x x –

User Bit – x x –

Waveform Sequences

(multiple I/Q files played together)
n/a2 n/a2 n/a2 –

1. N5161A, N5181A, N5183A, E8663B, E4428C, and the E8257D.
2. Waveform sequences are always in non–volatile memory.

 4 Signal Sources Creating and Downloading User-Data Files

Creating and Downloading User–Data Files
Signal Generator Memory

The following figure shows the signal generator’s directory structure for the
user–data files.

Table 2 Signal Generators and Non–Volatile Memory Types

Non–Volatile Memory Type Model of Signal Generator

N5162A/N51
82A with
Option 651,
652, or 654

E4438C with
Option 001,
002, 601, or
602

E8267D
Option 601
or 602

All Other
models1

I/Q x x x –

Marker x x x –

File header x x x –

Sweep List x x x –

User PRAM – x x –

User Binary x x x –

User Bit – x x –

User FIR x x x –

Instrument State x x x x

Waveform Sequences

(multiple I/Q files played together)

x x x –

1. N5161A, N5181A, N5183A, E8663B, E4428C, and the E8257D.

Signal Sources Creating and Downloading User-Data Files 5

Creating and Downloading User–Data Files
Signal Generator Memory

Memory Allocation

Volatile Memory

The signal generator allocates volatile memory in blocks of 1024 bytes. For
example, a user–data file with 60 bytes uses 1024 bytes of memory. For a file
that is too large to fit into 1024 bytes, the signal generator allocates additional
memory in multiples of 1024 bytes. For example, the signal generator allocates
3072 bytes of memory for a file with 2500 bytes.

3 x 1024 bytes = 3072 bytes of memory

As shown in the examples, files can cause the signal generator to allocate
more memory than what is actually used, which decreases the amount of
available memory.

User–data blocks consist of 1024 bytes of memory. Each user–data file has a
file header that uses 512 bytes for the Agilent MXG, or 256 bytes for the
ESG/PSG in the first data block for each user–data file.

Non–Volatile Memory (Agilent MXG)

On the N5182A, non–volatile files are stored on the non–volatile internal signal
generator memory (i.e. internal storage) or to the USB media, if available. The
Agilent MXG non–volatile internal memory allocated according to a Microsoft
compatible file allocation table (FAT) file system. The Agilent MXG signal
generator allocates non–volatile memory in clusters according to the drive size
(see Table 3 on page 6). For example, referring to Table 3 on page 6, if the

FIR STATE USERFLAT

USER

BBG1

Volatile memory directory

WAVEFORM/PRAM

Root directory

Volatile memory data

Agilent MXG (Only): Internal

(WFM1)

STATE USERFLAT WAVEFORMFIRBIN BIT

BIN

(i.e. Nonvolatile memory)

Nonvolatile memory

Storage media

Agilent ESG, PSG, and E8663B (Only): NONVOLATILE

Agilent MXG1

1This NONVOLATILE directory shows the files with the same extensions as the USB media and is useful with ftp.
2The Agilent MXG uses an optional “USB media” to store non–volatile waveform data.

WAVEFORM

MXG (only) USB media:
File listing with extensions2

 6 Signal Sources Creating and Downloading User-Data Files

Creating and Downloading User–Data Files
Signal Generator Memory

drive size is 15 MB and if the file is less than or equal to 4k bytes, the file uses
only one 4 KB cluster of memory. For files larger than 4 KB, and with a drive
size of 15 MB, the signal generator allocates additional memory in multiples of
4KB clusters. For example, a file that has 21,538 bytes consumes 6 memory
clusters (24,000 bytes).

On the Agilent MXG the non–volatile memory is also referred to as internal
storage and USB media. The Internal and USB media files
/USERS/NONVOLATILE Directory contains file names with full extensions (i.e.
.marker, .header, etc.).

For more information on default cluster sizes for FAT file structures, refer to
Table 3 and to http://support.microsoft.com/.

Non–Volatile Memory (ESG, PSG, and E8663B)

The signal generator allocates non–volatile memory in blocks of 512 bytes. For
files less than or equal to 512 bytes, the file uses only one block of memory. For
files larger than 512 bytes, the signal generator allocates additional memory in
multiples of 512 byte blocks. For example, a file that has 21,538 bytes
consumes 43 memory blocks (22,016 bytes).

Memory Size

For the E4438C, E8267D, and E8663B, the maximum volatile memory size for
user data is less than the maximum size for waveform files. This is because the
signal generator permanently allocates a portion of the volatile memory for
waveform markers. The values in Table 4 on page 7 is the total amount of
memory after deducting the waveform marker memory allocation.

Table 3 Drive Size (logical volumes)

Drive Size (logical volume) Cluster Size (Bytes)
(Minimum Allocation Size)

0 MB – 15 MB 4K

16 MB – 127 MB 2K

128 MB – 255 MB 4K

256 MB – 511 MB 8K

512 MB – 1023 MB 16k

1024 MB – 2048 MB 32K

2048 MB – 4096 MB 64K

4096 MB – 8192 MB 128K

8192 MB – 16384 MB 256K

Signal Sources Creating and Downloading User-Data Files 7

Creating and Downloading User–Data Files
Signal Generator Memory

The amount of available memory, volatile and non–volatile, varies by signal
generator option and the size of the other files that share the memory. The
baseband generator (BBG) options contain the volatile memory. Table 4 shows
the maximum available memory assuming that there are no other files residing
in memory.

Checking Available Memory

Whenever you download a user–data file, you must be aware of the amount of
remaining signal generator memory. Table 5 on page 8 shows to where each
user–data file type is downloaded and from which memory type the signal
generator accesses the file data. Information on downloading a user–data file
is located within each user–data file section.

NOTE The Bit, PRAM, and State user–data (file) types only apply to the E4438C with
Option 001, 002, 601, or 602, and the E8267D with Option 601 or 602.

Table 4 Maximum Signal Generator Memory

Volatile (WFM1/PRAM)
Memory

Non–Volatile (NVWFM) Memory

Option Size Option Size

N5162A and N5182A

651, 652,
6541 (BBG)

1. The internal baseband generator speed upgrade Options 670,
671, and 672 are option upgrades that require Option 651
and 652 to have been loaded at the factory (refer to the Data
Sheet for more information). Any references to 651, 652, or
654 are inclusive of 671, 672, and 674.

40 MB Standard 4 GB2

2. For serial numbers <MY4818xxxx, US4818xxxx, and
SG4818xxxx, the persistent memory value = 512 MB.

019 320 MB USB Flash Drive
(UFD)

user
determined

E4438C and E8267D

001, 601
(BBG)3

3. Options 001 and 002 apply to only the E4438C ESG.

32 MB Standard 512 MB

002 (BBG)3 128 MB 005 (Hard d isk) 6 GB

602 (BBG) 256 MB ---- ----

 8 Signal Sources Creating and Downloading User-Data Files

Creating and Downloading User–Data Files
Signal Generator Memory

The FIR filter, (file) types only apply to the N5162A and N5182A with Option
651, 652, or 654, E4438C with Option 001, 002, 601, or 602, and the E8267D
with Option 601 or 602.

Bit and binary files increase in size when the signal generator loads the data
from non–volatile to volatile memory. For more information, see “User File
Size” on page 15.

Use the following SCPI commands to determine the amount of remaining
memory:

Volatile Memory :MMEM:CAT? “WFM1”

The query returns the following information:

<memory used>,<memory
remaining>,<“file_names”>

Non–Volatile Memory :MEM:CAT:ALL?

The query returns the following information:

<memory used>,<memory
remaining>,<“file_names”>

NOTE The signal generator calculates the memory values based on the number of
bytes used by the files residing in volatile or non–volatile memory, and not on
the memory block allocation. To accurately determine the available memory,
you must calculate the number of blocks of memory used by the files. For
more information on memory block allocation, see “Memory Allocation” on
page 5.

Table 5 User–Data File Memory Location

User–Data File
Type

Download
Memory

Access
Memory

Bit Non–volatile Volatile

Binary Non–volatile Volatile

PRAM Volatile Volatile

Instrument
State

Non–volatile Non–volatile

FIR Non–volatile Non–volatile

Flatness Non–volatile Non–volatile

Signal Sources Creating and Downloading User-Data Files 9

Creating and Downloading User–Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

User File Data (Bit/Binary) Downloads (E4438C and E8267D)

NOTE This section applies only to the E4438C with Option 001, 002, 601, or 602,
and the E8267D with Option 601 or 602.

If you encounter problems with this section, refer to “Data Transfer
Troubleshooting (N5162A, N5182A, E4438C and E8267D Only)” on page 71.

To verify the SCPI parser’s responsiveness when remotely using the
:MEM:DATA SCPI command to upload files, the file’s upload should be verified
using the *STB? command. Refer to the SCPI Command Reference.

The signal generator accepts externally created and downloaded user file data
for real–time modulation formats that have user file as a data selection (shown
as <“file_name”> in the data selection SCPI command). When you select a user
file, the signal generator incorporates the user file data (payload data) into the
modulation format’s data fields. You can create the data using programs such
as MATLAB or Mathcad. The following table shows the available real–time
modulation formats by signal generator model:

The signal generator uses two file types for downloaded user file data: bit and
binary. With a bit file, the signal generator views the data up to the number of
bits specified when the file was downloaded. For example, if you specify to use
153 bits from a 160 bit (20 bytes) file, the signal generator transmits 153 bits
and ignores the remaining 7 bits. This provides a flexible means in which to
control the number of transmitted data bits. It is the preferred file type and the
easiest one to use.

With a binary file, the signal generator sees all bytes (bits) in a downloaded file
and attempts to use them. This can present challenges especially when
working with framed data. In this situation, your file needs to contain enough
bits to fill a frame or timeslot, or multiple frames or timeslots, to end on the

E4438C ESG E2867D PSG

CDMA1

1. Requires Option 401.

TDMA2

2. Real–time TDMA modulation formats require Option 402 and
include EDGE, GSM, NADC, PDC, PHS, DECT, and TETRA.

Customc

Custom3

3. For ESG, requires Option 001, 002, 601, or 602, for PSG
requires Option 601 or 602.

W–CDMA4

4. Requires Option 400.

GPS5

5. Requires Option 409.

 10 Signal Sources Creating and Downloading User-Data Files

Creating and Downloading User–Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

desired boundary. To accomplish this, you may have to remove or add bytes. If
there are not enough bits remaining in the file to fill a frame or timeslot, the
signal generator truncates the data causing a discontinuity in the data pattern.

You download a user file to either the Bit or Binary memory catalog (directory).
Unlike a PRAM file (covered later in this chapter), user file data does not
contain control bits, it is just data. The signal generator adds control bits to the
user file data when it generates the signal. There are two ways that the signal
generator uses the data, either in a continuous data pattern (unframed) or
within framed boundaries. Real–time Custom uses only unframed data,
real–time TDMA modulation formats use both types, and the others use only
framed data.

NOTE For unframed data transmission, the signal generator requires a minimum of
60 symbols. For more information, see “Determining Memory Usage for
Custom and TDMA User File Data” on page 16.

You create the user file to either fill a single timeslot/frame or multiple
timeslots/frames. To create multiple timeslots/frames, simply size the file with
enough data to fill the number of desired timeslots/frames

User File Bit Order (LSB and MSB)

The signal generator views the data from the most significant bit (MSB) to the
least significant bit (LSB). When you create your user file data, it is important
that you organize the data in this manner. Within groups (strings) of bits, a bit’s
value (significance) is determined by its location in the string. The following
shows an example of this order using two bytes.

Bit File Type Data

The bit file is the preferred file type and the easiest to use. When you download
a bit file, you designate how many bits in the file the signal generator can
modulate onto the signal. During the file download, the signal generator adds
a 10–byte file header that contains the information on the number of bits the
signal generator is to use.

Most Significant Bit (MSB) This bit has the highest value (greatest weight) and is located at the far left of
the bit string.

Least Significant Bit (LSB) This bit has the lowest value (bit position zero) and is located at the far right of
the bit string.

1 0 1 1 0 1 1 1 1 1 1 0 1 0 0 1

LSBMSB

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data

Bit Position

Signal Sources Creating and Downloading User-Data Files 11

Creating and Downloading User–Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

Although you download the data in bytes, when the signal generator uses the
data, it recognizes only the bits of interest that you designate in the SCPI
command and ignores the remaining bits. This provides greater flexibility in
designing a data pattern without the concern of using an even number of bytes
as is needed with the binary file data format. The following figure illustrates this
concept. The example in the figure shows the bit data SCPI command
formatted to download three bytes of data, but only 23 bits of the three bytes
are designated as the bits of interest. (For more information on the bit data
SCPI command format, see “Downloading User Files” on page 20 and
“Command for Bit File Downloads” on page 23.)

The following figure shows the same downloaded data from the above example
as viewed in the signal generator’s bit file editor (see the User’s Guide for more
information) and with using an external hex editor program.

In the bit editor, notice that the ignored bit of the bit–data is not displayed,
however the hex value still shows all three bytes. This is because bits 1 through
7 are part of the first byte, which is shown as ASCII character x in the SCPI
command line. The view from the hex editor program confirms that the

SCPI Command :MEM:DATA:BIT <"file_name">,<bit_interest>,<datablock>

:MEM:DATA:BIT "3byte",23, # 1 3 Z&x

0 1 0 1 1 0 1 0 0 0 1 0 0 1 1 0 0 1 1 1 1 0 0 0Downloaded Data:

Byte 1 Byte 2 Byte 3

Bits of interest

Ignored bit (LSB)

5A 26 78Hex Value:

MSB

ASCII representation of the data (3 bytes)

Z & xASCII Representation:

Start block data number of bytes
number of decimal digits

Hex values

Bit data

Designated number of bits

3 bytes of data10 byte file header
(added by signal generator)

Designated number of bits (hex value = 23 decimal)
As Seen in a Hex Editor

:MEM:DATA:BIT "3byte",23,#13Z&xSCPI command to download the data

As Seen in the Signal Generator’s Bit File Editor

 12 Signal Sources Creating and Downloading User-Data Files

Creating and Downloading User–Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

downloaded three bytes of data remains unchanged. To view a downloaded bit
file with an external hex editor program, FTP the file to your PC/UNIX
workstation. For information on how to FTP a file, see “FTP Procedures” on
page 27.

Even though the signal generator views the downloaded data on a bit basis, it
groups the data into bytes, and when the designated number of bits is not a
multiple of 8 bits, the last byte into one or more 4–bit nibbles. To make the last
nibble, the signal generator adds bits with a value of zero. The signal generator
does not show the added bits in the bit editor and ignores the added bits when
it modulates the data onto the signal, but these added bits do appear in the
hex value displayed in the bit file editor. The following example, which uses the
same three bytes of data, further demonstrates how the signal generator
displays the data when only two bits of the last byte are part of the bits of
interest.

Notice that the bit file editor shows only two bytes and one nibble. In addition,
the signal generator shows the nibble as hex value 4 instead of 7 (78 is byte
3—ASCII character x in the SCPI command line). This is because the signal
generator sees bits 17 and 18, and assumes bits 19 and 20 are 00. As viewed
by the signal generator, this makes the nibble 0100. Even though the signal
generator extrapolates bits 19 and 20 to complete the nibble, it ignores these
bits along with bits 21 through 24. As seen with the hex editor program, the
signal generator does not actually change the three bytes of data in the
downloaded file.

