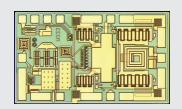

<mark>Keysight 1GG7-4147</mark> 100 kHz – 3 GHz Broadband Power Amplifier

Data Sheet

Features

- Frequency range: 100 kHz –3 GHz
- High gain: 19 dB
- Flat response: ± 1 dB 10 MHz-3 GHz
- High isolation: -50 dB
- Return loss: input: –17 dB output: –8 dB
- High power output: 26.5 dBm saturated
- Harmonics: -37 dBc @ P_{out} = 21 dBm
- Unconditionally stable



Description

The 1GG7-4147 is a monolithic, wideband amplifier designed and fabricated using TSO's DF7M GaAs MESFET process. It features low distortion and delivers (typically) 26.5 dBm saturated output power into 50Ω over at least a 100 kHz to 3.0 GHz frequency range. The 1GG7-4147 is fabricated using the Keysight Technologies, Inc. GaAs FET process.

Absolute maximum ratings¹

Symbol	Parameters/conditions	Min	Мах	Units
V _{D1}	Stage 1 drain supply		+8.5	Volts
V _{D2}	Driver drain supply		+5.1	Volts
V _{D3}	Output drain supply		+8.5	Volts
$V_{\rm SS}$	Source supply	-5.5	-3.5	Volts
P _{in}	CW input power		23	dBm
T _{case}	Operating case temperature ²	-55	90	°C
T _{stg}	Storage temperature	-65	165	°C
T _{max}	Maximum assembly temperature (for 60 seconds maximum)		300	С°
ESD1	Electrostatic discharge damage level (1.5 KW, 100 pF), Unbiased, applied to any IC bond pad		±400	Volts
ESD2	Electrostatic discharge damage level (1.5 KW, 100 pF), biased, output pad thru DC blocking cap		±1000	Volts

- Chip size: 1530 × 910 μm (60.2 × 35.8 mils)
- Chip size tolerance: ± 10 μm (± 0.4 mils)
- Chip thickness: 127 \pm 15 μm (5.0 \pm 0.6 mils)
- Pad dimensions: 75 × 75 μm (2.95 × 2.95 mils), or larger

Operation in excess of any one of these conditions may result in permanent damage to this device. Parameter specified at T_A = 25 °C, except for T_{case}, T_{stq}, and T_{max}.

2. Max continuous operating temp to achieve 1×10^6 MTTF, while operating with $V_{D1} = V_{D3} + 8$ V, $V_{D2} = +5$, $V_{ss} = -5$ V. Derate MTTF by a factor of 2 for every 8 °C above this temperature.

DC specifications/physical properties¹

$(T_{chuck} = 25 \text{ °C})^2$						
Symbol	Parameters/conditions	Min	Тур	Max	Units	
I _{D1}	First stage drain ($V_{D1} = V_{D3} = +8$ V, $V_{D2} = +4.7$ V, $V_{SS} = -5$ V)	15	26	32	mA	
I _{D2}	Second stage drain current ($V_{D1} = V_{D3} = +8$ V, $V_{D2} = +4.7$ V, $V_{SS} = -5$ V)	90	125	165	mA	
I _{D3}	Third stage drain current ($V_{D1} = V_{D3} = +8$ V, $V_{D2} = +4.7$ V, $V_{SS} = -5$ V)	210	290	320	mA	
I _{ss}	Source supply current ($V_{D1} = V_{D3} = +8$ V, $V_{D2} = +4.7$ V, $V_{SS} = -5$ V)	45	71	95	mA	
P _{DC}	DC power dissipation ($V_{D1} = V_{D3} = +8$ V, $V_{D2} = +4.7$ V, $V_{SS} = -5$ V)		3.5		Watts	

Data obtained from on-wafer measurements. All voltages specified at device pads. 1.

2. I_{D2} and I_{D3} values are temperature-sensitive parameters. Values measured in a packaged or heat-sunk condition will be up to 20 % lower than measured on-wafer.

