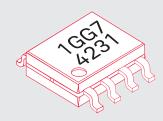

Keysight 1GG7-4231

DC - 6 GHz 15 dB/3 Bit GaAs MMIC Step Attenuator

Data Sheet

Features

- Frequency range:
- DC 6.0 GHz
- Attenuation values:3 bit
 - 5, 10, 15 dB
- Min. insertion loss:< 1.5 @ 3 GHz
 - < 4.0 @ 6 GHz
- Step accuracy: (-15 dB state) ±0.4 dB
- Return loss:17 dB through 3 GHz10 dB through 6 GHz
- Switching speed: $\langle 1 \mu s (10\% 90\% T_p)$
- P_{_1dB}:
 25 dBm @ 10 MHz
 30 dBm @ 3 GHz
- Distortion:
 SHI: + 100 dBm
 THI: + 70 dBm
 TOI: + 57 dBm


Description

The 1GG7-4231 is a packaged 3 Bit, 0 - 15 dB by 5 dB step GaAs MMIC Step Attenuator designed for low insertion loss and low distortion from DC to 6 GHz. It is intended for use as a general-purpose solid-state step-attenuator for RF instrumentation or commercial communication systems. Each 5 dB cell incorporates a "T" attenuator combined with integral series and shunt MESFET switching elements. This device incorporates a unique diode/resistor bias topology to improve low frequency RF performance and is fabricated with Keysight's DF7S GaAs MMIC process which is specifically designed to eliminate GaAs anomalies common in control circuit components. The device is mounted in a 8-lead plastic package.

Absolute maximum ratings¹

Symbol	Parameters/conditions	Min	Max	Units
V _{C1,2,3,4}	Control line voltages	-12	+12	volts
P _{in(CW)}	CW RF input power		33	dBm
T _{op}	Operating temperature	-55	+125	°C
T _{st}	Storage temperature	-65	+165	°C
T _{max}	Max. assembly temperature		+300	°C

^{1.} Operation in excess of any one of these may result in permanent damage to this device. $T_A = 25$ °C except for T_{op} , T_{st} , and T_{max} .

- Package type:8-lead SSOP plastic
- Package dimensions:
 4.9 × 3.9 mm typ.
- Package thickness:1.55 mm typ.
- Lead pitch: 1.25 mm nom.
- Lead width: 0.42 mm nom.

DC specifications/physical properties

 $(T_A = 25 \, ^{\circ}C)$

Symbol	Parameters/conditions			Min	Тур	Max	Units
V _{C1,2,3,4(+)}	Positive control line voltage			7	10	10.5	volts
V _{C1,2,3,4(-)}	Negative control line voltage			-10.5	-10	-7	volts
I _{L(+)}	Positive control line leakage current $(V_{C1,2,3,4} = +10 \text{ volts})$					100	μΑ
I _{L(-)}	Negative control line leakage current $(V_{C1,2,3,4} = -10 \text{ volts})$					100	μΑ
$\alpha_{\scriptscriptstyle T}$	Attenuation temperature coefficient	50 MHz	1 GHz	2 GHz	3 GHz	4 GHz	dB/°C
	@ Min. insertion loss state	.0008	.0007	.0006	.0005	.0003	
	@ -5 dB state	.0002	.0001	.0000	0002	0003	
	@ -10 dB state	0004	0005	0006	0008	0010	
	@ -15 dB state	0009	0011	0012	0014	0016	

RF specifications

 $(T_A = 25 \text{ °C}, Z_0 = 50 \Omega, V_{C1,2,3,4} = \pm 10 \text{ volts})$

Symbol	Parameters/conditions		Min	Тур	Max	Min	Тур	Max	Units
BW	Guaranteed operating bandwidth			DC - 3.0			DC - 6.0		GHz
IL _(min)	Minimum insertion loss $(V_{C1} = V_{C3} = +10 \text{ v}, V_{C2} = V_{C4} = -10 \text{ v})$			1.41			4.0		dB
D _{step}	Attenuation step	@ -5 dB state	4.8	5	5.2	4.8	5	5.2	dB
		@ -10 dB state	9.7	10	10.3	9.7	10	10.3	-
		@ -15 dB state	14.6	15	15.6	14.6	15	15.8	_
RL	Return loss				17			10	dB
T _R	Rise time switching speed (10% - 90% of RF swing, $f_0 = 3$ GHz)			1.0			1.0		μs
SHI	Second harmonic intercept point (Referred to P _{in})			100			100		dBm
THI	Third harmonic intercept point (Referred to P _{in})			70			70		
TOI	Two-tone third order intercept point (For two-tone power levels < +20 dBm)			57			57		dBm
P _{-1dB}	Input power @ 1 dB increase in insertion loss:			30 ²			30		dBm
P _{in} (max)	Maximum continuous RF input power				30			30	dBm

