Keysight Electronic Calibration Modules This manual provides documentation for the following models: RF Two-Port 85091C 85092C 85093C 85096C 85098C 85099C Microwave Two-Port N4690B N4690C N4691B N4692A N4693A N4694A N4696B RF Four-Port N4431B Microwave Four-Port N4432A N4433A > This is the legacy ECal module's Reference Guide. For newer ECal modules refer to: https://www.keysight.com/us/en/assets/9018-04501/reference-guides/9018-04501.pdf (N7550-90002) ## **Notices** © Keysight Technologies, Inc. 2000–2024 No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Keysight Technologies, Inc. as governed by United States and international copyright laws. #### Trademark Acknowledgments #### Manual Part Number N4693-90001 #### Edition Edition 2, February 2024 Printed in USA/Malaysia > Published by: Keysight Technologies 1400 Fountaingrove Parkway Santa Rosa, CA 95403 #### Warranty THE MATERIAL CONTAINED IN THIS DOCUMENT IS PROVIDED "AS IS," AND IS SUBJECT TO BEING CHANGED, WITHOUT NOTICE, IN FUTURE EDITIONS. FURTHER, TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, KEYSIGHT DISCLAIMS ALL WARRANTIES, EITHER EXPRESS OR IMPLIED WITH REGARD TO THIS MANUAL AND ANY INFORMATION CONTAINED HEREIN, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. KEYSIGHT SHALL NOT BE LIABLE FOR ERRORS OR FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH THE FURNISHING, USE, OR PERFORMANCE OF THIS DOCUMENT OR ANY INFORMATION CONTAINED HEREIN. SHOULD KEYSIGHT AND THE USER HAVE A SEPARATE WRITTEN AGREEMENT WITH WARRANTY TERMS COVERING THE MATERIAL IN THIS DOCUMENT THAT CONFLICT WITH THESE TERMS, THE WARRANTY TERMS IN THE SEPARATE AGREEMENT WILL CONTROL. #### **Technology Licenses** The hardware and/or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license. ### U.S. Government Rights The Software is "commercial computer software," as defined by Federal Acquisition Regulation ("FAR") 2.101. Pursuant to FAR 12.212 and 27.405-3 and Department of Defense FAR Supplement ("DFARS") 227.7202, the U.S. government acquires commercial computer software under the same terms by which the software is customarily provided to the public. Accordingly, Keysight provides the Software to U.S. government customers under its standard commercial license, which is embodied in its End User License Agreement (EULA), a copy of which can be found at http://www.keysight.com/find/sweu la. The license set forth in the EULA represents the exclusive authority by which the U.S. government may use, modify, distribute, or disclose the Software. The EULA and the license set forth therein, does not require or permit, among other things, that Keysight: (1) Furnish technical information related to commercial computer software or commercial computer software documentation that is not customarily provided to the public; or (2) Relinquish to, or otherwise provide, the government rights in excess of these rights customarily provided to the public to use, modify, reproduce, release, perform, display, or disclose commercial computer software or commercial computer software documentation. No additional government requirements beyond those set forth in the EULA shall apply, except to the extent that those terms, rights, or licenses are explicitly required from all providers of commercial computer software pursuant to the FAR and the DFARS and are set forth specifically in writing elsewhere in the EULA. Keysight shall be under no obligation to update, revise or otherwise modify the Software. With respect to any technical data as defined by FAR 2.101, pursuant to FAR 12.211 and 27.404.2 and DFARS 227.7102, the U.S. government acquires no greater than Limited Rights as defined in FAR 27.401 or DFAR 227.7103-5 (c), as applicable in any technical data. ## Safety Notices ### CAUTION A CAUTION notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a CAUTION notice until the indicated conditions are fully understood and met. #### WARNING A WARNING notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met. ## Where to Find the Latest Information Documentation is updated periodically. For the latest information about these products, including instrument software upgrades, application information, and product information, browse to one of the following URLs, according to the name of your product: #### http://www.keysight.com/find/ To receive the latest updates by email, subscribe to Keysight Email Updates at the following URL: #### http://www.keysight.com/find/MyKeysight Information on preventing instrument damage can be found at: #### www.keysight.com/find/PreventingInstrumentRepair ## Is your product software up-to-date? Periodically, Keysight releases software updates to fix known defects and incorporate product enhancements. To search for software updates for your product, go to the Keysight Technical Support website at: http://www.keysight.com/find/techsupport # Contacting Keysight Assistance with test and measurements needs and information on finding a local Keysight office are available on the Web at: http://www.keysight.com/find/assist. If you do not have access to the Internet, please contact your Keysight field engineer. In any correspondence or telephone conversation, refer to the Keysight product by its model number and full serial number. With this information, the Keysight representative can determine whether your product is still within its warranty period. | ۱. | General Information | | |----|--|-------| | | Manual Overview | . 1-1 | | | Prerequisite Knowledge | . 