RF specifications¹

 $(V_{D1} = V_{D3} = +8 \text{ V}, V_{D2} = +4.7 \text{ V}, V_{SS} = -5 \text{ V}, Z_{in} = Z_o = 50\Omega)$

Symbol	Parameters/conditions	Min	Тур	Мах	Units
BW	Guaranteed operating bandwidth ²	.01		3	GHz
S ₂₁	Small signal gain	17	dB		
ΔS_{21}	Small signal gain flatness		±1		dB
RL _{in}	Input return loss		-17		dB
RL _{out}	Output return loss		-8		dB
S ₁₂	Reverse isolation -50		-50		dB
P _{1dB}	Output power at 1 db gain compression		25		dBm
P _{sat}	Saturated output power	25	26.5		dBm
H_2, H_3	Harmonics (P _{out} @ fundamental = 21 dBm)		-35	-30	dBc
NF	Noise figure (f ₀ >100 MHz) 10 dB		10		dB

Data obtained from measurements on individual devices mounted in an Keysight 83040 series modular microcircuit package @ T_{case} = 25 °C.
Performance may be extended to lower frequencies through the use of off-chip circuitry. Upper corner frequency ≈ 4.3 GHz.

Applications

The 1GG7-4147 is designed for use as a broadband power amplifier in communication systems and microwave instrumentation. It is ideally suited for 100 kHz to 3 GHz applications where high output power, flat gain and low distortion are required.

Biasing

This device should be biased such that $V_{SS} = -5 \text{ V}$, $V_{D1} = V_{D3} = +8 \text{ V}$, and $V_{D2} = +4.7 \text{ V}$. This may be accomplished in several ways. Three separate supplies may be used to directly provide the required voltages. Alternatively, two supplies (-5, +8 V) may be used. In the latter case, the +4.7 V bias for V_{D2} may be derived from the +8 V supply with a variable resistor or regulator.

In addition to applying the proper voltages to the device, the off-chip impedances presented to V_{SS}, V_{D2}, and V_{D3} must be controlled. In particular, the V_{SS} pad must be bypassed to provide an RF ground while V_{D2} and V_{D3} must be biased through a high impedance across the desired operating frequency range. This high impedance bias may be accomplished using chokes, active loads, or a combination of these components. V_{D1} bypassing is not critical.

To prevent damage to the device, the V_{ss} supply should be turned on before the positive supplies during power up, and turned off after the positive supplies during power down. V_{ss} must never be open circuited during operation.

The input and output of the 1GG7-4147 are DC coupled. The input pad will float at -5 V while the output pad is used to provide the V_{D3} bias and as a result will be at +8V. To prevent the disturbance of internal bias nodes, DC-blocking capacitors must be used on the input and output. The pads labelled VTH, M1, M2, and M3 are internal voltage monitor points and may be ignored.

Prolonged operation with maxi mum saturated output power into an open circuit should be avoided to prevent the possibility of long-term performance degration to the 1GG7-4147 device.

Assembly Techniques

Solder die attach using a AuSn solder preform is the recommended assembly method. Gold thermosonic wedge bonding with 0.7 mil wire is recommended for all bonds. Tool force should be 22 grams ± 1 gram, stage temperature is 150 ± 2 °C, and ultrasonic power of 64 ± 1 dB and 76 ± 8 msec, respectively. The top and bottom metallization is gold.

GaAs MMICs are ESD sensitive. ESD preventive measures must be employed in all aspects of storage, handling, and assembly.

MMIC ESD precautions, handling considerations, die attach and bonding methods are criti- cal factors in successful GaAs MMIC performance and reliability.

The Keysight *GaAs MMIC ESD, Die Attach and Bonding Guidelines – Application Note* (5991-3484EN) provides basic information on these subjects.

RoHS Compliance

This device is RoHS Compliant. This means the component meets the requirements of the European Parliament and the Council of the European Union Restriction of Hazardous Substances Directive 2011/65/EU, commonly known as RoHS. The six regulated substances are lead, mercury, cadmium, chromium VI (hexavalent), polybrominated biphenyls (PBB) and polybrominated biphenyl ethers (PBDE). RoHS compliance implies that any residual concentration of these substances is below the RoHS Directive's maximum concentration values (MVC); being less than 1000 ppm by weight for all substances except for cadmium which is less than 100 ppm by weight.

