
Keysight 1GC1-4023

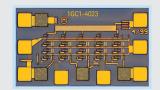
DC - 4 GHz, High-Gain, Dual-Mode: Low-Noise/Medium-Power HBT Amplifier

Data Sheet

Features

- Dual operating modes¹:
 - Low-noise mode:
 - NF = 3 dB
 - $P_{-1dB} = 14 \text{ dBm}$ TOI = 24 dBm
 - SHI = 48 dBm

 - $I_{Total} = 64 \text{ mA}$ $P_{DC} = 207 \text{ mW}$
 - High-power mode: NF = 3.5 dB $P_{-1dB} = 19.5 \text{ dBm}$ TOI = 33 dBm SHI = 53 dBm $I_{Total} = 90 \text{ mA}$ $P_{DC} = 373 \text{ mW}$
- Broad bandwidth, F_-1dB: 7 GHz (S.S. gain) 3 GHz (P_{OUT})
- High gain: (3 GHz) 20.5 dB ±0.8 dB
- Low l/f noise corner: < 20 kHz
- Single supply operation: $V_{Supply} > 4.8$ volts
- 1. Typical performance @ F=3 GHz, P_{DC}=DC power dissipation on-chip.


Description

The 1GC1-4023 is a DC to 4 GHz, 20 dB gain, amplifier designed for use as a cascadable gain block as either a Low–Noise preamplifier for receivers or as an output amplifier for moderate output power applications. The device consists of a modified Darlington feedback pair which reduces the sensitivity to process variations and provides 50 ohm input/ output port matches. This amplifier is fabricated using HFTC's GaAs Heterojunction Bipolar Transistor (HBT) process which provides excellent process uniformity, reliability and 1/f noise performance.

Absolute maximum ratings¹

(@ $T_{A} = 25$ °C, unless otherwise indicated)

Symbol	Parameters/conditions	Min	Max	Units
V _{cc}	V _{cc} pad voltage		6.0	Volts
V _{OUT}	RF output pad voltage		4.3	Volts
I _{cc}	Stage one current		22	mA
I _{OUT}	Stage two current		75	mA
P _{in}	RF input power, continuous 0 dbm			
T _{ch}	Channel temperature +150 °C			
T_bs^2	Die backside temperature	-55	+85	°C
T _{st}	Storage temperature	-65	+165	С°
T _{max}	Max. assembly temperature		+300	О°

- Chip size: 790 x 480 μm (31.1 x 18.9 mils)
- Chip size tolerance: ±10 μm (±0.4 mils)
- Chip thickness: 127 ±15 μm (5.0 ±0.6 mils)
- Pad dimensions: 70 x 70 μm (2.8 x 2.8 mils), or larger

. Operation in excess of any one of these conditions may result in permanent damage to this device.

2. MTTF > 5 x 10⁵ hours @ T_{bs} = 85 °C. Operation in excess of maximum backside temperature (T_{bs}) will degrade MTTF.

DC specifications/physical properties¹

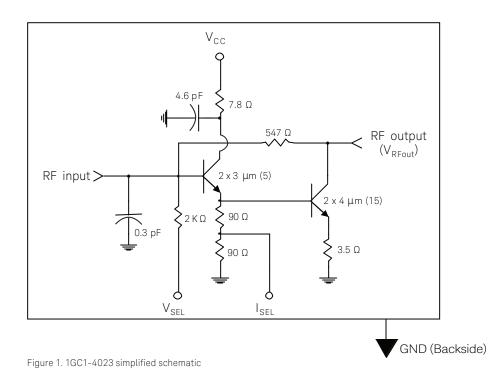
 $(T_{A} = 25 \text{ °C}, Z_{IN} = Z_{OUT} = 50 \text{ }\Omega, \text{ } \text{R}_{OUT} = [(V_{Supply} - V_{OUT})/I_{OUT}])$