Hex value changes to 5A264

Designated bits

:MEM:DATA:BIT "3byte",18,#13Z&xSCPI command to download the data

As Seen in the Signal Generator’s Bit File Editor

3 bytes of data10 byte file header
(added by signal generator)

Designated number of bits (hex value = 18 decimal)As Seen in a Hex Editor

0 1 0 1 1 0 1 0 0 0 1 0 0 1 1 0 0 1 1 1 1 0 0 0Downloaded Data:

Byte 1 Byte 2 Byte 3

LSB

Designated 18 bits

5A 26 78Hex Value:

MSB

0 1 0 1 1 0 1 0 0 0 1 0 0 1 1 0 0 1 0 0

Byte 1 Byte 2 Nibble

Designated number of bits

5A 26 4

Added bits
as seen in
the hex value

Signal Sources Creating and Downloading User-Data Files 13

Creating and Downloading User–Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

For information on editing a file after downloading, see “Modifying User File
Data” on page 26.

Binary File Type Data

With the Binary file type, the signal generator sees all of the bytes within the
downloaded file and attempts to use all of the data bits. When using this file
type, the biggest challenge is creating the data, so that the signal generator
uses all of the bits (bytes) contained within the file. This is referred to as using
an even number of bytes. The method of creating the user file data pattern
depends on whether you are using unframed or framed data. The following two
sections illustrate the complexities of using the binary file format. You can
eliminate these complexities by using the bit file format (see “Bit File Type
Data” on page 10).

Unframed Binary Data

When creating unframed data, you must think in terms of bits per symbol; so
that your data pattern begins and ends on the symbol boundary, with an even
number of bytes. For example, to use 16QAM modulation, the user file needs to
contain 32 bytes:

— enough data to fill 16 states 4 times

— end on a symbol boundary

— create 64 symbols (the signal generator requires a minimum of 60 symbols
for unframed data)

To do the same with 32QAM, requires a user file with 40 bytes.

 14 Signal Sources Creating and Downloading User-Data Files

Creating and Downloading User–Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

When you do not use an even number of bytes, the signal generator repeats
the data in the same symbol where the data stream ends. This means that your
data would not end on the symbol boundary, but during a symbol. This makes
it harder to identify the data content of a symbol. The following figure
illustrates the use of an uneven number of bytes and an even number of bytes.

Framed Binary Data

When using framed data, ensure that you use an even number of bytes and
that the bytes contain enough bits to fill the data fields within a timeslot or
frame. When there are not enough bits to fill a single timeslot or frame, the
signal generator replicates the data pattern until it fills the timeslot/frame.

The signal generator creates successive timeslots/frames when the user file
contains more bits than what it takes to fill a single timeslot or frame. When
there are not enough bits to completely fill successive timeslots or frames, the
signal generator truncates the data at the bit location where there is not
enough bits remaining and repeats the data pattern. This results in a data
pattern discontinuity. For example, a frame structure that uses 348 data bits
requires a minimum file size of 44 bytes (352 bits), but uses only 43.5 bytes
(348 bits). In this situation, the signal generator truncates the data from bit 3 to
bit 0 (bits in the last byte). Remember that the signal generator views the data
from MSB to LSB. For this example to have an even number of bytes and

16QAM 4 bits/symbol: 1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 0

Symbol Symbol Symbol Symbol

1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 0 1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 0 1 0 1

Symbol Symbol Symbol Symbol Symbol Symbol Symbol

Data repeats during a symbol

1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 0

Symbol Symbol Symbol Symbol

Data repeats at the symbol boundary

Unframed Data

32QAM 5 bits/symbol:

Even Number of Bytes

Uneven Number of Bytes

1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 0 Data pattern:

Data
repeats

Using an uneven number of bytes makes it harder to identify the data within a symbol.

MSB LSB

Signal Sources Creating and Downloading User-Data Files 15

Creating and Downloading User–Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

enough bits to fill the data fields, the file needs 87 bytes (696 bits). This is
enough data to fill two frames while maintaining the integrity of the data
pattern, as illustrated in the following figure.

For information on editing a file after downloading, see “Modifying User File
Data” on page 26.

User File Size

You download user files into non–volatile memory. For CDMA, GPS, and
W–CDMA, the signal generator accesses the data directly from non–volatile
memory, so the file size up to the maximum file size (shown in Table 6 on
page 16) for these formats is limited only by the amount of available
non–volatile memory. As seen in the table, the baseband generator option
does not affect these file sizes.

For Custom and TDMA, however, when the signal generator creates the signal,
it loads the data from non–volatile memory into volatile memory, which is also
the same memory that the signal generator uses for Arb–based waveforms. For
user data files, volatile memory is commonly referred to as pattern ram
memory (PRAM). Because the Custom and TDMA user files use volatile
memory, their maximum file size depends on the baseband generator (BBG)
option and the amount of available

348 data bits CtrlCtrl

110100110110...01101111352 bits (44 bytes):

Truncated data (bits 0–3)
not enough bits remaining to fill the next frame

348 data bits CtrlCtrl348 data bits CtrlCtrl

011101100110110101110100110110...01101111696 bits (87 bytes):

348 data bits CtrlCtrl

Frame 1 Frame 2

Frame 1 data repeated

Frame 1 Frame 2

Even Number of Bytes

Uneven Number of Bytes
(some data truncated)

(all bits used)

Data fills both frames (348 bits per frame) with no truncated bits

Frame 1 data

Framed Data

MSB

LSB

 16 Signal Sources Creating and Downloading User-Data Files

Creating and Downloading User–Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

PRAM. (Volatile memory resides on the BBG.) Table 6 shows the maximum file
sizes by modulation format and baseband generator option.

For more information on signal generator memory, see “Signal Generator
Memory” on page 3. To determine how much memory is remaining in
non–volatile and volatile memory, see “Checking Available Memory” on page
7.

Determining Memory Usage for Custom and TDMA User File Data

For Custom and TDMA user files, the signal generator uses both non–volatile
and volatile (PRAM/waveform) memory: you download the user file to
non–volatile memory. To determine if there is enough non–volatile memory,
check the available non–volatile memory and compare it to the size of the file
to be downloaded.

After you select a user file and turn the format on, the signal generator loads
the file into volatile memory for processing:

— It translates each data bit into a 32–bit word (4 bytes).

The 32–bit words are not saved to the original file that resides in
non–volatile memory.

— It creates an expanded data file named AUTOGEN_PRAM_1 in volatile
memory while also maintaining a copy of the original file in volatile memory.
It is the AUTOGEN_PRAM_1 file that contains the 32–bit words and
accounts for most of the user file PRAM memory space.

— If the transmission is using unframed data and there are not enough bits in
the data file to create 60 symbols, the signal generator replicates the data
pattern until there is enough data for 60 symbols. For example, GSM uses 1
bit per symbol. If the user file contains only 24 bits, enough for 24 symbols,
the signal generator replicates the data pattern two more times to create a
file with 72 bits. The expanded AUTOGEN_PRAM_1 file size would show 288
bytes (72 bits x 4 bytes/bit).

Table 6 Maximum User File Size

Modulation
Format

Baseband Generator Option

 001, 601 002 602

Custom1
TDMAa

1. File size with no other files residing in volatile mem-
ory.

800 kB 3.2 MB 6.4 MB

CDMA2
GPSb
W–CDMAb

2. File size is not affected by the BBG option.

10 kB 10 kB 10 kB

Signal Sources Creating and Downloading User-Data Files 17

Creating and Downloading User–Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

Use the following procedures to calculate the required amount of volatile
memory for both framed and unframed TDMA signals:

— “Calculating Volatile Memory (PRAM) Usage for Unframed Data” on
page 17

— “Calculating Volatile Memory (PRAM) Usage for Framed Data” on page 18

Calculating Volatile Memory (PRAM) Usage for Unframed Data

Use this procedure to calculate the memory size for either a bit or binary file.
To properly demonstrate this process, the procedure employs a user file that
contains 70 bytes (560 bits), with the bit file using only 557 bits.

1. Determine the AUTOGEN_PRAM_1 file size:

The signal generator creates a 32–bit word for each user file bit (1 bit
equals 4 bytes).

Binary file 4 bytes x (70 bytes x 8 bits) = 2240 bytes

Bit file 4 bytes x 557 bits= 2228 bytes

2. Calculate the number of memory blocks that the AUTOGEN_PRAM_1 file
will occupy:

Volatile memory allocates memory in blocks of 1024 bytes.

Binary file 2240 / 1024 = 2.188 blocks

Bit file 2228 / 1024 = 2.176 blocks

3. Round the memory block value to the next highest integer value.

For this example, the AUTOGEN_PRAM_1 file will use three blocks of
memory for a total of 3072 bytes.

4. Determine the number of memory blocks that the copy of the original file
occupies in volatile memory.

For this example the bit and binary file sizes are shown in the following list:

— Binary file = 70 bytes < 1024 bytes = 1 memory block

— Bit file = 80 bytes < 1024 bytes = 1 memory block

Remember that a bit file includes a 10–byte file header.

5. Calculate the total volatile memory occupied by the user file data:

AUTOGEN_PRAM_1 Original File

3 blocks 1 block

1024 (3 + 1) = 4096 bytes

 18 Signal Sources Creating and Downloading User-Data Files

Creating and Downloading User–Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

Calculating Volatile Memory (PRAM) Usage for Framed Data

Framed data is not a selection for Custom, but it is for TDMA formats. To frame
data, the signal generator adds framing overhead data such as tail bits, guard
bits, and sync bits. These framing bits are in addition to the user file data. For
more information on framed data, see “Understanding Framed Transmission
For Real–Time TDMA” on page 28.

When using framed data, the signal generator views the data (framing and
user file bits) in terms of the number of bits per frame, even if only one timeslot
within a frame is active. This means that the signal generator creates a 32–bit
word for each bit in a frame, for both active and inactive timeslots.

You can create a user file so that it fills a timeslot once or multiple times. When
the user file fills a timeslot multiple times, the signal generator creates the
same number of frames as the number of timeslots that the user file fills. For
example, if a file contains enough data to fill a timeslot three times, the signal
produces three new frames before the frames repeat. Each new frame
increases the AUTOGEN_PRAM_1 file size. If you select different user files for
the timeslots within a frame, the user file that produces the largest number of
frames determines the size of the AUTOGEN_PRAM_1 file.

Use this procedure to calculate the volatile memory usage for a GSM signal
with two active timeslots and two user binary files. One user file, 57 bytes, is for
a normal timeslot and another, 37 bytes, is for a custom timeslot.

1. Determine the total number of bits per timeslot.

A GSM timeslot consists of 156.25 bits (control and payload data).

2. Calculate the number of bits per frame.

A GSM frame consists of 8 timeslots: 8 x 156.25 = 1250 bits per frame

3. Determine how many bytes it takes to produce one frame in the signal
generator:

The signal generator creates a 32–bit word for each bit in the frame (1 bit
equals 4 bytes).

4 x 1250 = 5000 bytes

Each GSM frame uses 5000 bytes of PRAM memory.

4. Analyze how many timeslots the user file data will fill.

A normal GSM timeslot (TS) uses 114 payload data bits, and a custom
timeslot uses 148 payload data bits. The user file (payload data) for the
normal timeslot contains 57 bytes (456 bits) and the user file for the
custom timeslot contains 37 bytes (296 bits).

Normal TS 456 / 114 = 4 timeslots

Custom TS 296 / 148 = 2 timeslots

Signal Sources Creating and Downloading User-Data Files 19

Creating and Downloading User–Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

NOTE Because there is an even number of bytes, either a bit or binary file works in
this scenario. If there was an uneven number of bytes, a bit file would be the
best choice to avoid data discontinuity.

5. Compute the number of frames that the signal generator will generate.

There is enough user file data for four normal timeslots and two custom
timeslots, so the signal generator will generate four frames of data.

6. Calculate the AUTOGEN_PRAM_1 file size:

7. Calculate the number of memory blocks that the AUTOGEN_PRAM_1 file
will occupy:

Volatile memory allocates memory in blocks of 1024 bytes.

20000 / 1024 = 19.5 blocks

8. Round the memory block value up to the next highest integer value.

For this example, the AUTOGEN_PRAM_1 file will use 20 blocks of memory
for a total of 20480 bytes.

9. Determine the number of memory blocks that the original files occupy in
volatile memory.

The files do not share memory blocks, so you must determine how many
memory blocks each file occupies.

NOTE If the user file type is bit, remember to include the 10–byte file header in the
file size.

10.Calculate the total volatile memory occupied by the AUTOGEN_PRAM_1
file and the user files:

Number of Frames Bytes per Frame

4 5000

4 x 5000 = 20000 bytes

Normal TS Custom TS

57 bytes = 1 block 37 bytes = 1 block

1 + 1 = 2 memory blocks

AUTOGEN_PRAM_1 User Files

20 blocks 2 blocks

 20 Signal Sources Creating and Downloading User-Data Files

Creating and Downloading User–Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

Downloading User Files

The signal generator expects bit and binary file type data to be downloaded as
block data (binary data in bytes). The IEEE standard 488.2–1992 section 7.7.6
defines block data.

This section contains two examples to explain how to format the SCPI
command for downloading user file data. The examples use the binary user file
SCPI command, however the concept is the same for the bit file SCPI
command:

— Command Format
— “Command Format in a Program Routine” on page 21

Command Format

This example conceptually describes how to format a data download command
(#ABC represents the block data):

:MEM:DATA <"file_name">,#ABC

<"file_name"> the data file path and name

indicates the start of the block data

A the number of decimal digits present in B

B a decimal number specifying the number of data bytes
to follow in C

C the file data in bytes

bin: the location of the file within the signal generator file
system

my_file the data file name as it will appear in the signal
generator’s memory catalog

indicates the start of the block data

3 B has three decimal digits

240 240 bytes (1,920 bits) of data to follow in C

12%S!4&07#8g*Y9@7... the ASCII representation of some of the
block data (binary data) downloaded to the signal
generator, however not all ASCII values are printable

1024 (20 + 2) = 22528 bytes

AUTOGEN_PRAM_1 User Files

file_name A C

:MEM:DATA “bin:my_file”,#324012%S!4&07#8g*Y9@7...

Bfile location

Signal Sources Creating and Downloading User-Data Files 21

Creating and Downloading User–Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

In actual use, the block data is not part of the command line as shown above,
but instead resides in a binary file on the PC/UNIX. When the program
executes the SCPI command, the command line notifies the signal generator
that it is going to receive block data of the stated size and to place the file in
the signal generator file directory with the indicated name. Immediately
following the command execution, the program downloads the binary file to
the signal generator. This is shown in the following section, “Command Format
in a Program Routine”

Some commands are file location specific and do not require the file location as
part of the file name. An example of this is the bit file SCPI command shown in
“Command for Bit File Downloads” on page 23.

Command Format in a Program Routine

This section demonstrates the use of the download SCPI command within the
confines of a C++ program routine. The following code sends the SCPI
command and downloads user file data to the signal generator’s Binary
memory catalog (directory).