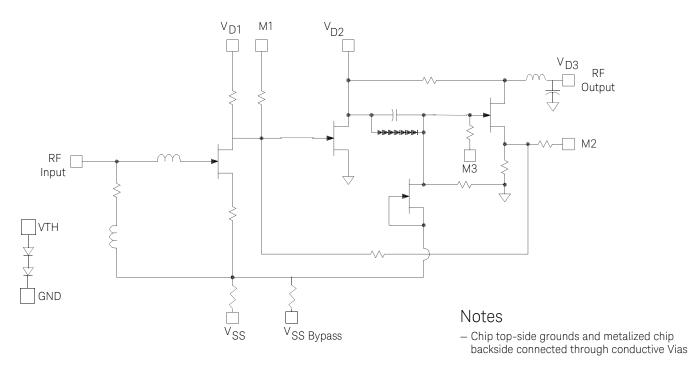


Figure 1. 1GG7-4147 schematic

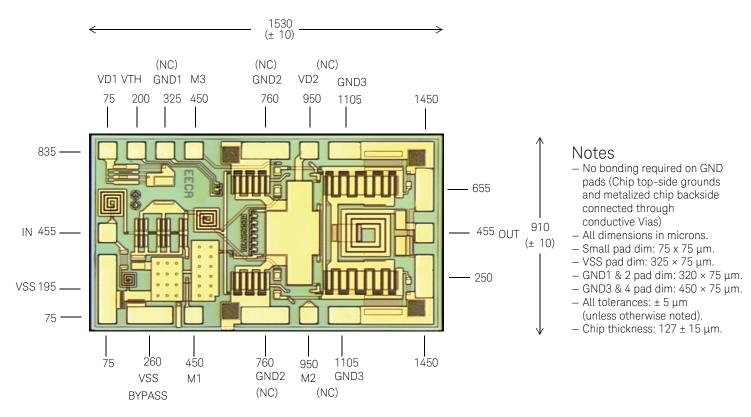


Figure 2.1GG7-4147 bond pad locations

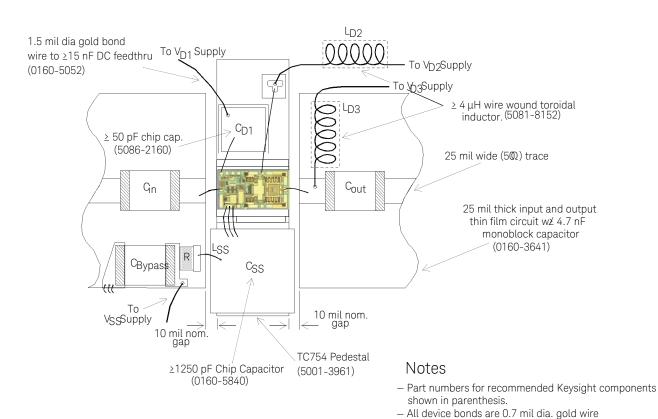
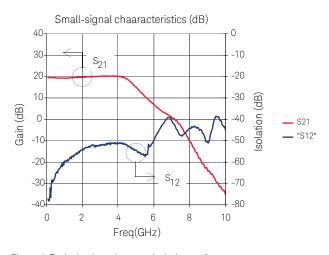



Figure 3. 1GG7-4147 assembly diagram (for 10 MHz to 3 GHz operation)

(V_{D1}=V_{D3}=+8.0 V,V_{D2}=+4.7 V,V_{SS}=-5.0 V)[†]

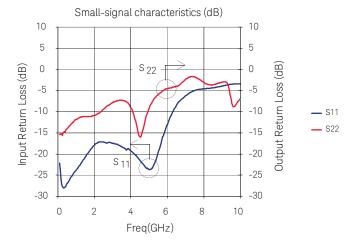


Figure 5. Typical input and output return loss vs. frequency

Figure 4. Typical gain and reverse isolation vs. frequency

Typical S-parameters¹

(VD1 = VD3 = +8 V, VD2 = +4.7 V, VSS = -5 V, Zin = Zo = 50 W)