Symbol	Parameters/conditions	Min	Тур	Max	Units
V _{cc}	Stage one collector voltage	4.8	5.0	6.0	Volts
$\boldsymbol{\theta}_{\text{J-bs}}$	Thermal resistance (junction-to-backside at T _J = 150 °C)		175		°C/Watt
			v-noise mode OPEN, I _{sel} = C		
I _{cc}	Stage one collector current	7	9	11	mA
I _{out}	Stage two collector current		55	75	mA
I _{CC} + I _{OUT}	Total supply current		64		mA
V_{RFin}	RF input voltage (I _{cc} = 9 mA, I _{out} = 55 mA)	2.6	2.85	3.1	Volts
V _{out}	RF output voltage (I _{cc} = 9 mA, I _{out} = 55 mA)	2.7	2.95	3.2	Volts
P _{DC}	Total DC power dissipation (on-chip) (V _{cc} = +5 V, V _{out} = 3 V, I _{out} = 55 mA)		207		mW
			gh P _{out} mode GND, I _{sel} = G		
I _{cc}	Stage one collector current	15.0	18.5	21.5	mA
I _{OUT}	Stage two collector current		72	75	mA
I _{CC} + I _{OUT}	Total supply current		90.5		mA
V _{RFin}	RF input voltage (I _{cc} = 18.5 mA, I _{out} = 72 mA)	2.7	2.90	3.1	Volts
V _{OUT}	RF output voltage (I _{cc} = 18.5 mA, I _{out} = 72 mA)	3.6	3.85	4.1	Volts
P _{DC}	Total DC power dissipation (on-chip) ($V_{cc} = +5 V$, $V_{out} = 3.9 V$, $I_{out} = 72 mA$)		373		mW

1. Backside ambient operating temperature $T_A = T_{bs} = 25$ °C unless otherwise noted.

RF specifications¹

 $(T_{A} = 25 \text{ °C}, Z_{IN} = Z_{OUT} = 50 \text{ }\Omega, \text{ } \text{R}_{OUT} = [(V_{Supply} - V_{OUT})/I_{OUT}])$


Symbol	Parameters/conditions	Min	Тур	Max	Units	
BW	Operating bandwidth (f $_{_{-1db}}$, high P $_{_{OUT}}$ mode)	6	7		GHz	
S ₂₁	Small-signal gain (DC - 3 GHz, low-noise mode)	19.5	20.5	21.5	dB	
	Small-signal gain (DC - 3 GHz, high P _{out} mode)	19.5	21	22	dB	
ΔS_{21}	Gain flatness (DC - 3 GHz)		±0.8		dB	
T _c	Gain temperature coefficient (DC - 3 GHz, low-noise mode) 0.005					
	Gain temperature coefficient (DC - 3 GHz, high P _{out} mode) 0.003 d					
RL _{IN(Min)}	Minimum input return loss (DC - 3 GHz)		15		dB	
$RL_{OUT(Min)}$	Minimum output return loss (DC - 3 GHz)		15		dB	
S ₁₂	Reverse isolation (DC - 3 GHz)		22		dB	

RF specifications¹(continued)

 $(T_{_{A}} = 25 \text{ °C}, Z_{_{IN}} = Z_{_{OUT}} = 50 \text{ }\Omega, \text{ }R_{_{OUT}} = [(V_{_{Supply}} - V_{_{OUT}})/I_{_{OUT}}])$

			Low-noise mo = OPEN, I _{SEL} =		
Symbol	Parameters/conditions	Min	Тур	Max	Units
P_1dB	Output power at 1 dB gain compression (F = 3 GHz)	12	14		dBm
P _{sat}	Output power at 4 dB gain compression (F = 3 GHz)		15		dBm
H ₂	2^{nd} harmonics (F = 3 GHz, P _{out} = +5 dBm)		-30		dBc
H ₃	3 rd harmonics (F = 3 GHz, P _{OUT} = +5 dBm)		-50		dBc
SHI	2 nd harmonic intercept point (fund. = 1.5 GHz, 2*fund. = 3.0 GHz, P _{our} (fund.) = 0 dBm)		48		dBm
TOI	Two-tone, third order intercept point (tone spacing = 200 kHz, fund. = 3 GHz)		24		dBm
NF	Noise figure (F = 3 GHz)		3.0	4.0	dB
			High P _{out} mo _ = GND, I _{SEL} =		
P_1dB	Output power at 1 dB gain compression (F = 3 GHz)	18.5	19.5		dBm
P _{sat}	Output power at 4 dB gain compression (F = 3 GHz)		20.5		dBm
H_2	2^{nd} harmonics (F = 3 GHz, P _{OUT} = +5 dBm)		-35		dBc
H ₃	3 rd harmonics (F = 3 GHz, P _{OUT} = +5 dBm)		-57		dBc
SHI	2 nd harmonic intercept point (fund. = 1.5 GHz, 2*fund. = 3.0 GHz, P _{out} (fund.) = 0 dBm)		53		dBm
TOI	Two-tone, third order intercept point (tone spacing = 200 kHz, fund. = 3 GHz)		33		dBm
NF	Noise figure (F = 3 GHz)		3.5	5.0	dB