Line Code—Download User File Data

1
2
3
4
5
6
7
8
9

int bytesToSend;
bytesToSend = numsamples;
char s[20];
char cmd[200];
sprintf(s, "%d", bytesToSend);
sprintf(cmd, ":MEM:DATA \"BIN:FILE1\", #%d%d", strlen(s),
bytesToSend);
iwrite(id, cmd, strlen(cmd), 0, 0);
iwrite(id, databuffer, bytesToSend, 0, 0);
iwrite(id, "\n", 1, 1, 0);

Line Code Description—Download User File Data

1 Define an integer variable (bytesToSend) to store the number of bytes to send to the signal
generator.

2 Calculate the total number of bytes, and store the value in the integer variable defined in line 1.

3 Create a string large enough to hold the bytesToSend value as characters. In this code, string s is
set to 20 bytes (20 characters—one character equals one byte)

4 Create a string and set its length (cmd[200]) to hold the SCPI command syntax and parameters. In
this code, we define the string length as 200 bytes (200 characters).

5 Store the value of bytesToSend in string s. For example, if bytesToSend = 2000; s = ”2000”.

sprintf() is a standard function in C++, which writes string data to a string variable.

 22 Signal Sources Creating and Downloading User-Data Files

Creating and Downloading User–Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

6 Store the SCPI command syntax and parameters in the string cmd. The SCPI command prepares
the signal generator to accept the data.

— strlen() is a standard function in C++, which returns length of a string.

— If bytesToSend = 2000, then s = “2000”, strlen(s) = 4, so
cmd = :MEM:DATA ”BIN:FILE1\” #42000.

7 Send the SCPI command stored in the string cmd to the signal generator contained in the variable
id.

— iwrite() is a SICL function in Agilent IO library, which writes the data (block data)
specified in the string cmd to the signal generator.

— The third argument of iwrite(), strlen(cmd), informs the signal generator of the
number of bytes in the command string. The signal generator parses the string to
determine the number of data bytes it expects to receive.

— The fourth argument of iwrite(), 0, means there is no END of file indicator for the
string. This lets the session remain open, so the program can download the user
file data.

8 Send the user file data stored in the array (databuffer) to the signal generator.

— iwrite() sends the data specified in databuffer to the signal generator (session
identifier specified in id).

— The third argument of iwrite(), bytesToSend, contains the length of the databuffer
in bytes. In this example, it is 2000.

— The fourth argument of iwrite(), 0, means there is no END of file indicator in the
data.

In many programming languages, there are two methods to send SCPI commands
and data:

— Method 1 where the program stops the data download when it encounters
the first zero (END indicator) in the data.

— Method 2 where the program sends a fixed number of bytes and ignores
any zeros in the data. This is the method used in our program.

For your programming language, you must find and use the equivalent of method
two. Otherwise you may only achieve a partial download of the user file data.

9 Send the terminating carriage (\n) as the last byte of the waveform data.

— iwrite() writes the data “\n” to the signal generator (session identifier specified in
id).

— The third argument of iwrite(), 1, sends one byte to the signal generator.

— The fourth argument of iwrite(), 1, is the END of file indicator, which the program
uses to terminate the data download.

To verify the user file data download, see “Command for Bit File Downloads” on
page 23 and “Commands for Binary File Downloads” on page 24.

Line Code Description—Download User File Data

Signal Sources Creating and Downloading User-Data Files 23

Creating and Downloading User–Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

Command for Bit File Downloads

Because the signal generator adds a 10–byte file header during a bit file
download, you must use the SCPI command shown in Table 7. If you FTP or
copy the file for the initial download, the signal generator does not add the
10–byte file header, and it does recognize the data in the file (no data in the
transmitted signal).

Bit files enable you to control how many bits in the file the signal generator
modulates onto the signal. Even with this file type, the signal generator
requires that all data be contained within bytes. For more information on bit
files, see “Bit File Type Data” on page 10.

Command Syntax Example

The following command downloads a file that contains 17 bytes:

:MEM:DATA:BIT "new_file",131,#21702%S!4&07#8g*Y9@7

Since this command is file specific (BIT), there is no need to add the file
path to the file name.

After execution of this command, the signal generator creates a file in the
bit directory (memory catalog) named “new_file” that contains 27 bytes.
Remember that the signal generator adds a 10–byte file header to a bit file.
When the signal generator uses this file, it will recognize only 131 of the
136 bits (17 bytes) contained in the file.

For information on downloading block data, see “Downloading User Files”
on page 20.

Table 7 Bit File Type SCPI Commands

Type Command Syntax

Command :MEM:DATA:BIT <"file_name">,<bit_count>,<block_data>

This downloads the file to the signal generator.

Query :MEM:DATA:BIT? <"file_name">

Within the context of a program this query extracts the user file data. Executing the query in a
command window causes it to return the following information:
 <bit_count>,<block_data>.

Query :MEM:CAT:BIT?

This lists all of the files in the bit file directory and shows the remaining non–volatile memory:

<bytes used by bit files>,<available non-volatile
memory>,<"file_names">

 24 Signal Sources Creating and Downloading User-Data Files

Creating and Downloading User–Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

Commands for Binary File Downloads

To download a user file as a binary file type means that the signal generator,
when the file is selected for use, sees all of the data contained within the file.
For more information on binary files, see “Binary File Type Data” on page 13.
There are two ways to download the file: to be able to extract the file or not.
Each method uses a different SCPI command, which is shown in Table 8.

File Name Syntax

There are three ways to format the file name, which must also include the file
path:

— "BIN:file_name"
— "file_name@BIN"
— "/user/BIN/file_name"

Command Syntax Example

The following command downloads a file that contains 34 bytes:

:MEM:DATA
"BIN:new_file",#2347^%S!4&07#8g*Y9@7.?:*Ru[+@y3#_^,>l

Table 8 Binary File Type Commands

Command
Type

Command Syntax

For
Extraction

SCPI :MEMory:DATA:UNPRotected "bin:file_name",<datablock>

This downloads the file to the signal generator. You can extract the file within the
context of a program.

FTP1 put <file_name> /user/bin/file_name

No
extraction

:MEM:DATA "bin:file_name",<block data>

This downloads the file to the signal generator. You cannot extract the file.

Query :MEM:DATA? "bin:file_name"

This returns information on the named file: <bit_count>,<block_data>.
Within the context of a program, this query extracts the user file, provided it was
download with the proper command.

Query :MEM:CAT:BIN?

This lists all of the files in the bit file directory and shows the remaining non–volatile
memory:

<bytes used by bit files>,<available non-volatile
memory>,<"file_names">

1. See “FTP Procedures” on page 27.

Signal Sources Creating and Downloading User-Data Files 25

Creating and Downloading User–Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

After execution of this command, the signal generator creates a file in the
Binary (Bin) directory (memory catalog) named “new_file” that contains 34
bytes.

For information on downloading block data, see “Downloading User Files”
on page 20.

Selecting a Downloaded User File as the Data Source

This section describes how to format SCPI commands for selecting a user file
using commands from the GSM and Custom modulation formats. While the
commands shown come from only two formats, the concept remains the same
when making the data selection for any of the other real–time modulation
formats that accept user data. To find the data selection commands for both
framed and unframed data for the different modulation formats, see the signal
generator’s SCPI Command Reference.

1. For TDMA formats, select either framed or unframed data:

:RADio:GSM:BURSt ON|OFF|1|0

ON(1) = framed OFF(0) = unframed

2. Select the user file:

3. Configure the remaining signal parameters.

4. Turn the modulation format on:

:RADio:CUSTom:STATe On

Modulating and Activating the Carrier

Use the following commands to modulate the carrier and turn on the RF
output. For a complete listing of SPCI commands, refer to the SCPI Command
Reference.

:FREQuency:FIXed 2.5GHZ

:POWer:LEVel -10.0DBM

:OUTPut:MODulation:STATe ON

:OUTPut:STATe ON

Unframed Data

:RADio:CUSTom:DATA "BIT:file_name"

:RADio:CUSTom:DATA "BIN:file_name"

Framed Data

:RADio:GSM:SLOT0|1|2|3|4|5|6|7:NORMal:ENCRyption "BIT:file_name"

:RADio:GSM:SLOT0|1|2|3|4|5|6|7:NORMal:ENCRyption "BIN:file_name"

 26 Signal Sources Creating and Downloading User-Data Files

Creating and Downloading User–Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

Modifying User File Data

There are two ways to modify a file after downloading it to the signal generator:

— Use the signal generator’s bit file editor. This works for both bit and binary
files, but it converts a binary file to a bit file and adds a 10–byte file header.
For more information on using the bit file editor, see the signal generator’s
User’s Guide. You can also access the bit editor remotely using the signal
generator’s web server. For web server information, refer to the
Programming Guide.

— Use a hex editor program on your PC or UNIX workstation, as described
below.

Modifying a Binary File with a Hex Editor

1. FTP the file to your PC/UNIX.

For information on using FTP, see FTP Procedures. Ensure that you use
binary file transfers during FTP operations.

2. Modify the file using a hex editor program.

3. FTP the file to the signal generator’s BIN memory catalog (directory).

Modifying a Bit File with a Hex Editor

1. FTP the file to your PC/UNIX.

For information on using FTP, see FTP Procedures. Ensure that you use
binary file transfers during FTP operations.

2. Modify the file using a hex editor program.

If you need to decrease or increase the number of bits of interest, change
the file header hex value.

3. FTP the file to the signal generator’s BIT memory catalog (directory).

80 Byte File From Signal Generator

02 80 hex = 640 bits designated as bits of interest

Modified File (80 Bytes to 88 Bytes)

02 bd hex = 701 bits designated as bits of interest

Added bytes

Signal Sources Creating and Downloading User-Data Files 27

Creating and Downloading User–Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

FTP Procedures

CAUTION Avoid using the *OPC? or *WAI commands to verify that the FTP process has
been completed. These commands can potentially hang up due to the
processing of other SCPI parser operations. Refer to the SCPI Command
Reference.

NOTE If you are remotely FTPing files and need to verify the completion of the FTP
process, then query the instrument by using SCPI commands such as:
':MEM:DATA:', ':MEM:CAT', '*STB?', 'FREQ?', '*IDN?', 'OUTP:STAT?'. Refer to
the SCPI Command Reference.

There are three ways to FTP a file:

— use Microsoft’s Internet Explorer FTP feature
— use the signal generator’s internal web server (ESG firmware

≥ C.03.76)
— use the PC or UNIX command window

Using Microsoft’s Internet Explorer

1. Enter the signal generator’s hostname or IP address as part of the FTP
URL.

ftp://<host name> or <IP address>

2. Press Enter on the keyboard or Go from the Internet Explorer window.

The signal generator files appear in the Internet Explorer window.

3. Drag and drop files between the PC and the Internet Explorer window

Using the Signal Generator’s Internal Web Server

1. Enter the signal generator’s hostname or IP address in the URL.

http://<host name> or <IP address>

2. Click the Signal Generator FTP Access button located on the left side of
the window.

The signal generator files appear in the web browser’s window.

3. Drag and drop files between the PC and the browser’s window

For more information on the web server feature, refer to the Programming
Guide.

 28 Signal Sources Creating and Downloading User-Data Files

Creating and Downloading User–Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

Using the Command Window (PC or UNIX)

1. From the PC command prompt or UNIX command line, change to the
proper directory:

— When downloading from the signal generator, the directory in
which to place the file.

— When downloading to the signal generator, the directory that
contains the file.

2. From the PC command prompt or UNIX command line, type ftp
<instrument name>.

Where instrument name is the signal generator’s hostname or IP
address.

3. At the User: prompt, press Enter (no entry is required).

4. At the Password: prompt, press Enter (no entry is required).

5. At the ftp prompt, type the desired command:

— <file_name1> is the name of the file as it appears in the signal
generator’s directory.

— <file_name> is the name of the file as it appears in the PC/UNIX
current directory.

— <directory> is the signal generator’s BIT or BIN directory.

6. At the ftp prompt, type: bye

7. At the command prompt, type: exit

Understanding Framed Transmission For Real–Time TDMA

Specifying a user file as the data source for a framed transmission provides you
with an easy method to multiplex real data into internally generated TDMA
framing. The user file fills the data fields of the active timeslot in the first frame,
and continue to fill the same timeslot of successive frames as long as there is
more data in the file with enough bits to fill the data field. This functionality
enables a communications system designer to download and modulate
proprietary data sequences, specific PN sequences, or simulate multiframe
transmission such as those specified by some mobile communications
protocols. As the example in the following figure shows, a GSM multiframe
transmission requires 26 frames for speech.

To Get a File From the Signal Generator

get /user/<directory>/<file_name1> <file_name>

To Place a File in the Signal Generator

put <file_name> /user/<directory>/<file_name1>

Signal Sources Creating and Downloading User-Data Files 29

Creating and Downloading User–Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

Figure 0-9 GSM Multiframe Transmission

When you select a user file as the data source for a framed transmission, the
signal generator’s firmware loads PRAM with the framing protocol of the active
TDMA format. This creates a file named AUTOGEN_PRAM_1 in addition to a
copy of the user file. For all addresses corresponding to active (on) timeslots,
the signal generator sets the burst bit to 1 and fills the data fields with the user
file data. Other bits are set according to the configuration selected. For inactive
(off) timeslots, the signal generator sets the burst control bit to 0, with the data
being unspecified.

In the last byte that contains the last user file data bit, the signal generator sets
the Pattern Reset bit to 1. This causes the user file data pattern to repeat in the
next frame.

NOTE The data in PRAM is static. Firmware writes to PRAM once for the
configuration selected and the hardware reads this data repeatedly. Firmware
overwrites the volatile PRAM memory to reflect the desired configuration only
when the data source or TDMA format changes.

For example, transmitting a 228–bit user file for timeslot #1 (TS1) in a normal
GSM transmission creates two frames. Per the standard, a GSM normal
channel is 156.25 bits long, with two 57–bit data fields (114 user data bits total
per timeslot), and 42 bits for control or signaling purposes.The user file
completely fills timeslot #1 for two consecutive frames, and then repeats. The
seven remaining timeslots in the GSM frame are off, as shown in Figure 1 on
page 30.

 30 Signal Sources Creating and Downloading User-Data Files

Creating and Downloading User–Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

Figure 1 Mapping User File Data to a Single Timeslot

NOTE Compliant with the GSM standard, which specifies 156.25–bit timeslots, the
signal generator uses 156–bit timeslots and adds an extra guard bit to every
fourth timeslot.

For this protocol configuration, the signal generator’s firmware loads PRAM
with the bits defined in the following table. (These bits are part of the 32–bit
word per frame bit.) The Pattern Reset bit, bit 7, is 0 for frame one and 1 for the
last byte of frame two.