Freq.		S11			S12			S21			S22	
(MHz)	dB	Mag	Ang	dB	Mag	Ang	dB	Ang	Ang	dB	Mag	Ang
1	-31.9	0.025	-79.4	-95.2	0.0000	-113.9	19.4	9.370	-166.2	-9.4	0.336	1.1
10	-31.8	0.026	-76.6	-89.1	0.0001	-107.1	19.4	9.353	-169.8	-9.5	0.335	-2.6
20	-31.4	0.027	-73.5	-83.4	0.0001	-99.5	19.4	9.334	-171.6	-9.6	0.331	-3.8
50	-30.4	0.030	-64.2	-79.0	0.0001	-76.7	19.3	9.275	-176.7	-9.7	0.327	-4.2
100	-22.2	0.078	-47.5	-77.3	0.0001	-59.6	19.6	9.502	175.9	-15.4	0.170	-5.8
200	-27.0	0.044	-10.3	-73.2	0.0002	86.8	19.5	9.460	163.7	-15.2	0.173	-17.0
500	-27.0	0.044	17.2	-65.9	0.0005	95.0	19.4	9.305	145.4	-14.0	0.199	-32.3
750	-25.3	0.054	26.3	-63.1	0.0007	99.1	19.3	9.221	127.8	-12.8	0.229	-47.5
1000	-23.8	0.065	27.9	-59.9	0.0010	99.2	19.2	9.113	109.8	-11.8	0.256	-62.4
1250	-22.3	0.077	26.9	-59.0	0.0011	99.3	19.3	9.218	91.7	-11.3	0.273	-76.9
1500	-20.7	0.092	23.0	-57.5	0.0013	98.7	19.4	9.354	73.3	-11.1	0.278	-90.6
1750	-19.2	0.110	16.7	-56.1	0.0016	95.9	19.6	9.526	54.1	-11.1	0.278	-104.1
2000	-17.9	0.127	5.8	-54.4	0.0019	91.1	19.6	9.555	34.3	-10.9	0.285	-116.6
2250	-17.2	0.138	-10.9	-53.3	0.0022	87.4	19.8	9.814	13.9	-10.3	0.304	-128.8
2500	-17.2	0.138	-29.0	-52.5	0.0024	83.2	19.9	9.864	-7.8	-9.4	0.339	-140.3
2750	-17.3	0.137	-46.4	-52.5	0.0024	79.2	19.8	9.816	-31.2	-8.6	0.374	-151.2
3000	-17.5	0.134	-63.0	-51.9	0.0025	76.6	20.1	10.139	-55.3	-7.9	0.404	-160.3
3250	-17.7	0.130	-77.7	-52.0	0.0025	75.4	20.1	10.104	-80.1	-7.4	0.426	-168.3
3500	-18.3	0.121	-91.3	-51.6	0.0026	74.2	20.2	10.187	-105.6	-7.3	0.431	-173.3
3750	-19.0	0.112	-105.4	-51.3	0.0027	74.8	20.1	10.119	-131.4	-7.7	0.414	-175.8
4000	-19.3	0.108	-120.5	-51.6	0.0026	75.7	20.1	10.093	-157.2	-9.0	0.355	-175.0
4250	-20.3	0.097	-136.9	-51.6	0.0026	74.8	19.7	9.617	177.7	-12.1	0.247	-173.0
4500	-21.6	0.084	-153.9	-52.1	0.0025	73.4	18.8	8.717	153.2	-16.0	0.158	-171.3
4750	-22.9	0.072	-170.4	-53.6	0.0021	69.1	17.2	7.223	130.0	-12.6	0.234	-171.7
5000	-23.7	0.065	174.3	-54.4	0.0019	66.7	15.0	5.645	109.3	-9.2	0.347	-174.5

1. Data obtained from measurements on individal devices mounted in an Keysight 83040 series modular microcircuit package @T_{CASE} = 25 °C

Additional 1GG7-4147 performance characteristics¹

(V_{D1}= V_{D3}= +8 V, V_{D2}= +4.7 V, V_{SS}= -5 V)