1. All large-signal specifications referred to output power

Applications

The 1GC1-4023 is designed for use in RF and microwave communications systems and instrumentation applications where broadband low-noise operation or moderate output power amplification is required. The device is designed to operate into 50Ω .

Biasing and Operation

The 1GC1-4023 can be operated from a single positive supply or two independent supplies greater than 4.8 volts. The first stage collector voltage (V_{cc}) must be biased between 4.8 and 6 volts. An external R_{cc} resistor is required if the supply voltage is greater than 6 volts.

The second stage collector voltage (V_{out}) is supplied through the RF output port and should be biased through an off-chip drop resistor (R_{out}) or current source. An external RF choke circuit consisting of a series inductor and shunt capacitor is typically used to pass the DC bias to the RF output. This high impedance bias feed eliminates loading on the amplifier output. The output current is adjustable via the off-chip R_{out} bias resistor value. For more information on the correct values of R_{cc} and R_{out} , refer to the information and formulas available in Figure 2.

The 1GC1-4023 features dual-mode operation in either a low-noise, low- P_{DC} mode or high P_{OUT} mode and are selectable by two independent control contacts as summarized in the following table:

Operating mode states

Operating mode	V _{sel} state (Pin 4)	V _{out} (V)	I _{sel} state (Pin 5)	I _{cc} (mA)
Low noise	OPEN	+ 2.9	OPEN	~9
High power	GND	+ 3.9	GND	~18.5

R_{cc} bias formulas

 $\begin{array}{l} \mbox{For: } 4.8 \mbox{ V} \leq V_{\mbox{Supply}} \leq 6 \Rightarrow \mbox{R}_{\rm CC} = 0 \ \Omega \\ \mbox{For: } \mbox{V}_{\mbox{Supply}} > 6 \mbox{ V} \Rightarrow \mbox{R}_{\rm CC} = [(\mbox{V}_{\mbox{Supply}} - 5) \div (\mbox{I}_{\rm CC})] \mbox{ K} \ \Omega \\ \mbox{where I}_{\rm CC} = 9 \mbox{ mA} \end{aligned} \mbox{I}_{\rm SEL} = \mbox{Open circuit} \\ \mbox{or I}_{\rm CC} = 18.5 \mbox{ mA} \end{aligned} \mbox{ISEL} = \mbox{GND} \end{array}$

R_{out} bias formulas

$$\begin{split} \mathsf{R}_{\mathsf{OUT}} &= [(\mathsf{V}_{\mathsf{Supply}} - \mathsf{V}_{\mathsf{OUT}}) \div (\mathsf{I}_{\mathsf{OUT}})] \ \mathsf{K} \ \Omega \\ & \text{where} \ \mathsf{V}_{\mathsf{OUT}} = 3.0 \ \mathsf{v} \ \textcircled{O} \ \mathsf{V}_{\mathsf{SEL}} = \mathsf{Open \ circuit} \\ & \text{or} \ \mathsf{V}_{\mathsf{OUT}} = 3.9 \ \mathsf{v} \ \textcircled{O} \ \mathsf{V}_{\mathsf{SEL}} = \mathsf{GND} \\ & \text{and} \ \mathsf{I}_{\mathsf{OUT}} \ \texttt{f} \ \mathsf{72 \ mA} \end{split}$$

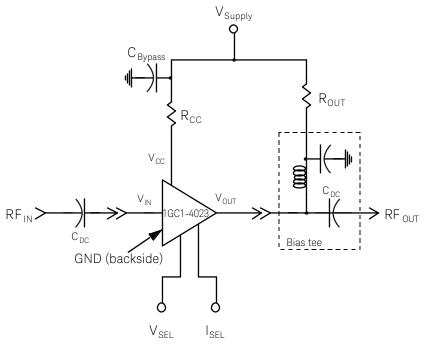


Figure 2. 1GC1-4023 biasing diagram

Low-noise mode operation

In this mode the device is biased to operate with the lowest possible noise figure and minimum DC power dissipation. The RF output voltage is set to $V_{out} = 2.9$ volts by applying an open circuit to the V_{sEL} pad and the stage one current is reduced to ~9 mA by applying an open circuit to the I_{sEL} pad.