Frame Timeslot PRAM Word
Offset

Data Bits Burst Bits Pattern Reset Bit

1 0 0 -155 0/1 (don’t care) 0 (off) 0 (off)

1 1 (on) 156 - 311 set by GSM standard (42 bits) & first
114 bits of user file

1 (on) 0

1 2 312 - 467 0/1 (don’t care) 0 0

1 3 468 - 624 0/1 (don’t care) 0 0

1 4 625 - 780 0/1 (don’t care) 0 0

1 5 781 - 936 0/1 (don’t care) 0 0

1 6 937 - 1092 0/1 (don’t care) 0 0

1 7 1093 - 1249 0/1 (don’t care) 0 0

2 0 1250 - 1405 0/1 (don’t care) 0 0

2 1 (on) 1406 - 1561 set by GSM standard (42 bits) &
remaining bits of user file

1 (on) 0

2 2 through 6 1562 - 2342 0/1 (don’t care) 0 0 (off)

2 7 2343 - 2499 0/1 (don’t care) 0 1 (1 in offset
2499 only)

Signal Sources Creating and Downloading User-Data Files 31

Creating and Downloading User–Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

Event 1 output is set to 0 or 1 depending on the sync out selection, which
enables the EVENT 1 output at either the beginning of the frame, beginning of
a specific timeslot, or at all timeslots (SCPI command, :RADio:GSM:SOUT
FRAME|SLOT|ALL).

Because timeslots are configured and enabled within the signal generator, a
user file can be individually assigned to one or more timeslots. A timeslot
cannot have more than one data source (PN sequence or user file) specified for
it. The amount of user file data that can be mapped into hardware memory
depends on both the amount of PRAM available on the baseband generator,
and the number and size of each frame. (See “Determining Memory Usage for
Custom and TDMA User File Data” on page 16.)

PRAM adds 31 bits to each bit in a frame, which forms 32–bit words.
The following shows how to calculate the amount of PRAM storage space
required for a GSM superframe:

NOTE For the total PRAM memory usage, be sure to add the number of PRAM
blocks that the user file occupies to the PRAM file size. For more information,
see “Calculating Volatile Memory (PRAM) Usage for Framed Data” on page
18.

Bits per superframe = normal GSM timeslot × timeslot per frame × speech multiframe(TCH) ×
superframe

size of normal GSM timeslot = 156.25
bits

timeslots per frame = 8 timeslots.

speech multiframe(TCH) = 26 frames superframe = 51 speech multiframes

1. Calculate the number of bits in the superframe:

 156.25 × 8 × 26 × 51 = 1,657,500 bits

2. Calculate the size of the PRAM file:

1,657,500 bits × 4 bytes (32–bit words) = 6,630,000 bytes

3. Calculate how much memory the PRAM file will occupy

6,630,000 bytes / 1,024 bytes per PRAM block = 6,474.6 memory blocks

4. Round the quotient up to the next integer value

6,475 blocks x 1,024 bytes per block = 6,630,400 bytes

 32 Signal Sources Creating and Downloading User-Data Files

Creating and Downloading User–Data Files
User File Data (Bit/Binary) Downloads (E4438C and E8267D)

Real–Time Custom High Data Rates

Custom has two modes for processing data, serial and parallel. When the data
bit–rate exceeds 50 Mbps, the signal generator processes data in parallel
mode, which means processing the data symbol by symbol versus bit by bit
(serial). This capability exists in only the Custom format when using a
continuous data stream. This means that it does not apply to a downloaded
PRAM file type (covered later in this chapter).

In parallel mode, for a 256QAM modulation scheme, Custom has the capability
to reach a data rate of up to 400 Mbps. The FIR filter width is what determines
the data rate. The following table shows the maximum data rate for each
modulation type. Because the signal generator’s maximum symbol rate is 50
Msps, a modulation scheme that has only 1 bit per symbol is always processed
in serial mode.

The only external effect of the parallel mode is in the EVENT 1 output signal. In
serial and parallel mode, the signal generator outputs a narrow pulse at the
EVENT 1 connector. But in parallel mode, the output pulse width increases by
a factor of bits–per–symbol wide, as shown in the following figure.

Modulation Type Bit Rate Range for Internal Data (bit rate = symbol rate x bits per symbol)

16 Symbol Wide FIR
Filter

32 Symbol Wide FIR
Filter

64 Symbol Wide FIR
Filter

BPSK, 2FSK, MSK 1bps–50Mbps 1bps–25 Mbps 1bps–12.5Mbps

C4FM, OQPSK,
4FSK

2bps–100Mbps 2bps–50Mbps 2bps–25Mbps

IS95 OQPSK,
QPSK

P4DQPSK,
IS95 QPSK

GRAYQPSK,
4QAM

D8PSK, EDGE,
8FSK, 8PSK

3bps–150Mbps 3bps–75Mbps 3bps–37.5Mbps

16FSK, 16PSK,
16QAM

4bps–200Mbps 4bps–100Mbps 4bps–50Mbps

Q32AM 5bps–250Mbps 5bps–125Mbps 5bps–62.5Mbps

64QAM 6bps–300Mbps 6bps–150Mbps 6bps–75Mbps

128QAM 7bps–350Mbps 7bps–175Mbps 7bps–87.5Mbps

256QAM 8bps–400Mbps 8bps–200Mbps 8bps–100Mbps

Signal Sources Creating and Downloading User-Data Files 33

Creating and Downloading User–Data Files
Pattern RAM (PRAM) Data Downloads (E4438C and E8267D)

Pattern RAM (PRAM) Data Downloads (E4438C and E8267D)

NOTE This section applies only to the E4438C with Option 001, 002, 601, or 602,
and the E8267D with Option 601 or 602.

If you encounter problems with this section, refer to “Data Transfer
Troubleshooting (N5162A, N5182A, E4438C and E8267D Only)” on page 71.

To verify the SCPI parser’s responsiveness when remotely using the
:MEM:DATA SCPI command to upload files, the file’s upload should be verified
using the *STB? command. Refer to the SCPI Command Reference.

This section contains information to help you transfer user–generated PRAM
data from a system controller to the signal generator’s PRAM. It explains how
to download data directly into PRAM and modulate the carrier signal with the
data.

The control bits included in the PRAM file download, control the following
signal functions:

— bursting
— timing signal at the EVENT 1 rear panel connector
— data pattern reset

PRAM data downloads apply to only real–time Custom and TDMA modulation
formats. In the TDMA formats, PRAM files are available only while using the
unframed data selection. The following table on page 34 shows which signal
generator models support these formats.

20 ns

32QAM (5 bits per symbol)

100 ns

10 Msps
10.000001 Msps

bit rate = bits per symbol x symbol rate

NOTE: The pulse widths values are only for example purposes. The actual width may vary from the above values.

 34 Signal Sources Creating and Downloading User-Data Files

Creating and Downloading User–Data Files
Pattern RAM (PRAM) Data Downloads (E4438C and E8267D)

PRAM files differ from bit and binary user files.

Bit and binary user files (see page 9) download to non–volatile memory and the
signal generator loads the user file data into PRAM (volatile/waveform
memory) for use. The signal generator adds the required control bits when it
generates the signal.

A PRAM file downloads directly into PRAM, and it includes seven of the
required control bits for each data (payload) bit. The signal generator adds the
remaining control bits when it generates the signal. You download the file
using either a list or block data format. Programs such as MATLAB or MathCad
can generate the data.

This type of signal control enables you to design experimental or proprietary
framing schemes.

After selecting the PRAM file, the signal generator builds the modulation
scheme by reading data stored in PRAM, and constructing framing protocols
according to the PRAM file data and the modulation format. You can
manipulate PRAM data by changing the standard protocols for a modulation
format such as the symbol rate, modulation type, and filter either through the
front panel interface or with SCPI commands.

Understanding PRAM Files

The term PRAM file comes from earlier Agilent products, the E443xB ESGs.
PRAM is another term for waveform memory (WFM1), which is also known as
volatile memory. This means that PRAM files and waveform files occupy the
same memory location. The signal generator’s volatile memory (waveform
memory) storage path is /user/BBG1/waveform. For more information on
memory, see “Signal Generator Memory” on page 3.

 The following figure shows a PRAM byte and illustrates the difference between
it and a bit/binary user file byte. Notice the control bits in the PRAM byte.

E4438C ESG E2867D PSG

Custom1

1. For ESG, requires Option 001, 002, 601, or 602, for PSG
requires Option 601 or 602.

TDMA2

2. Real–time TDMA modulation formats require Option 402 and
include EDGE, GSM, NADC, PDC, PHS, DECT, and TETRA.

Customa

User File Data Byte:

MSB

Payload Bits

PRAM File Data Byte: 1 1 0 1 0 1 0 1

Control bits Payload bit

LSB

1 0 0 1 1 1 0 1

MSB LSB

Signal Sources Creating and Downloading User-Data Files 35

Creating and Downloading User–Data Files
Pattern RAM (PRAM) Data Downloads (E4438C and E8267D)

Only three of the seven control bits elicit a response from the signal generator.
The other four bits are reserved. Table 10 describes the bits for a PRAM byte.

As seen in Table 10, only four bits, shown in the following list, can change
state:

— bit 0—data
— bit 2—bursting
— bit 6—EVENT 1 rear panel output
— bit 7—pattern reset

Because a PRAM byte has only four bits that can change states, there are only
15 possible byte patterns as shown in Table 11 on page 36. The table also
shows the decimal value for each pattern, which is needed for downloading
data using the list format shown on page 39.

Table 10 PRAM Data Byte

Bit Function Value Comments

0 Data 0/1 This is the data (payload) bit. It is “unspecified” when burst (bit 2) is set to 0.

1 Reserved 0 Always 0

2 Burst 0/1 1 = RF on
0 = RF off
For non–bursted, non–TDMA systems, to have a continuous signal, set this bit to 1 for all
bytes. For framed data, set this bit to 1 for on timeslots and 0 for off timeslots.

3 Reserved 0 Always 0

4 Reserved 1 Always 1

5 Reserved 0 Always 0

6 EVENT1
Output

0/1 To have the signal generator output a single pulse at the EVENT 1 connector, set this bit to
1. Use this output for functions such as a triggering external hardware to indicate when the
data pattern begins and restarts, or creating a data–synchronous pulse train by toggling
this bit in alternate bytes.

7 Pattern Reset 0/1 0 = continue to next sequential memory address.
1 = end of memory and restart memory playback.
This bit is set to 0 for all bytes except the last byte of PRAM. To restart the pattern, set the
last byte of PRAM to 1.

 36 Signal Sources Creating and Downloading User-Data Files

Creating and Downloading User–Data Files
Pattern RAM (PRAM) Data Downloads (E4438C and E8267D)

Viewing the PRAM Waveform

After the waveform data is written to PRAM, the data pattern can be viewed
using an oscilloscope. There is approximately a 12–symbol delay between a
state change in the burst bit and the corresponding effect at the RF out. This
delay varies with symbol rate and filter settings, and requires compensation to
advance the burst bit in the downloaded PRAM file.

Table 11 PRAM Byte Patterns and Bit Positions

Bit Function

Pa
tt

er
n

Re
se

t

EV
EN

T
1

Ou
tp

ut

Re
se

rv
ed

 (B
it

=
0)

Re
se

rv
ed

 (B
it

=
1)

Re
se

rv
ed

 (B
it

=
0)

Bu
rs

t

Re
se

rv
ed

 (B
it

=
0)

Da
ta

Bit
Pattern
Decimal

Value

Bit Position 7 6 5 4 3 2 1 0 ---

Bit Pattern 1 1 0 1 0 1 0 1 213

1 1 0 1 0 1 0 0 212

1 1 0 1 0 0 0 1 209

1 1 0 1 0 0 0 0 208

1 0 0 1 0 1 0 1 149

1 0 0 1 0 0 0 1 145

1 0 0 1 0 0 0 0 144

0 1 0 1 0 1 0 1 85

0 1 0 1 0 1 0 0 84

0 1 0 1 0 0 0 1 81

0 1 0 1 0 0 0 0 80

0 0 0 1 0 1 0 1 21

0 0 0 1 0 1 0 0 20

0 0 0 1 0 0 0 1 17

0 0 0 1 0 0 0 0 16

Signal Sources Creating and Downloading User-Data Files 37

Creating and Downloading User–Data Files
Pattern RAM (PRAM) Data Downloads (E4438C and E8267D)

PRAM File Size

Because volatile memory resides on the baseband generator (BBG), the
maximum PRAM file size depends on the installed baseband generator option,
as shown in Table 12.

The maximum PRAM user file size in the table above refers to the maximum
number of payload bits. After downloading, the signal generator translates
each downloaded payload bit into a 32–bit word:

— 1 downloaded payload bit

— 7 downloaded control bits as shown in Table 10 on page 35

— 24 bits added by the signal generator

The following table shows the maximum file size after the signal generator has
translated the maximum number of payload bits into 32–bit words.

To properly size a PRAM file, you must determine the file size after the 32–bit
translation process. The signal generator measures a PRAM file size in units of
bytes; each 32–bit word equals 4 bytes.

Determining the File Size

The following example shows how to calculate a downloaded file size using a
PRAM file that contains 89 bytes (payload bits plus 7 control bits per payload
bit):

89 bytes + [(89 x 24 bits) / 8] = 356 bytes

Table 12 Maximum PRAM User File Size (Payload Bits Only)

Modulation
Format

Baseband Generator Option

 001, 601 002 602

Custom
TDMA 8 Mbits1

1. File size with no other files residing in volatile mem-
ory.

32 Mbitsa 64 Mbitsa

Table 13 Maximum File Size After Downloading

Modulation
Format

Baseband Generator Option

 001, 601 002 602

Custom
TDMA 32 MBytes1

1. File size with no other files residing in volatile mem-
ory.

128 MBytesa 256 MBytesa

 38 Signal Sources Creating and Downloading User-Data Files

Creating and Downloading User–Data Files
Pattern RAM (PRAM) Data Downloads (E4438C and E8267D)

Because the file downloads one fourth of the translated 32–bit word, another
method to calculate the file size is to multiply the downloaded file size by four:

89 bytes x 4 = 356 bytes

See also “Signal Generator Memory” on page 3 and “Checking Available
Memory” on page 7.

Minimum File Size

A PRAM file requires a minimum of 60 bytes to create a signal. If the
downloaded file contains less than 60 bytes, the signal generator replicates the
file until the file size meets the 60 byte minimum. This replication process
occurs after you select the file and turn the modulation format on. The
following example shows this process using a downloaded 14–byte file:

— During the file download, the 14 bytes are translated into 56 bytes (fourteen
32–bit words).

14 bytes x 4 = 56 bytes

— After selecting and turning the format on, the signal generator replicates
the file contents to create the 60 byte minimum file size

60 bytes / 14 bytes = 4.29 file replications

The signal generator rounds this real value up to the next highest integer. In
this example, the signal generator replicates the fourteen 32–bit words (56
bytes) by a factor of 5, which makes the final file size 280 bytes. This
equates to a 70 byte file.

14 bytes x 5 = 70 bytes

70 + [(70 x 24) / 8] = 280 bytes

Or

56 bytes x 5 = 280 bytes

File size increases
by a factor of 4

File size increases
by a factor of 5

Signal Sources Creating and Downloading User-Data Files 39

Creating and Downloading User–Data Files
Pattern RAM (PRAM) Data Downloads (E4438C and E8267D)

SCPI Command for a List Format Download

Using the list format, enter the data in the command line using comma
separated decimal values. This file type takes longer to download because the
signal generator must parse the data. When creating the data, remember that
the signal generator requires a minimum of 60 bytes. For more information on
file size limits, see “PRAM File Size” on page 37.