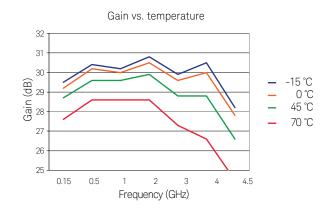


Figure 6. Typical small-signal gain vs. temperature

 $(V_{D1} = V_{D3} = +8 \text{ V}, V_{D2} = +4.7 \text{ V}, V_{SS} = -5 \text{ V})$

High-band noise figure performance

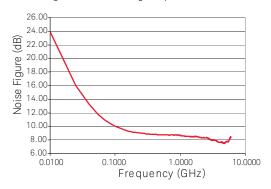


Figure 7. Typical noise figure vs. frequency

(V_{D1}= V_{D3}= +8 V, V_{D2}= +4.7 V, V_{SS}= -5 V)

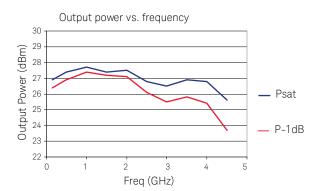


Figure 8. Typical 1 dB gain compression and saturated

output power vs. frequency

(V_{D1}= V_{D3}= +8 V, V_{D2}= +4.7 V, V_{SS}= -5 V)

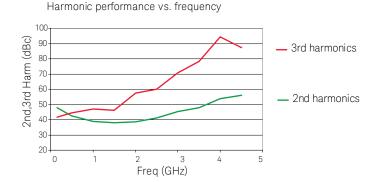
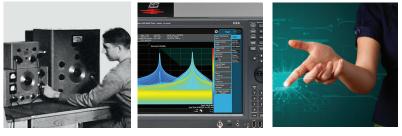



Figure 9. Typical second and third harmonics vs. fundamental frequency at $\rm P_{out}=21~dBm$

1. All data measured on individual devices mounted on a Keysight 83040 series modular microcircuit package @ T_{CASE} = 25 °C, except where noted.

Evolving

Our unique combination of hardware, software, support, and people can help you reach your next breakthrough. We are unlocking the future of technology.

From Hewlett-Packard to Agilent to Keysight

myKeysight

KEYSIGHT SERVICES Accelerate Technology Adoption Lower costs.

www.keysight.com/find/mykeysight

A personalized view into the information most relevant to you.

Keysight Services

myKeysight

www.keysight.com/find/service

Keysight Services can help from acquisition to renewal across your instrument's lifecycle. Our comprehensive service offerings-one-stop calibration, repair, asset management, technology refresh, consulting, training and more-helps you improve product quality and lower costs.

Keysight Channel Partners

www.keysight.com/find/channelpartners

Get the best of both worlds: Keysight's measurement expertise and product breadth, combined with channel partner convenience.

This data sheet contains a variety of typical and guaranteed performance data. The information supplied should not be interpreted as a complete list of circuit specifications. Customers considering the use of this, or other Keysight Technologies GaAs ICs, for their design should obtain the current production specifications from Keysight. In this data sheet the term typical refers to the 50th percentile performance. For additional information contact Keysight at MMIC_Helpline@keysight.com.

The product described in this data sheet is RoHS Compliant. See RoHS Compliance section for more details.

www.keysight.com/find/mmic

For more information on Keysight Technologies' products, applications or services, please contact your local Keysight office. The complete list is available at: www.keysight.com/find/contactus

Americas

Canada	(877) 894 4414
Brazil	55 11 3351 7010
Mexico	001 800 254 2440
United States	(800) 829 4444

Asia Pacific

Australia 1 800 629 485 800 810 0189 China Hong Kong 800 938 693 1 800 11 2626 India Japan 0120 (421) 345 Korea 080 769 0800 Malaysia 1 800 888 848 Singapore 1 800 375 8100 Taiwan 0800 047 866 Other AP Countries (65) 6375 8100

Europe & Middle East

United Kingdom

0800 0260637

For other unlisted countries: www.keysight.com/find/contactus (BP-06-08-16)

www.keysight.com/go/quality Keysight Technologies, Inc. DEKRA Certified ISO 9001:2015 Quality Management System

This information is subject to change without notice. © Keysight Technologies, 2016 Published in USA, October 3, 2016 5992-1855EN www.keysight.com

