
Keysight 1GC1-4030

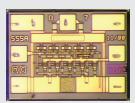
DC - 10 GHz Medium Power Series-Shunt HBT Amplifier

Data Sheet

Features

- Frequency range: DC 10 GHz
- Moderate gain: 11 dB
- P_{-1dB}: +19 dBm
- Low 1/f noise corner: < 20 kHz
- Return loss: Input: 20 dB Output: 15 dB
- Single supply operationV_{Supply} > 4.8 volts

Description


The 1GC1-4030 is a DC - 10 GHz, 11 dB gain, feedback amplifier designed to be used as a cascadable gain block for a variety of applications. The device consists of a modified Darlington feedback pair which reduces the sensitivity to process variations and provides 50 ohm input/output port matches. Furthermore, this amplifier is fabricated using HFTC's Heterojunction Bipolar Transistor (HBT) process which provides excellent process uniformity, reliability and 1/f noise performance. The device requires a single positive supply voltage and generally operates Class-A for good distortion performance. DC power dissipation is less than 0.68 watts.

Absolute maximum ratings¹

(@ $T_A = 25$ °C, unless otherwise indicated)

Symbol	Parameters/conditions	Min	Max	Units	
V _{cc}	Collector pad voltage		7	Volts	
lout	Maximum collector current		90	mA	
P _{in}	CW input power		18	dBm	
T _J	Maximum junction temperature		170	°C	
T _{op}	Operating temperature	-55	+85	°C	
T _{bs} ²	Die backside temperature		+85	°C	
T _{stg}	Storage temperature	65	165	°C	
T _{max}	Maximum assembly temperature		+300	°C	

- 1. Operation in excess of any one of these conditions may result in permanent damage to this device.
- 2. MTTF > 5 x 10^5 hours @ T_{bs} = 85 °C. Operation in excess of maximum backside temperature (T_{bs}) will degrade MTTF.

- Chip size: 610 x 460 μm (24 x 18 mils)
- Chip size tolerance: ±10 μm (± 0.4 mils)
- Chip thickness: 127 ±15 μ m (5.0 ± 0.6 mils)
- Pad dimensions: 80 x 80 μm
 (3.2 x 3.2 mils), or larger

DC specifications/physical properties

(Typicals are for $T_A = 25$ °C, $V_{cc} = +5$ V, $I_{out} = +80$ mA)

Symbol	Parameters/conditions	Min	Тур	Max	Units
V _{out}	Output pad voltage	4.3	4.8	5.3	Volts
V _{in}	Input pad voltage	3.1	3.4	3.7	Volts
I _{C1}	Stage-one supply current	50	60	70	mA
I _{C2}	Stage-two supply current		80		mA
I _{C1} + I _{C2}	Total supply current		140		mA
θch-s	Thermal resistance		130		°C/W
	$(T_{\text{substrate}} = 25 ^{\circ}\text{C})$				

RF specifications¹

(Typicals are for $T_A = 25$ °C, $V_{cc} = +5$ V, $I_{out} = 80$ mA)

Complete	Parameters/conditions -	DC - 6 GHz			DC - 10 GHz			
Symbol		Min	Тур	Max	Min	Тур	Max	- Units
BW	Operating bandwidth	8			10			GHz
S ₂₁	Small signal gain	10	11		10	11		dB
ΔS_{21}	Small signal gain flatness		±0.2			±0.5		dB
TC	Temperature coefficient of gain		0.005			0.02		dB/°C
RL_in	Input return loss		-20			-20		dB
RL_out	Output return loss		-20			-15		dB
ISO	Isolation, reverse		16			17		dB
P _{1dB}	Output power at 1 db gain compression		19.5			18.5		dBm
P _{out}	Output power flatness vs. frequency		±0.5			±1		dBm
P _{sat}	Saturated output power		20			19		dBm
H _s	Second harmonics, P _{out} = +10 dbm		-30			-30		dBc
	Second harmonics, P _{out} = P _{1 db}		-20			-20		dBc
H ₃	Third harmonics, P _{out} = +10 dbm		-40			-40		dBc
	Third harmonics, P _{out} = P _{1 db}		-20			-20		dBc
NF	Noise figure		7			7		dB

^{1.} These RF specifications can be achieved when the device is properly biased and heat sunk. Specifications are per output and based on performance attained with a 1GC1-4030 mounted in an Keysight 83040 series Modular Microcircuit Package.