Command Syntax

:MEMory:DATA:PRAM:FILE:LIST
<"file_name">,<uint8>[,<uint8>,<...>]

uint8 The decimal equivalent of an unsigned 8–bit integer
value. For a list of usable decimal values and their
meaning with respect to the generated signal, see
Table 11 on page 36.

Command Syntax Example

The following example, when executed, creates a new file in volatile (waveform)
memory with the following attributes:

— creates a file named new_file
— outputs a single pulse at the EVENT 1 connector
— bursts the data pattern 1100 seven times over 28 bytes
— transmits 32 non–bursted bytes
— resets the data pattern so it starts again

:MEMory:DATA:PRAM:FILE:LIST
<"new_file">,85,21,20,20,21,21,20,20,21,21,20,20,21,21,
20,20,21,21,20,20,21,21,20,20,21,21,20,20,16,16,16,16,16,16,16,16,16,16,16,
16,16,16,
16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,144

The following list defines the meaning of the different bytes seen in the
command line:

85 Send a pulse to the EVENT 1 output, and burst the signal with a data bit of 1.

21 Burst the signal with a data bit of 1.

20 Burst the signal with a data bit of 0.

16 Do not burst the signal (RF output off), and set the data bit to 0.

14
4

Reset the data pattern, do not burst the signal (RF output off), and set the data bit to 0.

 40 Signal Sources Creating and Downloading User-Data Files

Creating and Downloading User–Data Files
Pattern RAM (PRAM) Data Downloads (E4438C and E8267D)

SCPI Command for a Block Data Download

The IEEE standard 488.2–1992 section 7.7.6 defines block data. The signal
generator is able to download block data significantly faster than list formatted
data (see page 39), because it does not have to parse the data. When creating
the data, remember that the signal generator requires a minimum of 60 bytes.
For more information on file size limits, see “PRAM File Size” on page 37.

Command Syntax

:MEMory:DATA:PRAM:FILE:BLOCk <"file_name">,<blockdata>

The following sections explain how to format the SCPI command for
downloading block data:

— Command Syntax Example

— Command Syntax in a Program Routine

Command Syntax Example

This example conceptually describes how to format a block data download
command (#ABC represents the block data):

:MEMory:DATA:PRAM:FILE:BLOCk <"file_name">,#ABC

<"file_name"> the file name as it will appear in the signal generator

indicates the start of the block data

A the number of decimal digits present in B

B a decimal number specifying the number of data bytes
to follow in C

C the PRAM file data in bytes

my_file the PRAM file name as it will appear in the signal
generator’s WFM1 memory catalog

indicates the start of the block data

3 B has three decimal digits

240 240 bytes of data to follow in C

12%S!4&07#8g*Y9@7... the ASCII representation of some of the
block data (binary data) downloaded to the signal
generator, however not all ASCII values are printable

In actual use, the block data is not part of the command line as shown above,
but instead resides in a binary file on the PC/UNIX. When the program
executes the SCPI command, the command line notifies the signal generator
that it is going to receive block data of the stated size, and to place the file in

file_name A C

:MEMory:DATA:PRAM:FILE:BLOCk “my_file”,#324012%S!4&07#8g*Y9@7.

B

Signal Sources Creating and Downloading User-Data Files 41

Creating and Downloading User–Data Files
Pattern RAM (PRAM) Data Downloads (E4438C and E8267D)

the signal generator file directory with the indicated name. Immediately
following the command execution, the program downloads the binary file to
the signal generator. This is shown in the following section, “Command Syntax
in a Program Routine”

Command Syntax in a Program Routine

This section demonstrates the use of the download SPCI command within the
confines of a C++ program routine. The following code sends the SCPI
command and downloads a 240 byte PRAM file to the signal generator’s
WFM1 (waveform) memory catalog. This program assumes that there is a char
array, databuffer, that contains the 240 bytes of PRAM data and that the
variable numbytes stores the length of the array.

Line Code—Download PRAM File Data

1
2
3
4
5
6
7
8
9

int bytesToSend;
bytesToSend = numbytes;
char s[4];
char cmd[200];
sprintf(s, "%d", bytesToSend);
sprintf(cmd, ":MEM:DATA:PRAM:FILE:BLOCk \"FILE1\", #%d%d",
strlen(s),bytesToSend);
iwrite(id, cmd, strlen(cmd), 0, 0);
iwrite(id, databuffer, bytesToSend, 0, 0);
iwrite(id, "\n", 1, 1, 0);

Line Code Description—Download PRAM File Data

1 Define an integer variable (bytesToSend) to store the number of bytes to send to the signal
generator.

2 Store the total number of PRAM bytes in the integer variable defined in line 1. numbytes contains
the length of the databuffer array referenced in line 8.

3 Create a string large enough to hold the bytesToSend value as characters plus a null character
value. In this code, string s is set to 4 bytes (3 characters for the bytesToSend value and one null
character—one character equals one byte).

4 Create a string and set its length (cmd[200]) to hold the SCPI command syntax and parameters. In
this code, we define the string length as 200 bytes (200 characters).

5 Store the value of bytesToSend in string s. For this example, bytesToSend = 240; s = ”240”

 42 Signal Sources Creating and Downloading User-Data Files

Creating and Downloading User–Data Files
Pattern RAM (PRAM) Data Downloads (E4438C and E8267D)

6 Store the SCPI command syntax and parameters in the string cmd. The SCPI command prepares
the signal generator to accept the data.

— sprintf() is a standard function in C++, which writes string data to a string
variable.

— strlen() is a standard function in C++, which returns length of a string.

— bytesToSend = 240, then s = “240” plus the null character, strlen(s) = 4, so
cmd = :MEM:DATA:PRAM:FILE:BLOCk ”FILE1\” #3240.

7 Send the SCPI command stored in the string cmd to the signal generator contained in the variable
id.

— iwrite() is a SICL function in Agilent IO library, which writes the data (block data)
specified in the string cmd to the signal generator.

— The third argument of iwrite(), strlen(cmd), informs the signal generator of the
number of bytes in the command string. The signal generator parses the string to
determine the number of data bytes it expects to receive.

— The fourth argument of iwrite(), 0, means there is no END of file indicator for the
string. This lets the session remain open, so the program can download the PRAM
file data.

8 Send the PRAM file data stored in the array, databuffer, to the signal generator.

— iwrite() sends the data specified in databuffer (PRAM data) to the signal generator
(session identifier specified in id).

— The third argument of iwrite(), bytesToSend, contains the length of the databuffer
in bytes. In this example, it is 240.

— The fourth argument of iwrite(), 0, means there is no END of file indicator in the
data.

In many programming languages, there are two methods to send SCPI commands
and data:

— Method 1 where the program stops the data download when it encounters
the first zero (END indicator) in the data.

— Method 2 where the program sends a fixed number of bytes and ignores
any zeros in the data. This is the method used in our program.

For your programming language, you must find and use the equivalent of method
two. Otherwise you may only achieve a partial download of the user file data.

9 Send the terminating carriage (\n) as the last byte of the waveform data.

— iwrite() writes the data “\n” to the signal generator (session identifier specified in
id).

— The third argument of iwrite(), 1, sends one byte to the signal generator.

— The fourth argument of iwrite(), 1, is the END of file indicator, which the program
uses to terminate the data download.

Line Code Description—Download PRAM File Data

Signal Sources Creating and Downloading User-Data Files 43

Creating and Downloading User–Data Files
Pattern RAM (PRAM) Data Downloads (E4438C and E8267D)

Selecting a Downloaded PRAM File as the Data Source

The following steps show the process for selecting a PRAM file using
commands from the GSM (TDMA) modulation format. While the commands
shown come from only one format, the concept remains the same when
making the data selection for any of the other real–time modulation formats
that support PRAM data. To find the commands for Custom and the other
TDMA formats, refer to the SCPI Command Reference.

1. For real–time TDMA formats, select unframed data:

:RADio:GSM:BURSt:STATe OFF

2. Select the data type:

:RADio:GSM:DATA PRAM

3. Select the PRAM file:

:RADio:GSM:DATA:PRAM <"file_name">

Because the command is file specific (PRAM), there is no need to include
the file path with the file name.

4. Configure the remaining signal parameters.

5. Turn the modulation format on:

:RADio:GSM:STATe On

Modulating and Activating the Carrier

Use the following commands to modulate the carrier and turn on the RF
output. For a complete listing of SPCI commands, refer to the SCPI Command
Reference.

:FREQuency:FIXed 1.8GHZ

:POWer:LEVel -10.0DBM

:OUTPut:MODulation:STATe ON

:OUTPut:STATe ON

Storing a PRAM File to Non–Volatile Memory and Restoring to
Volatile Memory

After you download the file to volatile memory (waveform memory), you can
then save it to non–volatile memory. Remember that a PRAM file downloads to
waveform memory. Conversely, when you store a PRAM file to non–volatile
memory, it uses the same directory as waveform files. When storing or
restoring a file, you must include the file path as part of the file_name variable.

 44 Signal Sources Creating and Downloading User-Data Files

Creating and Downloading User–Data Files
Pattern RAM (PRAM) Data Downloads (E4438C and E8267D)

Command Syntax

The first file_name variable is the current location of the file and its name; the
second file_name variable is the destination to store the file and its name.

There are three ways to format the file_name variable to include the file path:

Extracting a PRAM File

When you extract a PRAM file, you are extracting the translated 32–bit
word–per–byte file. You cannot extract just the downloaded data. Extracting a
PRAM file is similar to extracting a waveform file in that you use the same
commands, and the PRAM file resides in either volatile memory (waveform
memory) or the waveform directory for non–volatile memory. After extraction,
you can download the file to the same signal generator or to another signal
generator with the proper option configuration that supports the downloaded
file. There are two ways to download a file after extraction:

— with the ability to extract later
— with no extraction capability

CAUTION Ensure that you do not use the :MEMory:DATA:PRAM:FILE:BLOCk command
to download an extracted file. If you use this command, the signal generator
will treat the file as a new PRAM file and translate the LSB of each byte into a
32–bit word, corrupting the file data.

Command Syntax

This section lists the commands for extracting PRAM files and downloading
extracted PRAM files. To download an extracted file, you must use block data.
For information on block data, see “SCPI Command for a Block Data
Download” on page 39. In addition, there are three ways to format the
file_name variable, which must also include the file path, as shown in the
following tables.

There are two commands for file extraction:

Volatile Memory to Non–Volatile Memory

:MEMory:COPY "WFM1:file_name","NVWFM:file_name"
:MEMory:COPY "file_name@WFM1","file_name@NVWFM"
:MEMory:COPY
"/user/bbg1/waveform/file_name","/user/waveform/file_name"

Non–Volatile Memory to Volatile Memory

:MEMory:COPY "NVWFM:file_name","WFM1:file_name"
:MEMory:COPY "file_name@NVWFM","file_name@WFM1"
:MEMory:COPY
"/user/waveform/file_name","/user/bbg1/waveform/file_name"

Signal Sources Creating and Downloading User-Data Files 45

Creating and Downloading User–Data Files
Pattern RAM (PRAM) Data Downloads (E4438C and E8267D)

— :MEM:DATA? <"file_name">
— :MMEM:DATA? <"filename">

The following table uses the first command to illustrate the command format,
however the format is the same if you use the second command.

There are two commands that download a file for no extraction:

— :MEM:DATA <"file_name">,<blockdata>
— :MMEM:DATA <"filename">,<blockdata>

Table 14 Extracting a PRAM File

Extraction
Method/Memory Type

Command Syntax Options

SCPI/volatile memory :MEM:DATA? "WFM1:file_name"
:MEM:DATA? "file_name@WFM1"
:MEM:DATA? "/user/bbg1/waveform/file_name"

SCPI/non–volatile
memory

:MEM:DATA? "NVWFM:file_name"
:MEM:DATA? "file_name@NVWFM"
:MEM:DATA? "/user/waveform/file_name"

FTP/volatile memory1 get /user/bbg1/waveform/file_name

FTP/non–volatile
memorya

get /user/waveform/file_name

1. See “FTP Procedures” on page 27.

Table 15 Downloading a File for Extraction

Download Method/
Memory Type

Command Syntax Options

SCPI/volatile memory :MEM:DATA:UNPRotected "WFM1:file_name",<blockdata>
:MEM:DATA:UNPRotected "file_name@WFM1",<blockdata>
:MEM:DATA:UNPRotected
"/user/bbg1/waveform/file_name",<blockdata>

SCPI/non–volatile
memory

:MEM:DATA:UNPRotected "NVWFM:file_name",<blockdata>
:MEM:DATA:UNPRotected "file_name@NVWFM",<blockdata>
:MEM:DATA:UNPRotected
"/user/waveform/file_name",<blockdata>

FTP/volatile memory1 put <file_name> /user/bbg1/waveform/file_name

FTP/non–volatile
memorya

put <file_name> /user/waveform/file_name

1. See “FTP Procedures” on page 27.

 46 Signal Sources Creating and Downloading User-Data Files

Creating and Downloading User–Data Files
Pattern RAM (PRAM) Data Downloads (E4438C and E8267D)

The following table uses the first command to illustrate the command format,
however the format is the same if you use the second command.

Modifying PRAM Files

The only way to change PRAM file data is to modify the original file on a
computer and download it again. The signal generator does not support
viewing and editing PRAM file contents. Because the signal generator
translates the data bit into a 32–bit word, the file contents are not
recognizable, and therefore not editable using a hex editor program, as shown
in the following figure.

Table 16 Downloading a File for No Extraction

Download Method/
Memory Type

Command Syntax Options

SCPI/volatile memory :MEM:DATA "WFM1:file_name",<blockdata>
:MEM:DATA "file_name@WFM1",<blockdata>
:MMEM:DATA "user/bbg1/waveform/file_name",<blockdata>

SCPI/non–volatile
memory

:MEM:DATA "NVWFM:file_name",<blockdata>
:MEM:DATA "file_name@NVWFM",<blockdata>
:MEM:DATA /user/waveform/file_name",<blockdata>

60 byte PRAM file prior to downloading

60 byte PRAM file after downloading

Signal Sources Creating and Downloading User-Data Files 47

Creating and Downloading User–Data Files
FIR Filter Coefficient Downloads (N5162A, N5182A, E4438C and E8267D)

FIR Filter Coefficient Downloads (N5162A, N5182A, E4438C and
E8267D)

NOTE If you encounter problems with this section, refer to “Data Transfer
Troubleshooting (N5162A, N5182A, E4438C and E8267D Only)” on page 71.

The signal generator accepts finite impulse response (FIR) filter coefficient
downloads. After downloading the coefficients, these user–defined FIR filter
coefficient values can be selected as the filtering mechanism for the active
digital communications standard.

Data Requirements

There are two requirements for user–defined FIR filter coefficient files:

1. Data must be in ASCII format.

The signal generator processes FIR filter coefficients as floating point
numbers.

2. Data must be in List format.

FIR filter coefficient data is processed as a list by the signal generator’s
firmware. See Sample Command Line.