High P_{OUT} mode operation

In this mode the device is biased to operate with the highest possible output power and power bandwidth while still delivering reasonably low DC power dissipation. The RF output voltage is set to V_{OUT} = 3.9 volts by grounding the V_{SEL} pad and the stage one current is increased to ~18 mA to optimize power compression characteristics by applying an short circuit to the I_{SEL} pad.

In either mode the output current (I_{OUT}) can be adjusted to any value up to 72 mA by varying the off-chip biasing resistor (R_{OUT}) or adjusting the RF output current source, whichever is employed. Output currents (I_{OUT}) lower than 55 mA will adversely affect output power performance above 2 GHz. Higher output currents (maximum of 72 mA) will maximize P_{OUT} and output power bandwidth at the expense of slightly higher DC power dissipation and higher noise figure. If R_{OUT} is greater than 300 ohms, the output RF choke may be omitted, however, the amplifier's gain may be reduced by ~1.0 dB.

DC blocking caps are recommended at the package RF input and output pads since the voltage at these pins will be between 3 and 4 volts above ground potential. A 100 pF AC bypass cap is recommended between VCC and ground to prevent low– frequency bias oscillations. Bypass caps are not required on the VSEL or ISEL pads. For chip bond pad identification and the device schematic refer to Figures 1 and 3. Refer to the Keysight Technologies, Inc. document, *GaAs MMIC ESD, Die Attach and Bonding Guidelines – Application Note* (5991–3484EN) for additional information.

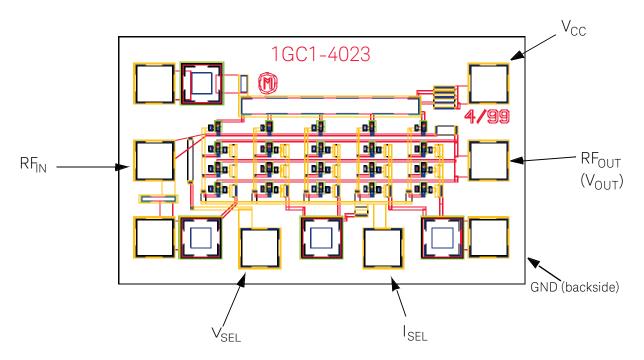


Figure 3. 1GC1-4023 chip bias/RF bond pad locations

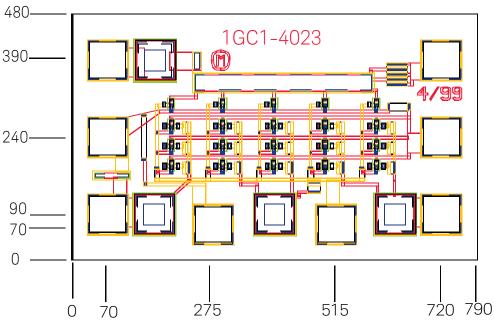


Figure 4. 1GC1-4023 chip dimensions

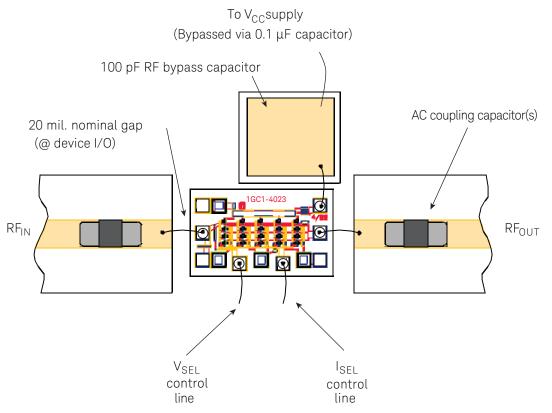
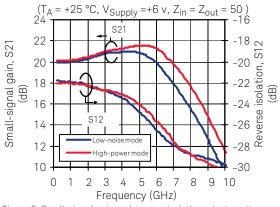