Biasing

The 1GC1–4030 can be operated from a single positive supply. This supply must be connected to two points on the chip, namely the $V_{\rm CC}$ pad and the output pad. The supply voltage may be directly connected to the $V_{\rm CC}$ pad as long as the voltage is between +4.75 to +5 volts; however, if the supply is higher than +7 volts, a series resistor $(R_{\rm CC})$ should be used to reduce the voltage to the $V_{\rm CC}$ pad. See the bonding diagram for the equation used to select $R_{\rm CC}$. In the case of the output pad, the supply voltage must be connected to the output transmission line through a resistor $(R_{\rm OUT})$ and an inductor. See the bonding diagram for the equation used to select $R_{\rm OUT}$. If $R_{\rm OUT}$ is greater than 300 ohms, the inductor may be omitted, however, the amplifier's gain may be reduced by ~0.5 dB. Figure 4 shows the recommended assembly and bonding method.

The chip contains a backside via to provide a low inductance ground path: therefore, the ground pad on the IC should not be bonded.

The voltage at the IN and OUT pads of the IC will be approximately 3.4 and 4.8 volts respectfully; therefore, DC blocking caps should be used at the input and output of the device.

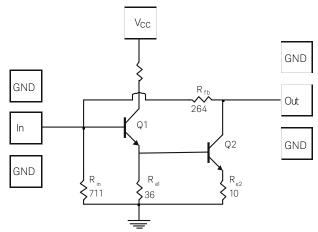
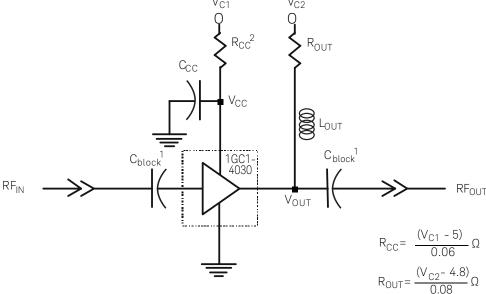



Figure 1. 1GC1-4030 simplified block diagram

- 1. Blocking caps are required on input and output
- 2. RCC is only needed if V_{C1} > 5 V

Assembly Techniques

Solder die attach using a AuSn solder preform is the recommended assembly method. Gold thermosonic wedge bonding with 0.7 mil wire is recommended for all bonds. Tool force should be 22 grams ± 1 gram, stage temperature is 150 ± 2 °C, and ultrasonic power and duration of 64 ± 1 dB and 76 ± 8 msec, respectively. The top and bottom metallization is gold.

MMIC ESD precautions, handling considerations, die attach and bonding methods are critical factors in successful GaAs MMIC performance and reliability.

Keysight document, GaAs MMIC ESD, Die Attach and Bonding Guidelines - Application Note (5991-3484EN) provides basic information on these subjects.

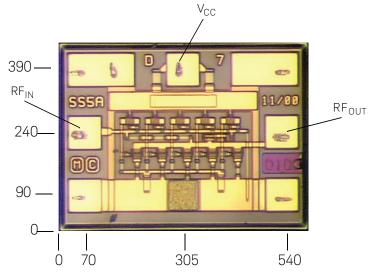


Figure 3. 1GC1-4030 chip bias/RF bond pad locations

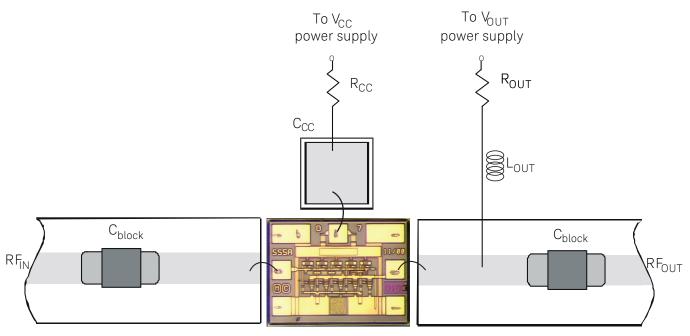


Figure 4. 1GC1-4030 chip assembly diagram

S-Parameters

($T_A = 25$ °C, $V_{cc} = 5$ V, $V_{Out} = 4.8$ V, $I_{C1} = 60$ mA, $I_{C2} = 80$ mA, $I_{c} = 50$ ohms)