1-1 | | | Clarifying the Terminology of a Connector Interface | | | | Accuracy of Electronic Calibration versus Mechanical Calibration | . 1-2 | | | When to Calibrate | . 1-3 | | | Models and Options | . 1-4 | | | 8509x Modules (RF Two-Port) | . 1-4 | | | N4431B Modules (RF Four-Port) | | | | N469xA/B/C Modules (Microwave Two-Port) | | | | N4432A and N4433A Modules (Microwave Four-Port) | | | | Discontinued ECal Models | | | | Compatible Network Analyzers | 1-13 | | | Service and Recertification | 1-14 | | | Contacting Keysight | | | | Returning Devices to Keysight | | | | Recertification of ECal Modules | | | | Safety and Regulatory Information | | | | Safety Notices | | | | Instrument Markings | | | | Compliance Notices | 1-19 | | 2. | Preparing ECal for Use | | | | Inspecting the ECal Kit | 2 1 | | | Inspect the Kit Contents | | | | Locate the Two Serial Numbers | | | | Record the Serial Numbers | | | | Verify Electrical Performance | | | | Equipment Required but Not Supplied | | | | 8509x Series Kit Contents | | | | 8509x Options | | | | N4431B Series Kit Contents | | | | N4431B Options | | | | N469xA/B/C Series Kit Contents | | | | N469xA/B/C Options | | | | N4432A and N4433A Series Kit Contents | | | | N4432A Options | | | | · | 2-11 | #### Contents | | Operating and Safety Precautions ESD Damage Connector Care Input Power Level Operating Temperature Connecting and Disconnecting ECal Module Connect ECal Module to PNA or ENA Analyzer Connect ECal Module to VNA Analyzer | . 2-12
. 2-13
. 2-13
. 2-14
. 2-14 | |----|---|---| | 3. | Operating ECal Module Setting Up a Calibration Required Procedure for All Calibrations Calibration Types Available When to Correct for Isolation Calibration Methods for Non-Insertable Devices Finding More Information on Performing a Calibration Validating a Calibration ECal Confidence Check – Basic Validation of the Calibration System Verification Procedure – Traceable Accuracy Validation of the Calibrated Measurement System | 3-1
3-2
3-2
3-4
3-6
3-7 | | 4. | Use, Maintenance, and Care of the Devices Electrostatic Discharge Visual Inspection Look for Obvious Defects and Damage First Inspect the Mating Plane Surfaces Inspect Female Connectors Cleaning Connectors Cleaning Coax Connectors Cleaning Precision 7 mm Connectors Connector Gage Accuracy When to Gage Connectors Recognizing Gage Types Reading the Connector Gage Gaging Procedures | 4-3
4-3
4-5
4-6
4-6
4-8
4-9
4-10
4-10 | | | Making Connections 3.5 mm, 2.92 mm, 2.4 mm, 1.85 mm, Type-N, 7-16, and Type-F Devices 7 mm Devices Final Connection Using a Torque Wrench. Separating Connections | . 4-16
. 4-16
. 4-16
. 4-17 | | | Handling and Storage | 4-21 | |----|---|------| | | ECal Kit Storage Box (Option 150) | 4-22 | | 5. | Specifications and Characteristics | | | | Specifications: Terminology and Definitions | 5-1 | | | Environmental Specifications | | | | Operating Temperature and Accuracy Enhancement | | | | Barometric Pressure and Relative Humidity | | | | Characteristic Performance | | | | 8509x Series | 5-3 | | | N4431B (3.5 mm) | | | |
N4431B (Type-N 50 Ω). | | | | N4432A (Type-N 50 Ω) | | | | N4433A (3.5 mm) | | | | N469xA/B/C Series | | | | Mechanical Characteristics | | | | Pin Depth | | | | Typical Pin Depth Values | | | | Supplemental Mechanical Characteristics | | | | Mechanical Dimensions of the Modules | | | | Measurement Uncertainty Calculator | | | | Download the Vector Network Analyzer Uncertainty Calculator | | | | | | | 6. | | | | | Description of This Chapter | | | | 7 mm Modules and Accessories | | | | Type-N (50 ohm) Modules and Accessories | | | | 3.5 mm Modules and Accessories | 6-4 | | | 7-16 Modules and Accessories | 6-5 | | | 2.92 mm Modules and Accessories | 6-6 | | | 2.4 mm Modules and Accessories | 6-7 | | | 1.85 mm Modules and Accessories | 6-8 | | | Type-N (75 ohm) Modules and Accessories | 6-9 | | | Type-F Modules and Accessories | 6-10 | | | Other ECal Accessories | 6-11 | Contents Keysight Electronic Calibration Modules RF/Microwave Two Port and Four Port Reference Guide ## 1 General Information #### Manual Overview The purpose of this manual is to help you use your Electronic Calibration (ECal) module confidently and effectively. ECal is a precision, single-connection calibration technique which uses fully traceable and verifiable electronic standards. Each module has unique S-parameter data that is stored in the module's memory. During calibration, ECal uses this data to calculate the error terms for your network analyzer. This manual provides instructions for operating and maintaining your ECal module. Also included are mechanical specifications and replaceable parts available for each model. #### **RF Modules** The 8509x and N4431B series provide two-port and four-port calibration solutions with operating frequencies starting as low as 9 kHz and ending as high as 13.5 GHz. #### Microwave Modules The N469xA and N469xB/C series (which replace the 8506x series) and the N4432A and N4433A series provide two-port and four-port calibration solutions with operating frequencies starting as low as 300 kHz and ending as high as 67 GHz. ## Prerequisite Knowledge This manual assumes you are trained in proper connector care. Because an accurate calibration depends on the integrity and cleanliness of the connector interface, a damaged connector will invalidate the calibration achieved with that module. Refer to the "Principles of Microwave Connector Care Quick Reference Card" located at the back of this manual. ## Clarifying the Terminology of a Connector Interface In this