Figure 5. 1GC1-4023 chip assembly diagram

RoHS Compliance

This part is RoHS compliant, meeting the requirements of the EU *Restriction of Hazardous Substances* Directive 2011/65/EU, commonly known as *RoHS*. Six substances are regulated: lead, mercury, cadmium, chromium VI (hexavalent chromium), polybrominated biphenyls (PBB), and polybrominated biphenyl ethers (PBDE). RoHS compliance requires that any residual concentration of these substances is below the Directive's maximum concentration values (MCV): cadmium 100 ppm by weight and all others 1000 ppm by weight.

Typical S-parameter Response¹

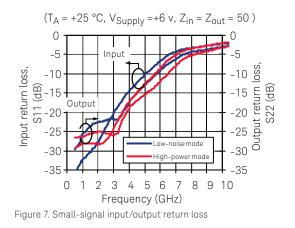


Figure 6. Small-signal gain and reverse isolation min. insertion loss and return loss vs. frequency

Low-noise/low-power mode

 $(T_A = 25 \text{ °C}, V_{Supply} = +6 \text{ v}, I_{OUT} = 55 \text{ mA}, V_{SEL} = I_{SEL} = \text{Open Circuit}, Z_{in} = Z_{OUT} = 50)$

Freq.		S ₁₂			S ₁₂			S ₂₁			S ₂₂	
(MHz)	dB	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang
100	-29.8	0.032	-11.3	-21.8	0.081	-1.2	19.9	9.851	177.9	-36.1	0.016	7.3
500	-27.0	0.045	-55.1	-21.9	0.080	-6.0	19.9	9.841	169.4	-32.7	0.023	25.8
1000	-23.5	0.067	-89.5	-22.0	0.080	-13.2	19.9	9.913	158.6	-30.2	0.031	39.1
1500	-21.9	0.080	-119.8	-22.1	0.079	-19.7	20.1	10.061	147.7	-27.7	0.041	51.7
2000	-21.7	0.083	-147.2	-22.4	0.075	-26.3	20.2	10.286	136.4	-24.6	0.059	61.7
2500	-22.2	0.078	-162.8	-22.5	0.075	-32.2	20.5	10.601	124.3	-21.0	0.089	59.9
3000	-21.6	0.083	-158.9	-22.8	0.072	-38.4	20.7	10.883	110.8	-18.1	0.124	47.2
3500	-18.6	0.117	-161.8	-23.1	0.070	-45.1	20.8	11.004	96.8	-15.1	0.175	33.0
4000	-15.7	0.163	178.3	-23.6	0.066	-52.6	20.9	11.062	82.6	-13.0	0.223	20.9
5000	-11.6	0.263	124.0	-25.0	0.057	-65.0	20.8	10.912	51.4	-9.0	0.353	1.7
6000	-8.1	0.393	67.8	-26.8	0.046	-72.8	19.7	9.674	17.0	-5.7	0.517	-18.3
7000	-5.4	0.536	26.4	-28.0	0.040	-76.0	17.7	7.652	-13.7	-4.0	0.633	-38.1
8000	-4.3	0.613	-1.5	-28.6	0.037	-74.7	15.3	5.820	-40.8	-3.3	0.686	-59.9
9000	-3.7	0.656	-24.7	-29.3	0.034	-84.7	12.4	4.178	-65.4	-2.7	0.733	-77.2
10000	-2.8	0.721	-42.3	-29.9	0.032	-91.9	9.3	2.908	-83.0	-2.2	0.773	-83.3

High-power mode¹

 $(T_A = 25 \text{ °C}, V_{Supply} = +6 \text{ v}, I_{OUT} = 72 \text{ mA}, V_{SEL} = I_{SEL} = \text{GND}, Z_{in} = Z_{OUT} = 50)$