^{1.} Typical IL $_{\rm (min)}$ @ < 10 MHz = 0.4 dB. 2. Typical P $_{\rm -1dB}$ @ < 10 MHz = 25 dBm.

Applications

The 1GG7-4231 is designed for use in instrumentation, communications, radar, ECM, EW, and many other systems requiring fast switching speed, low distortion to input signals, and high cycle lifetimes. It can be used for pulse modulation, port isolation, replacement of mechanical relays, and in any application requiring the advantages of solid-state performance.

This device does not include any on-chip driver circuitry. An external driver circuit is required to convert TTL or ECL logic signals to the ±10 volt switching levels required by this device.

Assembly Techniques

This package is compatible with wave-solder or reflow printed circuit board soldering processes.

MMIC ESD precautions, handling considerations, die attach and bonding methods are critical factors in successful GaAs MMIC performance and reliability.

The Keysight Technologies, Inc. document, *GaAs MMIC ESD*, *Die Attach and Bonding Guidelines*, Application Note (5991–3484EN) provides basic information on these subjects.

Moisture Sensitivity Classification: Class 1, per JESD22-A112-A.

RoHS Compliance

The 1GG7-4231 prescaler is RoHS Compliant. This means the component meets the requirements of the European Parliament and the Council of the European Union *Restriction of Hazardous Substances* Directive 2011/65/EU, commonly known as *RoHS*. The six regulated substances are lead, mercury, cadmium, chromium VI (hexavalent), polybrominated biphenyls (PBB) and polybrominated biphenyl ethers (PBDE). RoHS compliance implies that any residual concentration of these substances is below the RoHS Directive's maximum concentration values (MVC); being less than 1000 ppm by weight for all substances except for cadmium which is less than 1000 ppm by weight.

Logic table

(V_{C1-C4} typical values in volts)

Attenuation setting	$\mathbf{V}_{\mathtt{c1}}$	V_{c2}	V _{c3}	V _{C4}
Min. insertion loss	+10	-10	+10	-10
-5 dB state	+10	-10	-10	+10
–10 dB state	-10	+10	+10	-10
–15 dB state	-10	+10	-10	+10