manual, adapters, ECal modules, and gage masters are referred to by way of their interface connector. For example: - A female adapter has a female interface. - A male adapter has a male interface. A connector gage is referred to by way of the connector it measures. For example: - A male connector gage has a female interface so it can measure male devices. - A female connector gage has a male interface so it can measure female devices. ## Accuracy of Electronic Calibration versus Mechanical Calibration As the number of DUT test ports increases, the required number of calibration measurements also increases. This boosts the probability of bad connections and bad calibrations when mechanical calibration standards are used rather than ECal. Also, test port cable repeatability and stability errors are amplified by the increased number of connections and disconnections. To perform an SOLT 4-port calibration, a minimum of twelve 1-port standards and three 2-port (thru) standards are measured, requiring a total of eighteen connections. The same calibration using a 4-port ECal module (N4431B, N4432A and N4433A) requires only four connections. Ignoring connection related errors, the following table compares the accuracy of ECal versus mechanical calibration in various calibration options. | Mechanical Calibration Type | ECal Thru Type | Measurement | ECal | Mechanical
Calibration | |--|-----------------------------|----------------------------|------|---------------------------| | 1-Port, calibration constant (not data-based) SOL | NA | Reflection | ++ | | | 1-Port, short, open, sliding load | NA | Reflection | + | | | 1-Port, data-based, expanded | NA | Reflection | | + | | 2-Port TRL | All types | Reflection
Transmission | | ++ | | ≥2-Port, calibration constant SOL, flush thru ^a | Characterized | Reflection
Transmission | ++ | ++ | | | Internal unknown | Reflection
Transmission | ++ | | | | External flush ^a | Reflection
Transmission | ++ | | | ≥2-Port, calibration constant SOL, unknown thru | Characterized | Reflection
Transmission | ++ | ++ | | | Internal unknown | Reflection
Transmission | ++ | = | | Mechanical Calibration Type | ECal Thru Type | Measurement | ECal | Mechanical
Calibration | |--|-----------------------------|----------------------------|------|---------------------------| | ≥2-Port, data-based, expanded, flush thru ^a | Characterized | Reflection
Transmission | | + | | | Internal unknown | Reflection
Transmission | | + + | | | External flush ^a | Reflection
Transmission | | + + | | ≥2-Port, data-based, expanded, unknown thru | Characterized | Reflection
Transmission | | + ++ | | | Internal
unknown | Reflection
Transmission | | + + | | ++ better; + slightly better; = same | | | | | a. Flush thru should NOT be used when the test port connectors are not the same type as the calibration standards. SMA and 3.5 mm connectors are mateable but are NOT the same type. ## When to Calibrate A network analyzer calibration remains valid as long as the changes in the systematic error are insignificant. This means that changes to the uncorrected leakages (directivity and isolation), mismatches (source match and load match), and frequency response of the system are small (<10%) relative to accuracy specifications. Change in the environment (especially temperature) between calibration and measurement is the major cause in calibration accuracy degradation. The major effect is a change in the physical length of external and internal cables. Other important causes are dirty and damaged test port connectors and calibration standards. If the connectors become dirty or damaged, measurement repeatability and accuracy is affected. Fortunately, it is relatively easy to evaluate the general validity of the calibration. To test repeatability, remeasure one of the calibration standards. If you can not obtain repeatable measurements from your calibration standards, maintenance needs to be performed on the test port connectors, cables and calibration standards. Also, maintain at least one sample of the device under test or some known device as your reference device. A verification kit may be used for this purpose. After calibration, measure the reference device and note its responses. Periodically remeasure the device and note any changes in its corrected response which can be attributed to the test system. With experience you will be able to see changes in the reference responses that indicate a need to perform the measurement calibration again. ## Models and Options This section provides the model number, operating characteristics and connector options available with Keysight RF and microwave ECal modules. You can order ECal modules by selecting the model number followed by the desired options. ## 8509x Modules (RF Two-Port) ECal modules from this series are available with the connector types and frequency ranges shown in Table 1-1 on page 5. Mixed connector options allow you to configure the module with a different connector type at each port (as shown in Figure 1-2). Figure 1-1 Model 85092C Option M0F Figure 1-2 Model 85092C Option 104, 201 Table 1-1 8509x Modules | Model Connector Operatin Number Type Frequence | | | | Port A and B Option | 1 | | |--|---|--------------------|-------------------------------------|---------------------|--------------------|--| | Number | туре | Frequency | -m- and -f- | -m- and -m- | -f- and -f- | | | 85091C | 7 mm | 300 kHz to 9 GHz | No Connector Option
85091-60004 | | | | | 85092C | Type-N 50 ohm | 300 kHz to 9 GHz | M0F
85092-60008 | 00M