Freq.		S ₁₂			S ₁₂			S ₂₁			S ₂₂	
(MHz)	dB	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang
500	-24.9	0.057	-34.8	-22.1	0.079	-6.1	20.0	10.025	169.9	-28.2	0.039	6.2
1000	-23.5	0.067	-66.5	-22.2	0.077	-12.5	20.1	10.090	159.9	-28.0	0.040	5.8
1500	-23.6	0.066	-93.5	-22.2	0.078	-18.3	20.2	10.245	149.6	-28.2	0.039	15.3
2000	-25.2	0.055	-118.9	-22.4	0.076	-25.4	20.4	10.506	139.2	-27.4	0.043	35.1
2500	-27.2	0.044	-124.3	-22.5	0.075	-30.9	20.7	10.809	128.0	-25.2	0.055	45.4
3000	-24.2	0.062	-109.3	-22.7	0.073	-37.0	20.9	11.147	115.5	-21.5	0.084	39.8
3500	-19.7	0.103	-118.1	-22.9	0.072	-42.8	21.1	11.344	102.6	-18.1	0.125	27.8
4000	-17.3	0.136	-141.5	-23.2	0.069	-50.0	21.2	11.517	89.7	-15.8	0.163	18.4
5000	-14.5	0.189	158.6	-24.4	0.060	-63.7	21.5	11.865	61.0	-11.4	0.268	4.9
6000	-10.7	0.291	91.8	-25.8	0.051	-76.6	21.1	11.395	27.2	-7.1	0.443	-11.0
7000	-6.8	0.457	40.9	-27.6	0.042	-83.7	19.6	9.551	-5.8	-4.5	0.599	-30.3
8000	-5.0	0.565	8.7	-28.9	0.036	-87.5	17.4	7.454	-35.8	-3.3	0.680	-54.1
9000	-4.0	0.630	-17.5	-29.5	0.034	-90.0	14.6	5.339	-62.9	-2.6	0.740	-73.2
10000	-3.0	0.705	-37.6	-30.3	0.031	-94.6	11.3	3.674	-82.4	-2.1	0.785	-80.6

1. Data obtained from device mounted in RF text fixture. Magnitudes and Phase have been corrected for fixture loss and phase delay.

Supplemental Data¹

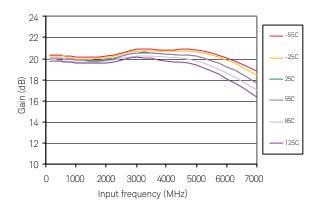


Figure 8. Typical small signal gain vs. frequency and temperature in low-noise mode

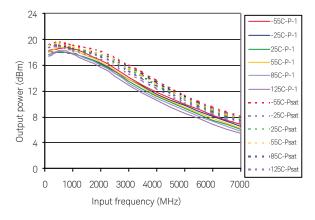


Figure 10. Typical output power $\rm P_{_{1dB}}$ and $\rm P_{_{sat}}$ vs. frequency and temperature in low-noise mode

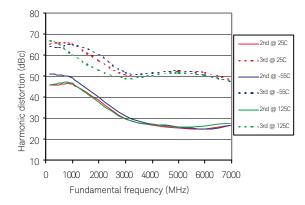


Figure 12. Typical $2^{\rm nd}\,\text{and}\,3^{\rm rd}\,\text{harmonics}\,\text{vs.}$ frequency and temperature in low-noise mode^2

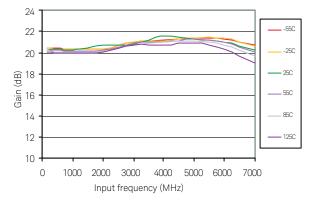


Figure 9. Typical small signal gain vs. frequency and temperature in high-power mode

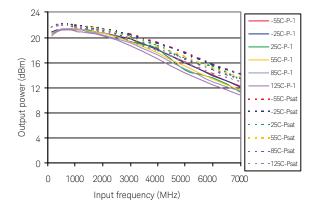


Figure 11. Typical output power $\rm P_{-1dB}$ and $\rm P_{sat}$ vs. frequency and temperature in high-power mode

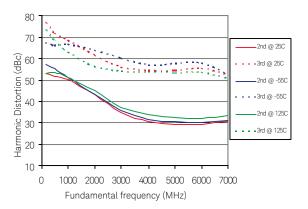


Figure 13. Typical $2^{nd}\,and\,3^{rd}\,harmonics\,vs.$ frequency and temperature in high-power mode^2

1. Data measured on device mounted in RF test fixture. Data has been corrected for fixture insertion loss.

2. Measured at P_{OUT} = +5 dBm

Supplemental Data¹ (continued)