Data Limitations

NOTE Modulation filters are real and have an oversample ratio (OSR) of two or
greater.

On the N5162A/N5182A with Options 651, 652, 654 only, equalization filters
are typically complex and must have an OSR of one (refer to “Using the
Equalization Filter (N5162A and N5182A with Options 651, 652, 654 Only)” on
page 51 and to the User’s Guide).

The MXG supports both Real and Complex filters. Complex filters can only be
used with equalization filters. Refer to Table 17 on page 48 and to Table 18 on
page 48. For more on equalization filters, refer to “Using the Equalization
Filter (N5162A and N5182A with Options 651, 652, 654 Only)” on page 51.

 48 Signal Sources Creating and Downloading User-Data Files

Creating and Downloading User–Data Files
FIR Filter Coefficient Downloads (N5162A, N5182A, E4438C and E8267D)

Filter lengths of up to 1024 taps are allowed. The oversample ratio (OSR) is the
number of filter taps per symbol. Oversample ratios from 1 through 32 are
possible.

The sampling period (Δt) is equal to the inverse of the sampling rate (FS). For
modulation filters, the sampling rate is equal to the symbol rate multiplied by
the oversample ratio. For example, the GSM symbol rate is 270.83 ksps. With
an oversample ratio of 4, the sampling rate is 1083.32 kHz and Δt (inverse of
FS) is 923.088 nsec.

Downloading FIR Filter Coefficient Data

The signal generator stores the FIR files in the FIR (/USER/FIR) directory, which
utilizes non–volatile memory (see also “Signal Generator Memory” on page 3).
Use the following SCPI command line to download FIR filter coefficients (file)
from the PC to the signal generator’s FIR directory:

:MEMory:DATA:FIR <"file_name">,[REAL,]osr,coefficient

:MEMory:DATA:FIR
<"file_name">,COMPlex,osr,realCoefficient,imaginaryCoeffic
ient,...

Table17

Type of Fil ter Description

Real The I and Q samples are independently filtered by a single set of real coefficients.

Complex The samples are treated as complex (I + jQ) and convolved with the filter coefficients which are
specified as (I + jQ) in the time domain.

Table 18

Fil ter Type Oversampling Ratio
(OSR)

Number of Taps
(Maximum)

Symbols/Coefficients
(Maximum)

Equalization1

1. When I/Q timing skew, I/Q delay, or the ACP internal I/Q channel
optimization features are active, the effective number of taps for the
equalization filter are reduced.

1 256 --

ARB Custom
Modulation2

2. The filter may be sampled to a higher or lower OSR.

≥ 2 -- 512/1024

Dual ARB
Real-Time
Modulation3

3. The filter will be decimated to a 16 or lower OSR depending on the
symbol rate.

≥ 2 -- 32/1024

Signal Sources Creating and Downloading User-Data Files 49

Creating and Downloading User–Data Files
FIR Filter Coefficient Downloads (N5162A, N5182A, E4438C and E8267D)

Use the following SCPI command line to query list data from the FIR file:

:MEMory:DATA:FIR? <"file_name">

Sample Command Line

The following SCPI command will download a typical set of real modulation FIR
filter coefficient values and name the file “FIR1”:

:MEMory:DATA:FIR
"FIR1",4,0,0,0,0,0,0.000001,0.000012,0.000132,0.001101,
0.006743,0.030588,0.103676,0.265790,0.523849,0.809508,1,1,0.
809508,0.523849,
0.265790,0.103676,0.030588,0.006743,0.001101,0.000132,0.0000
12,0.000001,0,
0,0,0,0

FIR1 assigns the name FIR1 to the associated OSR (over
sample ratio) and coefficient values (the file is then
represented with this name in the FIR File catalog)

4 specifies the oversample ratio

0,0,0,0,0,
0.000001,... the FIR filter coefficients

Selecting a Downloaded User FIR Filter as the Active Filter

NOTE For information on manual key presses for the following remote procedures,
refer to the User’s Guide.

FIR Filter Data for TDMA Format

The following remote command selects user FIR filter data as the active filter
for a TDMA modulation format.

:RADio:<desired format>:FILTer <"file_name">

This command selects the user FIR filter, specified by the file name, as the
active filter for the TDMA modulation format. After selecting the file, activate
the TDMA format with the following command:

:RADio:<desired format>:STATe On

FIR Filter Data for Custom Modulation

The following remote command selects user FIR filter data as the active filter
for a custom modulation format.

:RADio:CUSTom:FILTer <"file_name">

 50 Signal Sources Creating and Downloading User-Data Files

Creating and Downloading User–Data Files
FIR Filter Coefficient Downloads (N5162A, N5182A, E4438C and E8267D)

This command selects the user FIR filter, specified by the file name, as the
active filter for the custom modulation format. After selecting the file, activate
the TDMA format with the following command:

:RADio:CUSTom:STATe On

FIR Filter Data for CDMA and W–CDMA Modulation

The following remote command selects user FIR filter data as the active filter
for a CDMA modulation format. The process is very similar for W–CDMA.

:RADio:<desired format>:ARB:FILTer <"file_name">

This command selects the User FIR filter, specified by the file name, as the
active filter for the CDMA or W–CDMA modulation format. After selecting the
file, activate the CDMA or W–CDMA format with the following command:

:RADio:<desired format>:ARB:STATe On

Modulating and Activating the Carrier

The following commands set the carrier frequency and power, and turns on the
modulation and the RF output.

1. Set the carrier frequency to 2.5 GHz:

:FREQuency:FIXed 2.5GHZ

2. Set the carrier power to –10.0 dBm:

:POWer:LEVel -10.0DBM

3. Activate the modulation:

:OUTPut:MODulation:STATe ON

4. Activate the RF output:

:OUTPut:STATe ON

Signal Sources Creating and Downloading User-Data Files 51

Creating and Downloading User–Data Files
Using the Equalization Filter (N5162A and N5182A with Options 651, 652, 654 Only)

Using the Equalization Filter (N5162A and N5182A with Options
651, 652, 654 Only)

An equalization FIR file can be created externally, uploaded via SCPI, and
subsequently selected from the file system (refer to the User’s Guide). For
information related to downloading FIR file coefficients, refer to the “FIR Filter
Coefficient Downloads (N5162A, N5182A, E4438C and E8267D)” on page 47.
For information regarding working with FIR file coefficients manually, refer to
the User’s Guide. For more information on equalization filters, refer to the
User’s Guide.

This filter can be used to correct and/or impair the RF and External I/Q outputs
for the internal I/Q source. This filter will be convolved with the ACP Internal
I/Q Channel Optimization filter if that filter is selected, the result of which will
be truncated to the center 256 taps. The equalization filter operates at
125MHz, so all equalization filters must be resampled to 125MHz prior to
selection, if they are sampled at some other rate.

The MXG supports equalization filters—either Complex or Real—that are
programmable FIR filters with two inputs (I, Q) and two outputs (I, Q) per
sample. This 256-tap filter has two modes of operation:

NOTE The maximum number of taps is 256 (with 2 coefficients per tap for a complex
filter) for equalization filters. The minimum number of taps is 2.

Equalization filters can also be referred to as predistortion filters or
correction filters.

The equalization filter can be turned on and off.

Type of Fil ter Description

Real The I and Q samples are independently filtered by a single set of real coefficients.

Complex The samples are treated as complex (I + jQ) and convolved with the filter coefficients which are
specified as (I + jQ) in the time domain.

 52 Signal Sources Creating and Downloading User-Data Files

Creating and Downloading User–Data Files
Save and Recall Instrument State Files

Save and Recall Instrument State Files

NOTE References to waveform files and some of the other data file types mentioned
in the following sections are not available for all models and options of signal
generator. Refer to the instrument’s Data Sheet for the signal generator and
options being used.

The signal generator can save instrument state settings to memory. An
instrument state setting includes any instrument state that does not survive a
signal generator preset or power cycle such as frequency, amplitude,
attenuation, and other user–defined parameters. The instrument state settings
are saved in memory and organized into sequences and registers. There are 10
sequences with 100 registers per sequence available for instrument state
settings. These instrument state files are stored in the USER/STATE directory.
See also, “Signal Generator Memory” on page 3.

The save function does not store data such as Arb waveforms, table entries, list
sweep data, and so forth. The save function saves a reference to the waveform
or data file name associated with the instrument state. Use the store
commands or store softkey functions to store these data file types to the signal
generator’s memory catalog.

Before saving an instrument state that has a data file or waveform file
associated with it, store the file. For example, if you are editing a multitone arb
format, store the multitone data to a file in the signal generator’s memory
catalog (multitone files are stored in the USER/MTONE directory). Then save
the instrument state associated with that data file. The settings for the signal
generator such as frequency and amplitude and a reference to the multitone
file name will be saved in the selected sequence and register number. Refer to
the signal generator’s User’s Guide, Key and Data Field Reference, or the
signal generator’s Help hardkey for more information on the save and recall
functions.

Save and Recall SCPI Commands

The following command sequence saves the current instrument state, using
the *SAV command, in register 01, sequence 1. A comment is then added to
the instrument state.

*SAV 01,1
:MEM:STAT:COMM 01,1,"Instrument state comment"

If there is a waveform or data file associated with the instrument state, there
will be a file name reference saved along with the instrument state. However,
the waveform/data file must be stored in the signal generator’s memory
catalog as the *SAV command does not save data files. For more information
on storing file data such as modulation formats, arb setups, and table entries
refer to the signal generator’s User’s Guide.

Signal Sources Creating and Downloading User-Data Files 53

Creating and Downloading User–Data Files
Save and Recall Instrument State Files

NOTE On the N5162A, N5182A, E4438C, and E8267D, if a saved instrument state
contains a reference to a waveform file, ensure that the waveform file resides
in volatile memory before recalling the instrument state. For more
information, see the User’s Guide.

The recall function recalls a saved instrument state. If there is a data file
associated with the instrument state, the file will be loaded along with the
instrument state. The following command recalls the instrument state saved in
register 01, sequence 1.

*RCL 01,1

Save and Recall Programming Example Using VISA and C#

The following programming example uses VISA and C# to save and recall
signal generator instrument states. Instruments states are saved to and
recalled from your computer. This console program prompts the user for an
action: Backup State Files, Restore State Files, or Quit.

The Backup State Files choice reads the signal generator’s state files and
stores it on your computer in the same directory where the State_Files.exe
program is located. The Restore State Files selection downloads instrument
state files, stored on your computer, to the signal generator’s State directory.
The Quit selection exists the program. The figure below shows the console
interface and the results obtained after selecting the Restore State Files
operation.

The program uses VISA library functions. Refer to the Agilent VISA User’s
Manual available on Agilent’s website: http:\\www.agilent.com for more
information on VISA functions.

The program listing for the State_Files.cs program is shown below. It is
available on the CD–ROM in the programming examples section under the
same name.

 54 Signal Sources Creating and Downloading User-Data Files

Creating and Downloading User–Data Files
Save and Recall Instrument State Files

C# and Microsoft .NET Framework

The Microsoft .NET Framework is a platform for creating Web Services and
applications. There are three components of the .NET Framework: the common
language runtime, class libraries, and Active Server Pages, called ASP.NET.
Refer to the Microsoft website for more information on the .NET Framework.

The .NET Framework must be installed on your computer before you can run
the State_Files program. The framework can be downloaded from the Microsoft
website and then installed on your computer.

Perform the following steps to run the State_Files program.

1. Copy the State_Files.cs file from the CD–ROM programming examples
section to the directory where the .NET Framework is installed.

2. Change the TCPIP0 address in the program from TCPIP0::000.000.000.000
to your signal generator’s address.

3. Save the file using the .cs file name extension.

4. Run the Command Prompt program. Start > Run > "cmd.exe". Change the
directory for the command prompt to the location where the .NET
Framework was installed.

5. Type csc.exe State_Files.cs at the command prompt and then press the
Enter key on the keyboard to run the program. The following figure shows
the command prompt interface.

The State_Files.cs program is listed below. You can copy this program from the
examples directory on the signal generator’s Documentation CD–ROM.

NOTE The State_Files.cs example uses the ESG in the programming code but can
be used with the PSG or Agilent MXG.

//***

Signal Sources Creating and Downloading User-Data Files 55

Creating and Downloading User–Data Files
Save and Recall Instrument State Files

// FileName: State_Files.cs

//

// This C# example code saves and recalls signal generator
instrument states. The saved

// instrument state files are written to the local computer
directory computer where the

// State_Files.exe is located. This is a console application that
uses DLL importing to

// allow for calls to the unmanaged Agilent IO Library VISA DLL.

//

// The Agilent VISA library must be installed on your computer for
this example to run.

// Important: Replace the visaOpenString with the IP address for
your signal generator.

//

//***

using System;

using System.IO;

using System.Text;

using System.Runtime.InteropServices;

using System.Collections;

using System.Text.RegularExpressions;

namespace State_Files

{

 class MainApp

 {

 // Replace the visaOpenString variable with your instrument's
address.

 static public string visaOpenString =
"TCPIP0::000.000.000.000"; //"GPIB0::19";

 //"TCPIP0::ESG3::INSTR";

 56 Signal Sources Creating and Downloading User-Data Files

Creating and Downloading User–Data Files
Save and Recall Instrument State Files

public const uint DEFAULT_TIMEOUT = 30 * 1000;// Instrument
timeout 30 seconds.

 public const int MAX_READ_DEVICE_STRING = 1024; // Buffer
for string data reads.

 public const int TRANSFER_BLOCK_SIZE = 4096;// Buffer for
byte data.

 // The main entry point for the application.

 [STAThread]

static void Main(string[] args)

 {

 uint defaultRM;// Open the default VISA resource manager

 if (VisaInterop.OpenDefaultRM(out defaultRM) == 0) // If no
errors, proceed.

 {

 uint device;

 // Open the specified VISA device: the signal generator

 if (VisaInterop.Open(defaultRM,
visaOpenString,VisaAccessMode.NoLock,

 DEFAULT_TIMEOUT, out device) == 0)

 // if no errors proceed.

 {

 bool quit = false;

 while (!quit)// Get user input
 {

 Console.Write("1) Backup state files\n" +

 "2) Restore state files\n" +

 "3) Quit\nEnter 1,2,or 3. Your choice: ");

 string choice = Console.ReadLine();
 switch (choice)

 {

 case "1":
 {
 BackupInstrumentState(device); // Write instrument

Signal Sources Creating and Downloading User-Data Files 57

Creating and Downloading User–Data Files
Save and Recall Instrument State Files

state
 break; // files to the computer
 }

 case "2":

 {

 RestoreInstrumentState(device); // Read instrument
state

 break;// files to the sig gen

 }

 case "3":

 {

 quit = true;

 break;

 }

 default:

 {

 break;

 }

 }

 }

 VisaInterop.Close(device);// Close the device

 }

 else

 {

 Console.WriteLine("Unable to open " + visaOpenString);

 }

 VisaInterop.Close(defaultRM); // Close the default
resource manager

 }

 else

 {

 Console.WriteLine("Unable to open the VISA resource
manager");

 }

 }

 58 Signal Sources Creating and Downloading User-Data Files

Creating and Downloading User–Data Files
Save and Recall Instrument State Files

 /* This method restores all the sequence/register state files
located in

 the local directory (identified by a ".STA" file name
extension)

 to the signal generator.*/

static public void RestoreInstrumentState(uint device)

 {

 DirectoryInfo di = new DirectoryInfo(".");// Instantiate object
class

 FileInfo[] rgFiles = di.GetFiles("*.STA"); // Get the state
files

 foreach(FileInfo fi in rgFiles)

 {

 Match m = Regex.Match(fi.Name, @"^(\d)_(\d\d)");

 if (m.Success)

 {

 string sequence = m.Groups[1].ToString();

 string register = m.Groups[2].ToString();

 Console.WriteLine("Restoring sequence #" + sequence +

 ", register #" + register);

/* Save the target instrument's current state to the specified
sequence/

register pair. This ensures the index file has an entry for the
specified

sequence/register pair. This workaround will not be necessary in
future

revisions of firmware.*/

 WriteDevice(device,"*SAV " + register + ", " + sequence +
"\n",

 true); // << on SAME line!