85092-60009 | 00F
85092-60010 | | | | Mixed connector
types – see
Table 1-2 | 300 kHz to 9 GHz | See Table 1-2
85092-60004 | | | | | 85093C | 3.5 mm | 300 kHz to 9 GHz | M0F
85093-60008 | 00M
85093-60009 | 00F
85093-60010 | | | | Mixed connector
types – see Table
1-2 | 300 kHz to 9 GHz | See Table 1-2
85092-60004 | | | | | 85096C | Type-N 75 ohm | 300 kHz to 3 GHz | M0F
85096-60007 | 00M
85096-60008 | 00F
85096-60009 | | | 85098C | 7-16 | 300 kHz to 7.5 GHz | M0F
85098-60007 | 00M
85098-60008 | 00F
85098-60009 | | | | Mixed connector
types – see Table
1-2 | 300 kHz to 7.5 GHz | See Table 1-2
85092-60004 | | | | | 85099C | Type-F | 300 kHz to 3 GHz | M0F
85099-60009 | 00M
85099-60010 | 00F
85099-60011 | | Table 1-2 8509x Mixed Connector Options | Model
Number | Port A Option | | | Port B Option | | | | | | |-----------------|-------------------|-----|-----|---------------|-----|-----|------------|-----|-----| | Nullibei | Туре | -f- | -m- | Туре | -f- | -m- | Туре | -f- | -m- | | 85092C | Type-N 50Ω | 103 | 104 | 3.5 mm | 201 | 202 | 7-16a | 205 | 206 | | 85093C | 3.5 mm | 101 | 102 | Type-N 50Ω | 203 | 204 | 7-16a | 205 | 206 | | 85098C | 7-16 ^a | 105 | 106 | 3.5 mm | 201 | 202 | Type-N 50Ω | 203 | 204 | a. Limits ECal module high frequency to 7.5 GHz. | Other Options | Description | |---------------|---| | 00A | Adds one -m- to -m- and one -f- to -f- adapter. | | UK6 | Adds commercial calibration certificate with measured data. | ## N4431B Modules (RF Four-Port) ECal modules from this series are
available with the connector types and frequency ranges shown in Table 1-3. Mixed connector options (shown in Table 1-4) allow you to configure the module with a different connector type at each port. Figure 1-3 Model N4431B Option 010 Table 1-3 N4431B Modules | Model
Number | Module
Number | Connector Type Port A,B,C,D | Operating
Frequency | Option | |-----------------|------------------|--|-----------------------------------|---| | | N4431-60006 | 3.5 mm -f- | 9 kHz ^a to 13.5
GHz | 010 | | N4431B | N4431-60007 | Type-N 50 Ω -f- | 9 kHz ^a to 13.5
GHz | 020 | | | N4431-60008 | Mixed connector types – see Table 1-4, "N4431B Mixed Connector Options", on page 7 | 9 kHz ^a to 13.5
GHz | See Table 1-4,
"N4431B
Mixed
Connector
Options", on
page 7 | a. Performance from 9 kHz to 300 kHz is valid only for the E5071C ENA network analyzer with firmware version A.09.10 or higher. Table 1-4 N4431B Mixed Connector Options | Connector Type | Port A Option | Port B Option | Port C Option | Port D Option | |-----------------------|---------------|---------------|---------------|---------------| | 3.5 mm -f- | 101 | 201 | 301 | 401 | | 3.5 mm -m- | 102 | 202 | 302 | 402 | | Type-N 50Ω -f- | 103 | 203 | 303 | 403 | | Type-N 50Ω -m- | 104 | 204 | 304 | 404 | | 7-16 -f- ^a | 105 | 205 | 305 | 405 | | 7-16 -m-a | 106 | 206 | 306 | 406 | a. Limits ECal module high frequency to 7.5 GHz. | Other Options | Description | |---------------|---| | UK6 | Adds commercial calibration certificate with measured data. | ## N469xA/B/C Modules (Microwave Two-Port) ECal modules from this series are available with the connector types and frequency ranges shown in Table 1-5. Mixed connector options are not available with this series. The new N4690C module has shorter female connectors than the N4690B. Figure 1-4 Model N4693A Option M0F Table 1-5 N469xA/B/C Modules | Model
Number | Connector | Operating
Frequency | | Port A and B Option | | | | |-----------------|------------|------------------------|-----------------|---------------------|-------------|--|--| | Nullibel | Туре | riequelicy | -m- and -f- | -m- and -m- | -f- and -f- | | | | N4690B | Type-N 50Ω | 300 kHz to 18 GHz | MOF | 00M | 00F | | | | | | | | mber | | | | | | | | N4690-60004 | N4690-60005 | N4690-60006 | | | | N4690C | Type-N 50Ω | 300 kHz to 18 GHz | MOF | 00M | 00F | | | | | | | Module Part Nur | mber | | | | | | | | N4690-60007 | N4690-60008 | N4690-60009 | | | | N4691B | 3.5 mm | 300 kHz to 26.5 GHz | MOF | 00M | 00F | | | | | | | Module Part Nur | mber | | | | | | | | N4691-60004 | N4691-60005 | N4691-60006 | | | | N4692A | 2.92 mm | 10 MHz to 40 GHz | MOF | 00M | 00F | | | | | | | Module Part Nur | mber | | | | | | | | N4692-60001 | N4692-60002 | N4692-60003 | | | | N4693A | 2.4 mm | 10 MHz to 50 GHz | MOF | 00M | 00F | | | | | | | Module Part Nur | mber | | | | | | | | N4693-60001 | N4693-60002 | N4693-60003 | | | | N4694A | 1.85 mm | 10 MHz to 67 GHz | MOF | 00M | 00F | | | | | | | Module Part Nur | Module Part Number | | | | | | | | N4694-60001 | N4694-60002 | N4694-60003 | | | | N4696B | 7 mm | 300 kHz to 18 GHz | No Connector Op | No Connector Option | | | | | | | | Module Part Nur | Module Part Number | | | | | | | | | N4696-60004 | | | | | Other Options | Description | |---------------|---| | 00A | Adds one -m- to -m- and one -f- to -f- adapter (not available with N4696B). | | UK6 | Adds commercial calibration certificate with measured data. | ## N4432A and N4433A Modules (Microwave Four-Port) ECal modules from this series are available with the connector types and frequency ranges shown in Table 1-6. Mixed connector options (shown in Table 1-7) allow you to configure the module with a different connector type at each port. Figure 1-5 Model N4433A Option 010 Table 1-6 N4432A and N4433A Modules | Model
Number | Module
Number | Connector Type Port A,B,C,D | Operating Frequency | Option | |-----------------|------------------|---|---------------------|--| | N4432A | N4432-60003 | Type-N 50Ω -f- | 300 kHz to 18 GHz | 020 | | | N4432-60005 | Mixed connector types – see Table 1-7, "N4432A Mixed Connector Options", on page 10 | 300 kHz to 18 GHz | See Table 1-7,