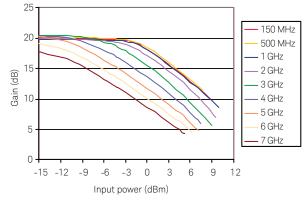
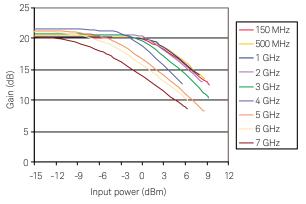
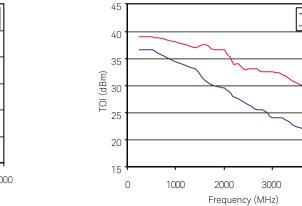



Figure 14. Typical gain vs. input power at $T_A = 25 \text{ °C}$


Low power mode

liah power moo

4000

5000

Figure 15. Typical gain vs. input power at T_A = 25 °C

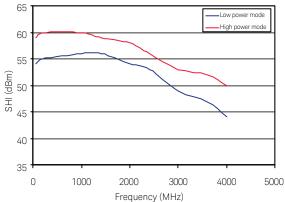
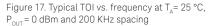
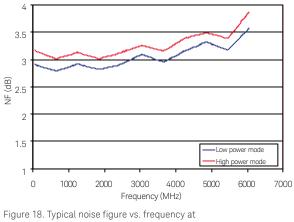
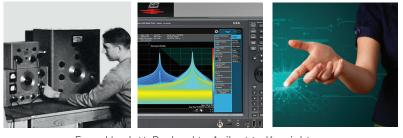




Figure 16. Typical SHI vs. 2^{nd} harmonic frequency at $T_{A}{=}~25~^{\circ}{\rm C}$ and $P_{_{\rm OUT}}{=}~0~{\rm dBm}$



 $T_A = 25 \text{ °C}$ and $P_{out} O \text{ dBm}$.

Evolving

Our unique combination of hardware, software, support, and people can help you reach your next breakthrough. We are unlocking the future of technology.

From Hewlett-Packard to Agilent to Keysight

myKeysight

KEYSIGHT SERVICES Accelerate Technology Adoption. Lower costs.

www.keysight.com/find/mykeysight

A personalized view into the information most relevant to you.

Keysight Services

myKeysight

www.keysight.com/find/service

Keysight Services can help from acquisition to renewal across your instrument's lifecycle. Our comprehensive service offerings-one-stop calibration, repair, asset management, technology refresh, consulting, training and more-helps you improve product quality and lower costs.

Keysight Channel Partners

www.keysight.com/find/channelpartners

Get the best of both worlds: Keysight's measurement expertise and product breadth, combined with channel partner convenience.

This data sheet contains a variety of typical and guaranteed performance data. The information supplied should not be interpreted as a complete list of circuit specifications. Customers considering the use of this, or other Keysight Technologies GaAs ICs, for their design should obtain the current production specifications from Keysight. In this data sheet the term typical refers to the 50th percentile performance. For additional information contact Keysight at MMIC_Helpline@keysight.com.

The product described in this data sheet is RoHS Compliant. See RoHS Compliance section for more details.

www.keysight.com/find/mmic

For more information on Keysight Technologies' products, applications or services, please contact your local Keysight office. The complete list is available at: www.keysight.com/find/contactus

Americas

Canada	(877) 894 4414
Brazil	55 11 3351 7010
Mexico	001 800 254 2440
United States	(800) 829 4444
	. ,

Asia Pacific

Australia	1 800 629 485
China	800 810 0189
Hong Kong	800 938 693
India	1 800 11 2626
Japan	0120 (421) 345
Korea	080 769 0800
Malaysia	1 800 888 848
Singapore	1 800 375 8100
Taiwan	0800 047 866
Other AP Countries	(65) 6375 8100

Europe & Middle East

United Kingdom

0800 0260637

For other unlisted countries: www.keysight.com/find/contactus (BP-06-08-16)

www.keysight.com/go/quality Keysight Technologies, Inc. DEKRA Certified ISO 9001:2015 Quality Management System

This information is subject to change without notice. © Keysight Technologies, 2016 Published in USA, September 11, 2016 5992-1748EN www.keysight.com