Freq		S 11			S12			S21			S22	
GHz	dB	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang
0.5	-30.0	0.032	91.4	-15.2	0.173	1.5	11.2	3.648	174.9	-23.0	0.071	6.0
1.0	-29.3	0.034	94.5	-15.4	0.171	-1.2	11.2	3.633	167.7	-23.4	0.067	-3.2
1.5	-28.2	0.039	92.9	-15.5	0.168	-4.3	11.2	3.615	160.5	-23.6	0.066	-11.6
2.0	-26.9	0.045	88.7	-15.6	0.166	-7.2	11.1	3.597	153.4	-23.7	0.065	-19.5
2.5	-25.7	0.052	83.0	-15.7	0.163	-9.9	11.1	3.581	146.6	-23.7	0.065	-27.3
3.0	-24.6	0.059	77.0	-15.8	0.162	-12.4	11.1	3.570	140.1	-23.7	0.065	-35.6
3.5	-23.7	0.065	71.0	-15.9	0.160	-14.5	11.0	3.566	133.8	-23.8	0.064	-44.7
4.0	-23.1	0.070	65.4	-16.0	0.159	-16.5	11.1	3.569	127.5	-24.0	0.063	-55.1
4.5	-22.6	0.074	60.3	-16.0	0.158	-18.5	11.1	3.581	121.4	-24.2	0.061	-67.0
5.0	-22.4	0.076	55.8	-16.0	0.158	-20.5	11.1	3.601	115.2	-24.4	0.060	-80.4
5.5	-22.4	0.076	51.6	-16.1	0.157	-22.5	11.2	3.630	108.9	-24.4	0.060	-95.0
6.0	-22.4	0.075	47.5	-16.1	0.156	-24.7	11.3	3.664	102.4	-24.1	0.062	-109.7
6.5	-22.6	0.074	42.9	-16.2	0.155	-27.0	11.4	3.703	95.8	-23.6	0.066	-123.5
7.0	-23.0	0.071	37.0	-16.3	0.154	-29.4	11.5	3.745	89.0	-22.8	0.073	-135.2
7.5	-23.4	0.068	28.7	-16.3	0.153	-31.9	11.6	3.792	82.0	-21.8	0.081	-144.6
8.0	-24.0	0.063	16.6	-16.4	0.151	-34.5	11.7	3.841	74.7	-20.8	0.091	-151.9
8.5	-24.6	0.059	-0.9	-16.5	0.149	-37.1	11.8	3.890	67.2	-19.7	0.103	-157.5
9.0	-24.7	0.058	-24.7	-16.6	0.147	-39.8	11.9	3.937	59.5	-18.6	0.117	-161.8
9.5	-23.7	0.065	-52.3	-16.8	0.145	-42.6	12.0	3.978	51.4	-17.5	0.133	-165.4
10.0	-21.7	0.083	-77.4	-16.9	0.143	-45.5	12.1	4.011	43.1	-16.4	0.151	-168.6
10.5	-19.2	0.110	-97.5	-17.1	0.140	-48.5	12.1	4.028	34.4	-15.3	0.171	-171.7
11.0	-16.8	0.145	-113.4	-17.3	0.137	-51.4	12.1	4.028	25.4	-14.2	0.194	-174.9
11.5	-14.6	0.186	-126.8	-17.5	0.133	-54.4	12.1	4.005	16.2	-13.2	0.219	-178.4
12.0	-12.7	0.233	-138.6	-17.8	0.129	-57.2	11.9	3.957	6.7	-12.1	0.247	177.8
12.5	-11.0	0.283	-149.3	-18.1	0.125	-60.0	11.8	3.880	-3.0	-11.2	0.277	173.7
13.0	-9.5	0.337	-159.4	-18.4	0.120	-62.6	11.5	3.775	-12.9	-10.2	0.309	169.3
13.5	-8.2	0.391	-168.9	-18.7	0.116	-65.0	11.2	3.641	-22.9	-9.3	0.341	164.6
14.0	-7.0	0.446	-178.1	-19.1	0.111	-67.2	10.8	3.479	-32.8	-8.5	0.374	159.6
14.5	-6.1	0.498	173.2	-19.4	0.107	-69.2	10.3	3.290	-42.8	-7.8	0.406	154.6
15.0	-5.2	0.547	164.9	-19.8	0.102	-71.1	9.8	3.080	-52.6	-7.2	0.437	149.6
15.5	-4.6	0.592	157.1	-20.2	0.098	-72.8	9.1	2.853	-62.3	-6.7	0.465	144.6
16.0	-4.0	0.632	149.6	-20.6	0.093	-74.3	8.4	2.619	-71.7	-6.2	0.491	139.7
16.5	-3.5	0.666	142.6	-21.0	0.089	-75.7	7.5	2.384	-80.6	-5.8	0.514	135.0
17.0	-3.2	0.695	135.9	-21.4	0.085	-76.8	6.7	2.157	-89.2	-5.4	0.536	130.3
17.5	-2.9	0.720	129.6	-21.8	0.081	-77.8	5.8	1.945	-97.2	-5.1	0.557	125.7
18.0	-2.6	0.743	123.6	-22.1	0.079	-78.5	4.9	1.755	-104.6	-4.8	0.578	121.1
18.5	-2.3	0.766	117.9	-22.3	0.077	-79.2	4.0	1.590	-111.5	-4.5	0.599	116.5
19.0	-2.0	0.790	112.4	-22.5	0.075	-79.7	3.2	1.452	-117.8	-4.1	0.621	111.9
19.5	-1.8	0.817	107.2	-22.5	0.075	-79.9	2.5	1.340	-123.8	-3.8	0.646	107.5
20.0	-1.4	0.851	102.9	-22.4	0.076	-79.3	2.0	1.253	-129.2	-3.4	0.675	103.8