"N4432A
Mixed
Connector
Options", on
page 10 | | N4433A | N4433-60003 | 3.5 mm -f- | 300 kHz to 20 GHz | 010 | | | N4433-60004 | Mixed connector types – see Table 1-8, "N4433A Mixed Connector Options", on page 10 | 300 kHz to 20 GHz | See Table 1-8,
"N4433A
Mixed
Connector
Options", on
page 10 | Table 1-7 N4432A Mixed Connector Options | Connector Type | Port A Option | Port B Option | Port C Option | Port D Option | |-------------------------|---------------|---------------|---------------|---------------| | 3.5 mm -f- ^a | 101 | 201 | 301 | 401 | | 3.5 mm -m- ^a | 102 | 202 | 302 | 402 | | Type-N 50Ω -f- | 103 | 203 | 303 | 403 | | Type-N 50Ω -m- | 104 | 204 | 304 | 404 | a. Frequency range of ECal module limited by other connectors. | Other Options | Description | |---------------|---| | UK6 | Adds commercial calibration certificate with measured data. | | 1A7 | Adds ISO 17025 compliant calibration. | | A6J | Adds ANSI Z540 compliant calibration. | Table 1-8 N4433A Mixed Connector Options | Connector Type | Port A Option | Port B Option | Port C Option | Port D Option | |----------------|---------------|---------------|---------------|---------------| | 3.5 mm -f- | 101 | 201 | 301 | 401 | | 3.5 mm -m- | 102 | 202 | 302 | 402 | | Other Options | Description | |---------------|---| | UK6 | Adds commercial calibration certificate with measured data. | | 1A7 | Adds ISO 17025 compliant calibration. | | A6J | Adds ANSI Z540 compliant calibration. | ### Discontinued ECal Models Discontinued ECal models are no longer available for purchase, but may be returned to Keysight for service and recertification. Table 1-9 Discontinued ECal Models | Discontinued
Model
Number | Keysight Part
Number | Connector
Type | Operating
Frequency | Description | Replacement
Model | |---------------------------------|-------------------------|--------------------|------------------------|-----------------------|----------------------| | 85060A ^a | 85060-60001 | 7 mm | 1 to 18 GHz | 2-Port
Microwave | N4696B | | 85062Aa | 85062-60001 | 3.5 mm | 1 to 26.5 GHz | Electronic | N4691B | | 85064Aa | 85064-60001 | Type-N 50Ω | 1 to 18 GHz | Calibration
Module | N4690B/C | | 85060B | 85060-60002 | 7 mm | 1 to 18 GHz | | N4696B | | 85062B | 85062-60002 | 3.5 mm | 1 to 26.5 GHz | | N4691B | | 85064B | 85064-60002 | Type-N 50Ω | 1 to 18 GHz | | N4690B/C | | 85091A | 85091-60001 | 7 mm | 30 kHz to | 2-Port | 85091C | | 85092A | 85092-60001 | Type-N 50Ω | 6 GHz | RF
Electronic | 85092C | | 85093A | 85093-60001 | 3.5 mm | Calibration Module | | 85093C | | 85096A | 85096-60001 | Type-N 75Ω | 300 kHz to 3 GHz | Module | 85096C | | 85098A | 85098-60001 | 7-16 | 300 kHz to
7.5 GHz | | 85098C | | 85099A | 85099-60001 | Type-F | 300 kHz to 3 GHz | | 85099C | | 85091B | 85091-60003 | 7 mm | 300 kHz to | | 85091C | | 85092B | 85092-60003 | Type-N 50Ω | 9 GHz | | 85092C | | 85093B | 85093-60003 | 3.5 mm | | | 85093C | | 85096B | 85096-60003 | Type-N 75 Ω | 300 kHz to 3 GHz | | 85096C | | 85098B | 85098-60003 | 7-16 | 300 kHz to
7.5 GHz | | 85098C | | 85099B | 85099-60003 | Type-F | 300 kHz to 3 GHz | | 85099C | Continued on next page Table 1-9 Discontinued ECal Models | Keysight Part
Number | Connector
Type | Operating
Frequency | Description | Replacement
Model | | | |-------------------------|--|--|---|---------------------------------------|--|--------| | | | | | | | | | N4431-60003 | 3.5 mm;
all -f- | 300 kHz to 4-Port RF
9 GHz Electronic | | 9 GHz Electronic | | N4431B | | N4431-60004 | Type-N 50 Ω ; all -f- | - | Calibration
Module | | | | | N4431-60005 | Mixed connector types – see Table 1-4, "N4431B Mixed Connector Options", on page 7 | _ | | | | | | | | | | | | | | N4690-60001 | Type-N 50Ω ; one -f-, one -m- | 10 MHz to
18 GHz | 2-Port
Microwave
Electronic | N4690B/C | | | | N4690-60002 | Type-N 50Ω ; both -m- | - | Calibration
Module | | | | | N4690-60003 | Type-N 50 Ω
;
both -f- | - | | | | | | | | | | | | | | N4691-60001 | 3.5 mm; one
-f-, one -m- | 10 MHz to 2-Port
26.5 GHz Microwave | | N4691B | | | | N4691-60002 | 3.5 mm;
both -m- | - | Electronic
Calibration
Module | | | | | N4691-60003 | 3.5 mm;
both -f- | - | | | | | | | Number N4431-60003 N4431-60004 N4431-60005 N4690-60001 N4690-60002 N4690-60003 N4691-60001 N4691-60002 | Number Type N4431-60003 3.5 mm; all -f- N4431-60004 Type-N 50Ω; all -f- N4431-60005 Mixed connector types - see Table 1-4, "N4431B Mixed Connector Options", on page 7 N4690-60001 Type-N 50Ω; one -f-, one -m- N4690-60002 Type-N 50Ω; both -m- N4691-60001 3.5 mm; one -f-, one -m- N4691-60002 3.5 mm; one -f-, one -m- N4691-60003 3.5 mm; one -f-, one -m- N4691-60003 3.5 mm; one -f-, one -m- | Number Type Frequency N4431-60003 3.5 mm; all -f- 300 kHz to 9 GHz N4431-60004 Type-N 50Ω; all -f- 9 GHz N4431-60005 Mixed connector types - see Table 1-4, "N4431B Mixed Connector Options", on page 7 10 MHz to 18 GHz N4690-60001 Type-N 50Ω; one -f-, one -m- 18 GHz N4690-60002 Type-N 50Ω; both -m- N4691-60001 3.5 mm; one -f-, one -m- 10 MHz to 26.5 GHz N4691-60002 3.5 mm; both -m- 10 MHz to 26.5 GHz | Number Type Frequency Frequency | | | a. 8506xA series modules with serial numbers below 800 need to be retrofitted for operation with the 85097B VNA interface kit. The retrofitting must be done by a qualified Keysight Technologies service office. See "Contacting Keysight" on page 14. ## Compatible Network Analyzers ECal modules operate with the network analyzer models shown in **Table 1-10**. Not all ECal module and network analyzer combinations have the same features or capabilities. See your network analyzer user guide or online Help. Table 1-10 Compatible Network Analyzers | Network | | | ECal Module Se | eries | | Interface | |------------------------------------|----------------|---------------------|----------------|------------------|--------------------|------------| | Analyzers | 8509xC | N4431B ^a | N443xA | N469xA/B/C | 8506x ^b | - Required | | PNA Network Ar | nalyzers | | | | | | | E8356/7/8A | Yes | Yes | Yes | Yes ^c | No | USB | | E8801/2/3A | Yes | Yes | Yes | Yes ^c | No | USB | | N3381/2/3A | Yes | Yes | Yes | Yes ^c | No | USB | | E8362/3/4