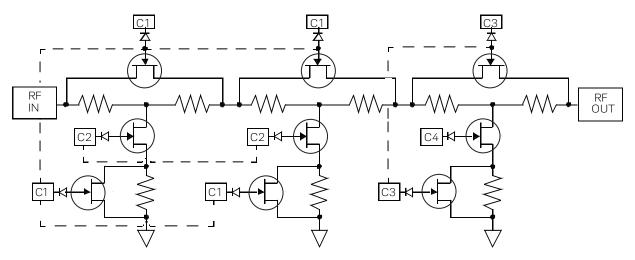


Figure 1. Simplified schematic diagram

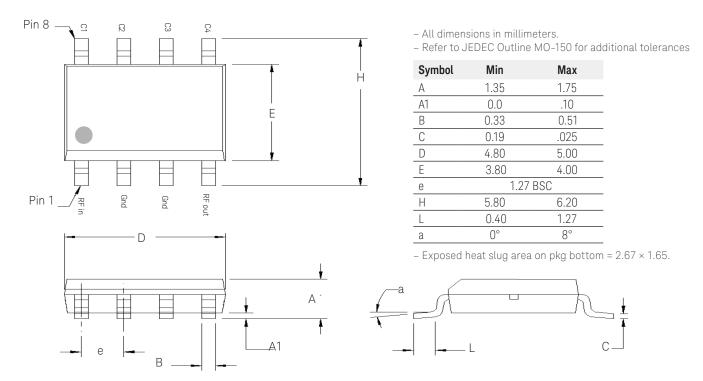


Figure 2. Package and dimensions

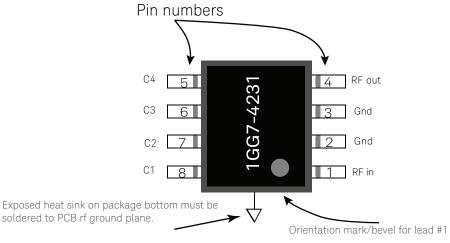


Figure 3. 1GG7-4231 package diagram

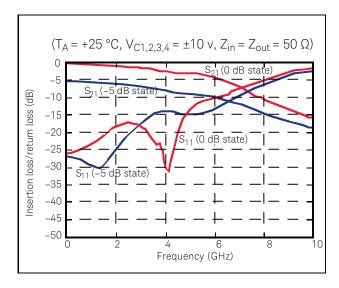


Figure 4. Insertion loss and return loss vs. frequency @ 0 dB/–5 dB states $^{\rm 1}$

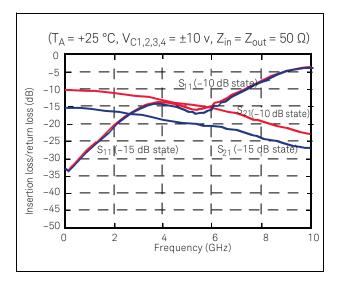


Figure 5. Insertion loss and return loss vs. frequency @ -10 dB/-15 dB states¹

Figure 6. Typical attenuation step values vs. frequency¹

^{1.} Data taken with a device mounted in a PC board, also see the 1GG7-4081 data sheet for IC level performance data. Note: Output return loss should be similar with the input return loss.

Evolving

Our unique combination of hardware, software, support, and people can help you reach your next breakthrough. We are unlocking the future of technology.

From Hewlett-Packard to Agilent to Keysight

myKeysight

myKeysight

www.keysight.com/find/mykeysight

A personalized view into the information most relevant to you.

KEYSIGHT SERVICES Accelerate Technology Adoption. Lower costs.

Keysight Services

www.keysight.com/find/service

Keysight Services can help from acquisition to renewal across your instrument's lifecycle. Our comprehensive service offerings—one-stop calibration, repair, asset management, technology refresh, consulting, training and more—helps you improve product quality and lower costs.

Keysight Channel Partners

www.keysight.com/find/channelpartners

Get the best of both worlds: Keysight's measurement expertise and product breadth, combined with channel partner convenience.

This data sheet contains a variety of typical and guaranteed performance data. The information supplied should not be interpreted as a complete list of circuit specifications. Customers considering the use of this, or other Keysight Technologies GaAs ICs, for their design should obtain the current production specifications from Keysight. In this data sheet the term typical refers to the 50th percentile performance. For additional information contact Keysight at MMIC_Helpline@keysight.com.

The product described in this data sheet is *RoHS Compliant* and RoHS Process Compatible with a maximum temperature of 260 °C and a maximum of 3 temperature cycles.

www.keysight.com/find/mmic

For more information on Keysight Technologies' products, applications or services, please contact your local Keysight office. The complete list is available at: www.keysight.com/find/contactus

Americas

Canada	(877) 894 4414
Brazil	55 11 3351 7010
Mexico	001 800 254 2440
United States	(800) 829 4444

Asia Pacific

Australia	1 800 629 485
China	800 810 0189
Hong Kong	800 938 693
India	1 800 11 2626
Japan	0120 (421) 345
Korea	080 769 0800
Malaysia	1 800 888 848
Singapore	1 800 375 8100
Taiwan	0800 047 866
Other AP Countries	(65) 6375 8100

Europe & Middle East

Austria	0800 001122
Belgium	0800 58580
Finland	0800 523252
France	0805 980333
Germany	0800 6270999
Ireland	1800 832700
Israel	1 809 343051
Italy	800 599100
Luxembourg	+32 800 58580
Netherlands	0800 0233200
Russia	8800 5009286
Spain	800 000154
Sweden	0200 882255
Switzerland	0800 805353
	Opt. 1 (DE)
	Opt. 2 (FR)
	Opt. 3 (IT)

For other unlisted countries: www.keysight.com/find/contactus (BP-06-08-16)

0800 0260637

United Kingdom

www.keysight.com/go/quality Keysight Technologies, Inc. DEKRA Certified ISO 9001:2015 Quality Management System