 // Overwrite the newly created state file with the state

 // file that is being restored.

 WriteDevice(device, "MEM:DATA \"/USER/STATE/" + m.ToString()
+ "\",",

Signal Sources Creating and Downloading User-Data Files 59

Creating and Downloading User–Data Files
Save and Recall Instrument State Files

 false); // << on SAME line!

 WriteFileBlock(device, fi.Name);

 WriteDevice(device, "\n", true);

 }

 }

 }

/* This method reads out all the sequence/register state files from
the signal

generator and stores them in your computer's local directory with a
".STA"

extension */

static public void BackupInstrumentState(uint device)

 {

 // Get the memory catalog for the state directory

 WriteDevice(device, "MEM:CAT:STAT?\n", false);

 string catalog = ReadDevice(device);

 /* Match the catalog listing for state files which are named

 (sequence#)_(register#) e.g. 0_01, 1_01, 2_05*/

 Match m = Regex.Match(catalog, "\"(\\d_\\d\\d),");

 while (m.Success)

 {

 // Grab the matched filename from the regular expresssion

 string nextFile = m.Groups[1].ToString();

 // Retrieve the file and store with a .STA extension

 // in the current directory

 Console.WriteLine("Retrieving state file: " + nextFile);

 WriteDevice(device, "MEM:DATA? \"/USER/STATE/" + nextFile +
"\"\n", true);

 ReadFileBlock(device, nextFile + ".STA");

 // Clear newline

 ReadDevice(device);

 // Advance to next match in catalog string

 m = m.NextMatch();

 60 Signal Sources Creating and Downloading User-Data Files

Creating and Downloading User–Data Files
Save and Recall Instrument State Files

 }

 }

/* This method writes an ASCII text string (SCPI command) to the
signal generator.

If the bool "sendEnd" is true, the END line character will be sent
at the

conclusion of the write. If "sendEnd is false the END line will
not be sent.*/

static public void WriteDevice(uint device, string scpiCmd, bool
sendEnd)

 {

 byte[] buf = Encoding.ASCII.GetBytes(scpiCmd);

 if (!sendEnd) // Do not send the END line character

 {

 VisaInterop.SetAttribute(device, VisaAttribute.SendEndEnable,
0);

 }

 uint retCount;

 VisaInterop.Write(device, buf, (uint)buf.Length, out retCount);

 if (!sendEnd) // Set the bool sendEnd true.

 {

 VisaInterop.SetAttribute(device, VisaAttribute.SendEndEnable,
1);

 }

 }

// This method reads an ASCII string from the specified device

static public string ReadDevice(uint device)

 {

 string retValue = "";

 byte[] buf = new byte[MAX_READ_DEVICE_STRING]; // 1024 bytes
maximum read

 uint retCount;

 if (VisaInterop.Read(device, buf, (uint)buf.Length -1, out
retCount) == 0)

Signal Sources Creating and Downloading User-Data Files 61

Creating and Downloading User–Data Files
Save and Recall Instrument State Files

 {

 retValue = Encoding.ASCII.GetString(buf, 0, (int)retCount);

 }

 return retValue;

 }

/* The following method reads a SCPI definite block from the signal
generator

and writes the contents to a file on your computer. The trailing

newline character is NOT consumed by the read.*/

static public void ReadFileBlock(uint device, string fileName)

 {

 // Create the new, empty data file.

 FileStream fs = new FileStream(fileName, FileMode.Create);

 // Read the definite block header:
#{lengthDataLength}{dataLength}

 uint retCount = 0;

 byte[] buf = new byte[10];

 VisaInterop.Read(device, buf, 2, out retCount);

 VisaInterop.Read(device, buf, (uint)(buf[1]-'0'), out retCount);

 uint fileSize = UInt32.Parse(Encoding.ASCII.GetString(buf, 0,
(int)retCount));

 // Read the file block from the signal generator

 byte[] readBuf = new byte[TRANSFER_BLOCK_SIZE];

 uint bytesRemaining = fileSize;

 while (bytesRemaining != 0)

 {

 uint bytesToRead = (bytesRemaining < TRANSFER_BLOCK_SIZE) ?

 bytesRemaining : TRANSFER_BLOCK_SIZE;

 VisaInterop.Read(device, readBuf, bytesToRead, out retCount);

 fs.Write(readBuf, 0, (int)retCount);

 bytesRemaining -= retCount;

 }

 62 Signal Sources Creating and Downloading User-Data Files

Creating and Downloading User–Data Files
Save and Recall Instrument State Files

 // Done with file

 fs.Close();

 }

/* The following method writes the contents of the specified file to
the

specified file in the form of a SCPI definite block. A newline is

NOT appended to the block and END is not sent at the conclusion of
the

write.*/

static public void WriteFileBlock(uint device, string fileName)

 {

 // Make sure that the file exists, otherwise sends a null block

 if (File.Exists(fileName))

 {

 FileStream fs = new FileStream(fileName, FileMode.Open);

 // Send the definite block header:
#{lengthDataLength}{dataLength}

 string fileSize = fs.Length.ToString();

 string fileSizeLength = fileSize.Length.ToString();

 WriteDevice(device, "#" + fileSizeLength + fileSize, false);

 // Don't set END at the end of writes

 VisaInterop.SetAttribute(device, VisaAttribute.SendEndEnable,
0);

 // Write the file block to the signal generator

 byte[] readBuf = new byte[TRANSFER_BLOCK_SIZE];

 int numRead = 0;

 uint retCount = 0;

 while ((numRead = fs.Read(readBuf, 0, TRANSFER_BLOCK_SIZE)) !=
0)

 {

 VisaInterop.Write(device, readBuf, (uint)numRead, out
retCount);

 }

 // Go ahead and set END on writes

Signal Sources Creating and Downloading User-Data Files 63

Creating and Downloading User–Data Files
Save and Recall Instrument State Files

 VisaInterop.SetAttribute(device, VisaAttribute.SendEndEnable,
1);

 // Done with file

 fs.Close();

 }

 else

 {

 // Send an empty definite block

 WriteDevice(device, "#10", false);

 }

 }

 }

// Declaration of VISA device access constants

public enum VisaAccessMode

 {

 NoLock = 0,

 ExclusiveLock = 1,

 SharedLock = 2,

 LoadConfig = 4

 }

// Declaration of VISA attribute constants

public enum VisaAttribute

 {

 SendEndEnable = 0x3FFF0016,

 TimeoutValue = 0x3FFF001A

 }

// This class provides a way to call the unmanaged Agilent IO
Library VISA C

// functions from the C# application

public class VisaInterop

 64 Signal Sources Creating and Downloading User-Data Files

Creating and Downloading User–Data Files
Save and Recall Instrument State Files

 {

 [DllImport("agvisa32.dll", EntryPoint="viClear")]

 public static extern int Clear(uint session);

 [DllImport("agvisa32.dll", EntryPoint="viClose")]

 public static extern int Close(uint session);

 [DllImport("agvisa32.dll", EntryPoint="viFindNext")]

 public static extern int FindNext(uint findList, byte[]
desc);

 [DllImport("agvisa32.dll", EntryPoint="viFindRsrc")]

 public static extern int FindRsrc(

 uint session,

 string expr,

 out uint findList,

 out uint retCnt,

 byte[] desc);

 [DllImport("agvisa32.dll", EntryPoint="viGetAttribute")]

public static extern int GetAttribute(uint vi, VisaAttribute
attribute, out uint attrState);

 [DllImport("agvisa32.dll", EntryPoint="viOpen")]

 public static extern int Open(

 uint session,

 string rsrcName,

 VisaAccessMode accessMode,

 uint timeout,

 out uint vi);

 [DllImport("agvisa32.dll", EntryPoint="viOpenDefaultRM")]

 public static extern int OpenDefaultRM(out uint session);

Signal Sources Creating and Downloading User-Data Files 65

Creating and Downloading User–Data Files
Save and Recall Instrument State Files

 [DllImport("agvisa32.dll", EntryPoint="viRead")]

 public static extern int Read(

 uint session,

 byte[] buf,

 uint count,

 out uint retCount);

 [DllImport("agvisa32.dll", EntryPoint="viSetAttribute")]

public static extern int SetAttribute(uint vi, VisaAttribute
attribute, uint attrState);

 [DllImport("agvisa32.dll", EntryPoint="viStatusDesc")]

 public static extern int StatusDesc(uint vi, int status,
byte[] desc);

 [DllImport("agvisa32.dll", EntryPoint="viWrite")]

 public static extern int Write(

 uint session,

 byte[] buf,

 uint count,

 out uint retCount);

 }

}

 66 Signal Sources Creating and Downloading User-Data Files

Creating and Downloading User–Data Files
User Flatness Correction Downloads Using C++ and VISA

User Flatness Correction Downloads Using C++ and VISA
This sample program uses C++ and the VISA libraries to download
user–flatness correction values to the signal generator. The program uses the
LAN interface but can be adapted to use the GPIB interface by changing the
address string in the program.

You must include header files and resource files for library functions needed to
run this program. Refer to the programming examples in the Programming
Guide for more information.

The FlatCal program asks the user to enter a number of frequency and
amplitude pairs. Frequency and amplitude values are entered through the
keyboard and displayed on the console interface. The values are then
downloaded to the signal generator and stored to a file named flatCal_data.
The file is then loaded into the signal generator’s memory catalog and
corrections are turned on. The figure below shows the console interface and
several frequency and amplitude values. Use the same format, shown in the
figure below, for entering frequency and amplitude pairs (for example, 12ghz,
1.2db).

Figure 2 FlatCal Console Application

The program uses VISA library functions. The non–formatted viWrite VISA
function is used to output data to the signal generator. Refer to the Agilent
VISA User’s Manual available on Agilent’s website: http:\\www.agilent.com
for more information on VISA functions.

The program listing for the FlatCal program is shown below. It is available on
the Documentation CD–ROM in the programming examples section as
flatcal.cpp.

Signal Sources Creating and Downloading User-Data Files 67

Creating and Downloading User–Data Files
User Flatness Correction Downloads Using C++ and VISA

//***

// PROGRAM NAME:FlatCal.cpp

//

// PROGRAM DESCRIPTION:C++ Console application to input frequency
and amplitude

// pairs and then download them to the signal generator.

//

// NOTE: You must have the Agilent IO Libraries installed to run
this program.

//

// This example uses the LAN/TCPIP interface to download frequency
and amplitude

// correction pairs to the signal generator. The program asks the
operator to enter

// the number of pairs and allocates a pointer array listPairs[]
sized to the number

// of pairs.The array is filled with frequency nextFreq[] and
amplitude nextPower[]

// values entered from the keyboard.

//

//***

// IMPORTANT: Replace the 000.000.000.000 IP address in the
instOpenString declaration

// in the code below with the IP address of your signal generator.

//***

#include <stdlib.h>

#include <stdio.h>

#include "visa.h"

#include <string.h>

// IMPORTANT:

// Configure the following IP address correctly before compiling
and running

char* instOpenString ="TCPIP0::000.000.000.000::INSTR";//your PSG's
IP address

 68 Signal Sources Creating and Downloading User-Data Files

Creating and Downloading User–Data Files
User Flatness Correction Downloads Using C++ and VISA

const int MAX_STRING_LENGTH=20;//length of frequency and power
strings

const int BUFFER_SIZE=256;//length of SCPI command string

int main(int argc, char* argv[])

{

 ViSession defaultRM, vi;

 ViStatus status = 0;

 status = viOpenDefaultRM(&defaultRM);//open the default
resource manager

 //TO DO: Error handling here

 status = viOpen(defaultRM, instOpenString, VI_NULL, VI_NULL,
&vi);

 if (status)//if any errors then display the error and exit the
program

 {

 fprintf(stderr, "viOpen failed (%s)\n", instOpenString);

 return -1;

 }

 printf("Example Program to Download User Flatness
Corrections\n\n");

 printf("Enter number of frequency and amplitude pairs: ");

 int num = 0;

 scanf("%d", &num);

 if (num > 0)

 {

 int lenArray=num*2;//length of the pairsList[] array. This
array

Signal Sources Creating and Downloading User-Data Files 69

Creating and Downloading User–Data Files
User Flatness Correction Downloads Using C++ and VISA

 //will hold the frequency and amplitude arrays

 char** pairsList = new char* [lenArray]; //pointer array

 for (int n=0; n < lenArray; n++)//initialize the pairsList
array

 //pairsList[n]=0;

 for (int i=0; i < num; i++)

 {

 char* nextFreq = new char[MAX_STRING_LENGTH+1];
//frequency array

 char* nextPower = new
char[MAX_STRING_LENGTH+1];//amplitude array

 //enter frequency and amplitude pairs i.e 10ghz .1db

 printf("Enter Freq %d: ", i+1);

 scanf("%s", nextFreq);

 printf("Enter Power %d: ",i+1);

 scanf("%s", nextPower);

 pairsList[2*i] = nextFreq;//frequency

 pairsList[2*i+1]=nextPower;//power correction

 }

 unsigned char str[256];//buffer used to hold SCPI command

 //initialize the signal generator's user flatness table

 sprintf((char*)str,":corr:flat:pres\n"); //write to buffer

 viWrite(vi, str,strlen((char*str),0); //write to PSG

 char c = ',';//comma separator for SCPI command

 for (int j=0; j< num; j++) //download pairs to the PSG

 {

 sprintf((char*)str,":corr:flat:pair %s %c
%s\n",pairsList[2*j], c, pairsList[2*j+1]); // << on
SAME line!

 viWrite(vi, str,strlen((char*)str),0);

 }

 70 Signal Sources Creating and Downloading User-Data Files

Creating and Downloading User–Data Files
User Flatness Correction Downloads Using C++ and VISA

 //store the downloaded correction pairs to PSG memory

 const char* fileName = "flatCal_data";//user flatness file
name

 //write the SCPI command to the buffer str

 sprintf((char*)str, ":corr:flat:store \"%s\"\n", fileName);
//write to buffer

 viWrite(vi,str,strlen((char*)str),0);//write the command to
the PSG

 printf("\nFlatness Data saved to file : %s\n\n", fileName);

 //load corrections

 sprintf((char*)str,":corr:flat:load \"%s\"\n", fileName);
//write to buffer

 viWrite(vi,str,strlen((char*)str),0); //write command to the
PSG

 //turn on corrections

 sprintf((char*)str, ":corr on\n");

 viWrite(vi,str,strlen((char*)str),0");

 printf("\nFlatness Corrections Enabled\n\n");

 for (int k=0; k< lenArray; k++)

 {

 delete [] pairsList[k];//free up memory

 }

 delete [] pairsList;//free up memory

 }

 viClose(vi);//close the sessions

 viClose(defaultRM);

 return 0;

}

Signal Sources Creating and Downloading User-Data Files 71

Creating and Downloading User–Data Files
Data Transfer Troubleshooting (N5162A, N5182A, E4438C and E8267D Only)

Data Transfer Troubleshooting (N5162A, N5182A, E4438C and
E8267D Only)

NOTE The section, User FIR Filter Coefficient File Download Problems, applies to
the N5162A and N5182A with Option 651, 652, or 654; the E4438C with
Option 001, 002, 601, or 602; and the E8267D with Option 601 or 602.