A/B/C | Yes | Yes | Yes | Yes ^c | No | USB | | E8361A/C | Yes | Yes | Yes | Yes ^c | No | USB | | N5230A/C | Yes | Yes | Yes | Yes ^c | No | USB | | N522xA/B,
N523xA/B,
N524xA/B | Yes | Yes | Yes | Yes ^c | No | USB | | ENA Network Ar | nalyzers | | | | | | | E5070A/B and E5071A/B/C | Yes | Yes | Yes | Yes ^d | No | USB | | E5061/2A | Yes | Yes | N/A | N/A | No | USB | | PXIe Network Analyzer Modules | | | | | | | | М93ххА | Yes | Yes | Yes | Yes | No | USB | | Streamline Netw | ork Analyzer N | Modules | | | | | | M50xxB
P93xxA/B | Yes | Yes | Yes | Yes | No | USB | a. Performance from 9 kHz to 300 kHz is valid only for the E5071C ENA network analyzer with firmware version A.09.10 or higher. b. 8506x modules are no longer available for purchase. c. PNA firmware revision 3.0 required with N4692A, N4693A, and N4694A. d. Exception: the N4693A and N4694A are not supported on the ENA. #### Service and Recertification If your ECal module requires service or recertification, contact the Keysight office nearest you for information about where to send it. The performance of your ECal module can only be verified by specially manufactured equipment and calibration standards from Keysight. ## Contacting Keysight Assistance with test and measurements needs and information on finding a local Keysight office are available on the Web at: #### www.keysight.com/find/assist If you do not have access to the Internet, please contact your Keysight field engineer. #### NOTE In any correspondence or telephone conversation, refer to the Keysight product by its model number and full serial number. With this information, the Keysight representative can determine whether your product is still within its warranty period. ## Returning Devices to Keysight If you are returning the product to Keysight, please include a service tag (located near the end of this manual) on which you provide the following information: - your company name and address - a technical contact person within your company, and the person's complete telephone number including country code and area code - the model number and serial number of the case - the part number and serial number of each device - type of service required - a detailed description of the problem and how the device was being used when the problem occurred (such as calibration or measurement) NOTE When transporting the module, use original or comparable packaging. #### Recertification of ECal Modules #### CAUTION Only Keysight calibration laboratories use the most accurate reference standards - directly traceable to national and international primary standards - to calibrate ECal modules to their warranted specifications. Calibration services performed by unauthorized calibration service providers will cause ECal modules to perform substantially below specifications. Keysight is not responsible for the poor performance of ECal modules that are calibrated by such unauthorized calibration service providers. The suggested interval for recertification is 12 months. After reviewing the results of the initial recertification, you may establish a shorter interval that reflects greater use and wear of the module. #### Where to Send a Module for Recertification Contact Keysight for information on where to send your kit for recertification. See "Contacting Keysight" on page 14. Refer to "Returning Devices to Keysight" on page 14 for instructions on the preparation of returning the device. #### How Keysight Verifies Your ECal Module Keysight verifies the specifications of these devices as follows: - 1. The residual microwave error terms of the test system are verified with precision airlines and shorts or low frequency resistance that are directly traced to the National Institute of Standards and Technology (NIST). The airline and short characteristics are developed from mechanical measurements. The mechanical measurements and material properties are carefully modeled to give very accurate electrical representation. The mechanical measurements are then traced to NIST through various plug and ring gages and other mechanical measurements. - 2. Each module is electrically tested on this system to the specification listed in Chapter 5, "Specifications and Characteristics." These two steps establish a traceable link to NIST for Keysight to the extent allowed by the Institute's calibration facility. The specifications data provided for the module are traceable to NIST through Keysight Technologies. #### What Is Provided with a Recertification - a new calibration sticker affixed to the module - a certificate of calibration - a list of United States National Institute of Standards and Technology (NIST) traceable numbers General Information Service and Recertification - a calibration report for each traceable module listing measured values, specifications, and uncertainties - a new set of S-parameter data (embedded in module memory) if the old set of S-parameters data no longer allows for a calibration that meets all performance specifications Keysight Technologies offers different types of calibration for the recertification of the module. For more information, contact Keysight. See "Contacting Keysight" on page 14. ## Safety and Regulatory Information Review this section to familiarize yourself with safety markings and instructions before you operate the ECal module. This product has been designed and tested in accordance with international standards. #### WARNING The WARNING notice denotes a hazard. It calls attention to a procedure, practice, or the like, that, if not correctly performed or adhered to, could result in personal injury. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met. ## CAUTION The CAUTION notice denotes a hazard. It calls attention to an operating procedure, practice, or the like, that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a CAUTION notice until the indicated conditions are fully understood and met. General Information Safety and Regulatory Information ## Safety Notices Use a dry cloth or one slightly dampened with water to clean the external case parts. Do not attempt to clean internally. ## Instrument Markings #### Table 1-11 The instruction documentation symbol. The product is marked with this symbol when it is necessary for the user to refer to the instructions in the documentation. This symbol indicates separate collection for electrical and electronic equipment, mandated under EU law as of August 13, 2005. All electrical and electronic equipment are required to be separated from normal waste for disposal (Reference WEEE Directive, 2002/96/EC. The CE marking is a legal compliance marking of the European Community. This CE marking shows that the product complies with all the relevant European Legal Directives. This mark designates the product is an Industrial Scientific and Medical Group 1 Class A product (reference CISPR 11, Clause 5). #### ICES/NMB-001 This ISM device complies with Canadian ICES -001. Cet appareil ISM est conforme a la norme NMB du Canada. The RCM mark is a registered trademark of the Australian Communications and Media Authority. China RoHS regulations include requirements related to packaging, and require compliance to China standard GB18455-2001. #### **Table 1-11** This symbol indicates compliance with China RoHS regulations for paper/fiberboard packaging. ## **Compliance Notices** This product has been designated and tested in accordance with accepted industry standards, and has been supplied in a safe condition. The documentation contains information and warnings that must be followed
by the user to ensure safe operation and to maintain the product in a safe condition. #### **EMC** and Safety Information #### **EMC** Complies with the essential requirements of the European EMC Directive as well as current editions of the following standards (dates and editions are cited in the Declaration of Conformity): - IEC/EN 61326-1 - CISPR Pub 11 Group 1, class A - AS/NZS CISPR 11 - ICES/NMB-001 This ISM device complies with Canadian ICES-001. Cet appareil ISM est conforme a la norme NMB-001 du Canada.000 #### South Korean Class A EMC declaration This equipment is Class A suitable for professional use and is for use in electromagnetic environments outside of the home. #### 사용자안내문 이 <u>기기는 업무용 환경에서 사용할 목적으로 적합성평가를 받은 기기로서</u> 가정용 환경에서 사용하는 경우 전파간섭의 우려가 있습니다. ※ 사용자 안내문은 "업무용 방송통신기자재"에만 적용한다. General Information Safety and Regulatory Information ## Safety Information European Low Voltage Directive is not applicable for these products. ## **Declaration of Conformity** A declaration of conformity for any of these ECal modules is available at http://www.keysight.com/go/conformity or by contacting Keysight - see "Contacting Keysight" on page 14. Keysight Electronic Calibration Modules RF/Microwave Two Port and Four Port Reference Guide # 2 Preparing ECal for Use ## Inspecting the ECal Kit ## Inspect the Kit Contents Verify the case and its contents are not damaged and that all parts are included (see items listed in Table 2-2, Table 2-3, Table 2-4, Table 2-5 and Table 2-6). If the case or any device appears damaged, or if the shipment is incomplete, contact Keysight. Keysight will arrange for repair or replacement of incomplete or damaged shipments without waiting for settlement from the transportation company. See "Contacting Keysight" on page 14. #### Locate the Two Serial Numbers Your ECal kit has a serial number and your ECal module also has a serial number. Both serial numbers are printed on a label on the backside of the ECal module. #### **ECal Kit Serial Number** The serial number with the MY/US prefix on the backside of the ECal module is assigned to the ECal **kit**. Refer to **Figure 2-1**. The ECal kit contains the ECal module and, depending on the option configuration, accessories such as wrenches and adapters. Figure 2-1 Serial Numbers on the Backside of the ECal Module N4693_001_201 NOTE #### Older ECal modules may not have the label on the backside. The ECal kit serial number is intended for identification purposes whenever an ECal kit is returned to Keysight for repair or recertification. #### ECal Module Serial Number The five digit serial number on the backside of the ECal module is assigned to the ECal **module**, and is labeled "ECal S/N." Refer to Figure 2-1. Each ECal module is unique and is individually serialized. The serial number is stored in the ECal module memory and may be accessed by a network analyzer when the ECal is used to perform a calibration. Test reports for an ECal module will refer to this serial number as the "ECal S/N." #### Record the Serial Numbers Record the serial numbers and the date of initial use as a reminder for annual recertification. See "Recertification of ECal Modules" on page 15. Table 2-1 Table for Tracking Serial Numbers | ECal Kit