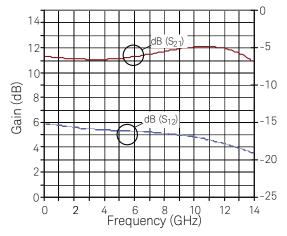
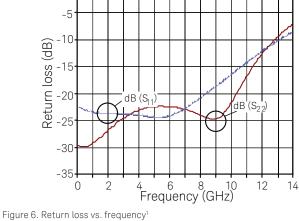



Figure 5. Gain and isolation vs. frequency

0

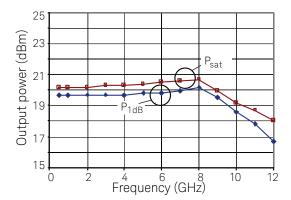


Figure 7. Output power vs. frequency¹

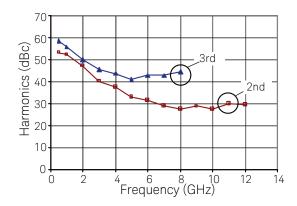


Figure 8. Harmonics vs. frequency $@P_{OUT} = +10$ dBm¹

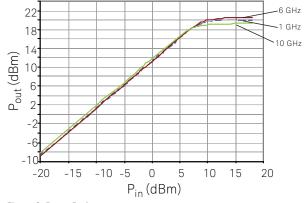
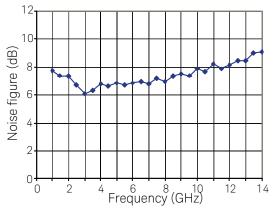
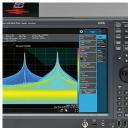


Figure 9. P_{in} vs. P_{out} 1




Figure 10. Noise figure vs. frequency¹

- All data was taken with $T_A = 25$ °C, $V_C = 4.8$ V, $I_{CC} = 140$ mA. This data sheet contains a variety of **typical** and guaranteed performance data. The information supplied should not be interpreted as a complete list of circuit specifications. Customers considering the use of this, or other HFTC GaAs ICs, for their design should obtain the current production specifications from HFTC Marketing. In this data sheet the term typical refers to the 50th percentile performance.

Evolving

Our unique combination of hardware, software, support, and people can help you reach your next breakthrough. We are unlocking the future of technology.

From Hewlett-Packard to Agilent to Keysight

myKeysight

myKeysight

www.keysight.com/find/mykeysight

A personalized view into the information most relevant to you.

KEYSIGHT SERVICES Accelerate Technology Adoption. Lower costs.

Keysight Services

www.keysight.com/find/service

Keysight Services can help from acquisition to renewal across your instrument's lifecycle. Our comprehensive service offerings—one-stop calibration, repair, asset management, technology refresh, consulting, training and more—helps you improve product quality and lower costs.

Keysight Channel Partners

www.keysight.com/find/channelpartners

Get the best of both worlds: Keysight's measurement expertise and product breadth, combined with channel partner convenience.

This data sheet contains a variety of typical and guaranteed performance data. The information supplied should not be interpreted as a complete list of circuit specifications. Customers considering the use of this, or other Keysight Technologies GaAs ICs, for their design should obtain the current production specifications from Keysight. In this data sheet the term typical refers to the 50th percentile performance. For additional information contact Keysight at MMIC_Helpline@keysight.com.

www.keysight.com/find/mmic

For more information on Keysight
Technologies' products, applications or
services, please contact your local Keysight
office. The complete list is available at:
www.keysight.com/find/contactus

Americas

Canada	(877) 894 4414
Brazil	55 11 3351 7010
Mexico	001 800 254 2440
United States	(800) 829 4444

Asia Pacific

Australia	1 800 629 485
China	800 810 0189
Hong Kong	800 938 693
India	1 800 11 2626
Japan	0120 (421) 345
Korea	080 769 0800
Malaysia	1 800 888 848
Singapore	1 800 375 8100
Taiwan	0800 047 866
Other AP Countries	(65) 6375 8100

Europe & Middle East

Europe a middle Eust	
Austria	0800 001122
Belgium	0800 58580
Finland	0800 523252
France	0805 980333
Germany	0800 6270999
Ireland	1800 832700
Israel	1 809 343051
Italy	800 599100
Luxembourg	+32 800 58580
Netherlands	0800 0233200
Russia	8800 5009286
Spain	800 000154
Sweden	0200 882255
Switzerland	0800 805353
	Opt. 1 (DE)
	Opt. 2 (FR)

For other unlisted countries: www.keysight.com/find/contactus (BP-06-08-16)

Opt. 3 (IT)

0800 0260637

United Kingdom

www.keysight.com/go/quality Keysight Technologies, Inc. DEKRA Certified ISO 9001:2015 Quality Management System