The remaining sections, User File Download Problems and PRAM Download
Problems, apply only to the E4438C with Option 001, 002, 601, or 602; and
the E8267D with Option 601 or 602.

This section is divided by the following data transfer methods:

“User File Download Problems” on page 71

“PRAM Download Problems” on page 73

“User FIR Filter Coefficient File Download Problems” on page 74

Each section contains the following troubleshooting information:

— a list of symptoms and possible causes of typical problems encountered
while downloading data to the signal generator

— reminders regarding special considerations and file requirements

— tips on creating data, transferring data, data application and memory usage

User File Download Problems

Data Requirements

— The user file selected must entirely fill the data field of each timeslot.

— The user file must be a multiple of 8 bits, so that it can be represented in
ASCII characters.

— Available volatile memory must be large enough to support both the data
field bits and the framing bits.

Table 19 Use–File Download Trouble – Symptoms and Causes

Symptom Possible Cause

At the RF output,
some data modulated,
some data missing

Data does not completely fill an integer number of timeslots.

If a user file fills the data fields of more than one timeslot in a continuously repeating framed
transmission, the user file will be restarted after the last timeslot containing completely filled data
fields. For example, if the user file contains enough data to fill the data fields of 3.5 timeslots,
firmware will load 3 timeslots with data and restart the user file after the third timeslot. The last
0.5 timeslot worth of data will never be modulated.

 72 Signal Sources Creating and Downloading User-Data Files

Creating and Downloading User–Data Files
Data Transfer Troubleshooting (N5162A, N5182A, E4438C and E8267D Only)

Requirement for Continuous User File Data Transmission

“Integer Number of Timeslots” Requirement for Multiple–Timeslots

If a user file fills the data fields of more than one timeslot in a continuously
repeating framed transmission, the user file is restarted after the last timeslot
containing completely filled data fields. For example, if the user file contains
enough data to fill the data fields of 3.5 timeslots, the firmware loads 3
timeslots with data and restart the user file after the third timeslot. The last 0.5
timeslot worth of data is never modulated.

To solve this problem, add or subtract bits from the user file until it completely
fills an integer number of timeslots

“Multiple–of–8–Bits” Requirement

For downloads to bit and binary memory, user file data must be downloaded in
multiples of 8 bits (bytes), since SCPI specifies data in bytes. Therefore, if the
original data pattern’s length is not a multiple of 8, you need to:

— add bits to complete the ASCII character

— replicate the data pattern to generate a continuously repeating pattern with
no discontinuity

— truncate the excess bits

NOTE The “multiple–of–8–bits” data length requirement is in addition to the
requirement of completely filling the data field of an integer number of
timeslots.

Using Externally Generated, Real–Time Data for Large Files

When the data fields must be continuous data streams, and the size of the data
exceeds the available PRAM, real–time data and synchronization can be
supplied by an external data source to the front panel DATA, DATA CLOCK, and
SYMBOL SYNC connectors. This data can be continuously transmitted, or can
be framed by supplying a data–synchronous burst pulse to the EXT1 INPUT
connector on the front panel. Additionally, the external data can be
multiplexed into internally generated framing

Signal Sources Creating and Downloading User-Data Files 73

Creating and Downloading User–Data Files
Data Transfer Troubleshooting (N5162A, N5182A, E4438C and E8267D Only)

PRAM Download Problems

Data Requirements

— The signal generator requires a file with a minimum of 60 bytes

— For every data bit (bit 0), you must provide 7 bits of control information (bits
1–7).

Table 20 PRAM Download – Symptoms and Causes

Symptom Possible Cause

The transmitted pattern is interspersed
with random, unwanted data.

Pattern reset bit not set.

Insure that the pattern reset bit (bit 7, value 128) is set on the last byte of your
downloaded data.

ERROR –223, Too much data

PRAM download exceeds the size of PRAM memory.

Either use a smaller pattern or get more memory by ordering the appropriate
hardware option.

Table 21 PRAM Data Byte

Bit Function Value Comments

0 Data 0/1 This is the data (payload) bit. It is “unspecified” when burst (bit 2) is set to 0.

1 Reserved 0 Always 0

2 Burst 0/1 1 = RF on
0 = RF off
For non–bursted, non–TDMA systems, to have a continuous signal, set this bit to 1 for all
bytes. For framed data, set this bit to 1 for on timeslots and 0 for off timeslots.

3 Reserved 0 Always 0

4 Reserved 1 Always 1

5 Reserved 0 Always 0

6 EVENT1
Output

0/1 To have the signal generator output a single pulse at the EVENT 1 connector, set this bit to
1. Use this output for functions such as a triggering external hardware to indicate when the
data pattern begins and restarts, or creating a data–synchronous pulse train by toggling
this bit in alternate bytes.

7 Pattern Reset 0/1 0 = continue to next sequential memory address.
1 = end of memory and restart memory playback.
This bit is set to 0 for all bytes except the last byte of PRAM. To restart the pattern, set the
last byte of PRAM to 1.

 74 Signal Sources Creating and Downloading User-Data Files

Creating and Downloading User–Data Files
Data Transfer Troubleshooting (N5162A, N5182A, E4438C and E8267D Only)

User FIR Filter Coefficient File Download Problems

Data Requirements

— Data must be in ASCII format.

— Downloads must be in list format.

— Filters containing more symbols than the hardware allows (32 for real-time
modulation filters, 512 for Arb Custom Modulation filters, and 256 for
Equalization filters) will not be selectable for the configuration.

Table 22 User FIR File Download Trouble – Symptoms and Causes

Symptom Possible Cause

ERROR –321, Out of memory

There is not enough memory available for the FIR coefficient file being
downloaded.

To solve the problem, either reduce the file size of the FIR file or delete
unnecessary files from memory.

ERROR –223, Too much data

User FIR filter has too many coefficients.

The filter specification cannot have more than 1024 taps (2048 coefficients
for a complex filter).

Index

 75

Index

Symbols
.NET framework 52

A
Agilent

e8663b
memory allocation, non-volatile memory 6
memory allocation, volatile memory 5
volatile memory types 3

esg
memory allocation, non-volatile memory 6
memory allocation, volatile memory 5
volatile memory types 3

mxg
memory allocation, non-volatile memory 5, 6
memory allocation, volatile memory 5
volatile memory types 3

psg
memory allocation, non-volatile memory 6
memory allocation, volatile memory 5
volatile memory types 3

B
binary

data
framed 14
unframed 13

file
downloads commands 24
modifying hex editor 26

bit
file

downloads and commands 23
modifying hex editor 26

order, user file 10

C
C#

VISA, example 53
carrier

activating, FIR filters 50
modulating, FIR filters 50

CDMA modulation
data, FIR filter 50

Checking Available Memory 7
command

format programming, user file data 21

format user file, downloading 20
window PC, using 28
window UNIX, using 28

commands
downloads, binary file 24
downloads, bit file 23

csc.exe 52
custom

modulation data, FIR filter 49
real-time, high data rates 32
user file data, memory usage 16

D
data

binary, framed 14
binary, unframed 13

data rates, high
custom, real-time 32

data requirements, FIR filter downloads 47
data types

binary 2
bit 2
defined 2
FIR filter states 2
PRAM 2
user flatness correction 2

directory, root 5
download

binary file data 13
bit file data 10
FIR filter coefficient data 47
user file data

FTP procedures 27
unencrypted files for extraction 45
unencrypted files for no extraction 46

user flatness 52
waveform data

user-data files, using 1
downloaded PRAM files

data sources 42
downloading

block data
SCPI command 39
SCPI command, programming syntax 41

downloads, PRAM data
e4438c 33
e8267d 33

 76

E
equalization

filter 51
filter, user 51

examples
save and recall 53

extract user file data 45–46
extracting

PRAM files 44

F
file size

determining
PRAM 37

minimum
PRAM 38

PRAM 37
file types

See data types
files

large, generating real-time data 72
PRAM, modifying 46

filter
equalization 51
user, equalization 51

FIR
filter data

CDMA modulation 50
custom modulation 49
TDMA format 49
W-CDMA modulation 50

filters
carrier, activating 50
carrier, modulating 50
data limitations 47

framed data, usage
volatile memory, PRAM 18

FTP
commands for downloading and extracting files

45
internet explorer, using 27
procedures for downloading files 27
web server procedure 27

H
hex editor

binary file, modifying 26
bit file, modifying 26

I
instrument

state files
overview 52
SCPI commands, recalling 52
SCPI commands, saving 52

internal
web server

FTP procedure 27

L
list format, downloading

SCPI command 39
location user-data file type

binary 8
LSB and MSB 10

M
media

external
non-volatile memory, Agilent mxg 3

internal
non-volatile memory, Agilent mxg 3

USB
non-volatile memory, Agilent mxg 3

memory
allocation 5
checking, available 7
defined 3
location user-data file type

available memory, checking 8
bit 8
FIR 8
flatness 8
instrument state 8
PRAM 8

locations 3
signal generator, maximum 7
size 6
volatile and non-volatile 3

memory usage
user file data

custom 16
TDMA 16

Microsoft .NET Framework
overview 54

MSB and LSB 10
multiple-of-8-bits requirement

user file data 72

Index

 77

multiple-timeslots
integer number of timeslots 72

N
non-volatile memory

available
SCPI query 8

external media, Agilent mxg 3
internal media, Agilent mxg 3
internal storage, Agilent mxg 3
memory allocation 6

Agilent mxg 5
USB media, Agilent mxg 3

P
PRAM

as data sources 42
bit positions 35
byte patterns 35
data extracting SCPI command, syntax 44
downloads, problems 73
e4438c, data downloads 33
e8267d, data downloads 33
file size 37

minimum 38
file size, determining 37
files

command syntax, for restoring 43
command syntax, for storing 43
extracting 44
modifying 46
non-volatile memory, storing 43
understanding 34
volatile memory, restoring 43

volatile memory
framed data, usage 18
unframed data, usage 17

waveform, viewing 36
problems

user
file downloads 71
FIR filter downloads 74

programming
user file data

command format 21
programming examples

C# 54

R
real-time

data files, generating large 72
TDMA

user files 28
recall states 52

S
save and recall 52
SCPI command, programming syntax

block data, downloading 41
SCPI command, syntax

PRAM files, extracting 44
SCPI commands

block data, downloading 39
extraction 45
instrument state files, recalling 52
instrument state files, saving 52
list format, downloading 39
unencrypted files 45, 46
user FIR file downloads

sample command line 49
signal generator

volatile memory types 3
state files 52
storage

internal
non-volatile memory, Agilent mxg 3

T
TDMA

data, FIR filter 49
user file data, memory usage 16

timeslots, integer number of
multiple-timeslots requirement 72

troubleshooting
PRAM downloads 73
user file downloads 71
user FIR filter downloads 74

U
unencrypted files

downloading for extraction 45
downloading for no extraction 46
extracting I/Q data 45

unframed data, usage
volatile memory, PRAM 17

user data
file, modifying 26

 78

This information is subject to change without notice.

© Keysight Technologies, 2006-2015

Published in USA, January 2015

E4400-90651

www.keysight.com

files, creating 1
files, downloading 1
memory 3
root directory 5

user file data, continuous transmission
requirements 72

user files
bit order 10
bit order, LSB and MSB 10
data

binary, downloads 9
bit, downloads 9
multiple-of-8-bits requirement 72

downloading
as the data source 42
carrier, activating 43
carrier, modulating 43
command format 20
modulating and activating the carrier 25
selecting the user file as the data source 25

framed transmissions, understanding 28
real-time TDMA 28
size 15

user FIR file downloads
non-volatile memory 48
selecting a downloaded user FIR file 49

user flatness 52
user-data file type

binary, memory location 8
bit, memory location 8
FIR, memory location 8
flatness, memory location 8
instrument state, memory location 8
memory location 8
PRAM, memory location 8

user-data files
See user data

V
volatile memory

memory allocation
Agilent e8663b 5
Agilent esg 5
Agilent psg 5

signal generator 3
types, signal generators 3

volatile memory available, SCPI query 8

W
waveform data

commands for downloading and extracting 20–28
waveform downloads

memory
allocation 5
size 6

waveforms
viewing, PRAM 36

W-CDMA modulation data, FIR filter
See FIR

web server
internal 27

	Title Page
	Notices
	Table of Contents
	Creating and Downloading User–Data Files
	Overview
	Signal Generator Memory
	Memory Allocation
	Memory Size
	Checking Available Memory

	User File Data (Bit/Binary) Downloads (E4438C and E8267D)
	User File Bit Order (LSB and MSB)
	Bit File Type Data
	Binary File Type Data
	User File Size
	Determining Memory Usage for Custom and TDMA User File Data
	Downloading User Files
	Command for Bit File Downloads
	Commands for Binary File Downloads
	Selecting a Downloaded User File as the Data Source
	Modulating and Activating the Carrier
	Modifying User File Data
	Understanding Framed Transmission For Real–Time TDMA
	Real–Time Custom High Data Rates

	Pattern RAM (PRAM) Data Downloads (E4438C and E8267D)
	Understanding PRAM Files
	PRAM File Size
	SCPI Command for a List Format Download
	SCPI Command for a Block Data Download
	Selecting a Downloaded PRAM File as the Data Source
	Modulating and Activating the Carrier
	Storing a PRAM File to Non–Volatile Memory and Restoring to Volatile Memory
	Extracting a PRAM File
	Modifying PRAM Files

	FIR Filter Coefficient Downloads (N5162A, N5182A, E4438C and E8267D)
	Data Requirements
	Data Limitations
	Downloading FIR Filter Coefficient Data
	Selecting a Downloaded User FIR Filter as the Active Filter

	Using the Equalization Filter (N5162A and N5182A with Options 651, 652, 654 Only)
	Save and Recall Instrument State Files
	Save and Recall SCPI Commands
	Save and Recall Programming Example Using VISA and C#

	User Flatness Correction Downloads Using C++ and VISA
	Data Transfer Troubleshooting (N5162A, N5182A, E4438C and E8267D Only)
	User File Download Problems
	PRAM Download Problems
	User FIR Filter Coefficient File Download Problems

	Index