Model Number | ECal Kit Serial Number
(contains MY/US prefix) | ECal Module
Serial Number
(contains five digits) | Date of Initial Use | |--------------------------|---|--|---------------------| ## Verify Electrical Performance To verify electrical performance of the module, see "Validating a Calibration" on page 7. Equipment Required but Not Supplied ## Pin Depth Gages Gages for measuring recession or protrusion are not provided in the kit. See Chapter 6, "Replaceable Parts." or contact Keysight to order gages and other test accessories. #### 8509x Series Kit Contents The following table lists the items in each 8509x kit. The ECal module listed in the table with each kit has a male and female connector (Option MOF). See Table 1-1 on page 1-5 for the part number of other configurations. #### NOTE For ECals with Option 010 or mixed options with 3.5 mm -f- connectors: When a 3.5 mm female connector's contact fingers are bent or broken, you can perform a self-repair on the inner contacts by using a connector repair kit. For information on the 3.5 mm Connector Repair Kit: - For ordering information, refer to "3.5 mm Modules and Accessories" on page 4 and Table 6-3 on page 4 and to "Contacting Keysight" on page 4 - For 3.5 mm Slotless Connector repair, refer to https://www.keysight.com/us/en/assets/9018-40566/service-manuals/9 018-40566.pdf (85052-90070) and - For additional ECal repair information, refer to http://mktwww.srs.is.keysight.com/field/service/network/ecal/repair.htm Table 2-2 8509x Kit Contents | Qty | Description | Part No. | Qty | Description | Part No. | |------|------------------------------|-------------|------|--------------------------------|-------------| | 8509 | 85091C | | | 06C | | | 1 | RF Module, 7 mm | 85091-60004 | 1 | RF Module, Type-N 75 ohms | 85096-60007 | | 1 | Torque Wrench 3/4", 1.3 N-m | 8710-1766 | 1 | USB A-B Cable, 1.8 m | 8121-0506 | | 1 | USB A-B Cable, 1.8 m | 8121-0506 | 1 | Reference Guide | N4693-90001 | | 1 | Extractor, 7 mm Collet | 5060-0370 | 8509 | 98C | | | 1 | Reference Guide | N4693-90001 | 1 | RF Module, 7-16 | 85098-60007 | | 8509 | 85092C | | 1 | Torque Wrench 1 1/16", 2.2 N-m | 8710-2175 | | 1 | RF Module, Type-N 50 ohms | 85092-60008 | 1 | Open-end Wrench 15/16" | 8710-2174 | | 1 | Torque Wrench 3/4", 1.3 N-m | 8710-1766 | 1 | USB A-B Cable, 1.8 m | 8121-0506 | | 1 | USB A-B Cable, 1.8 m | 8121-0506 | 1 | Reference Guide | N4693-90001 | | 1 | Reference Guide | N4693-90001 | 8509 | 99C | | | 8509 |)3C | | 1 | RF Module, Type-F | 85099-60009 | | 1 | RF Module, 3.5 mm | 85093-60008 | 1 | Type F Wrench | 8710-1841 | | 1 | Torque Wrench 20 mm, 0.9 N-m | 8710-1764 | 1 | USB A-B Cable, 1.8 m | 8121-0506 | Table 2-2 8509x Kit Contents | Qty | Description | Part No. | Qty | Description | Part No. | |-----|------------------------------|-------------|-----|-----------------|-------------| | 1 | Torque Wrench 5/16", 0.9 N-m | 8710-1765 | 1 | Reference Guide | N4693-90001 | | 1 | USB A-B Cable, 1.8 m | 8121-0506 | | | | | 1 | Reference Guide | N4693-90001 | | | | ## 8509x Options - Option 00M configures the module with two male connectors. - Option 00F configures the module with two female connectors. - Option MOF configures the module with one male connector and one female connector. - Option 00A adds one -m- to -m- and one -f- to -f adapter (not available with 85091C). - Option UK6 adds a commercial calibration certificate with measured data. - Option 150 adds a storage box for the ECal module and accessories. #### N4431B Series Kit Contents NOTE The N4431A is no longer available for purchase, but may be returned to Keysight for service and recertification. NOTE For ECals with Option 010 or mixed options with 3.5 mm -f- connectors: When a 3.5 mm female connector's contact fingers are bent or broken, you can perform a self-repair on the inner contacts by using a connector repair kit. For information on the 3.5 mm Connector Repair Kit: - For ordering information, refer to "3.5 mm Modules and Accessories" on page 4 and Table 6-3 on page 4 and to "Contacting Keysight" on page 4 - For 3.5 mm Slotless Connector repair, refer to https://www.keysight.com/us/en/assets/9018-40566/service-manuals/9 018-40566.pdf (85052-90070) and - For additional ECal repair information, refer to http://mktwww.srs.is.keysight.com/field/service/network/ecal/repair.htm The following table lists the items in each N4431B kit. Option 010 is configured with 3.5 mm -f- connectors on all ports and Option 020 is configured with type-N -f- connectors on all ports. See **Table 1-4 on page 7** for other configurations available. Table 2-3 N4431B Kit Contents | Qty | Description | Part No. | Qty | Description | Part No. | |-------------------|------------------------------|---|-------------------|-----------------------------|---| | N4431B Option 010 | | | N4431B Option 020 | | | | 1 | RF Module, 3.5 mm | N4431-60003
or
N4431-60006 ^a | 1 | RF Module, Type-N 50 ohms | N4431-60004
or
N4431-60007 ^a | | 1 | Torque Wrench 20 mm, 0.9 N-m | 8710-1764 | 1 | Torque Wrench 3/4", 1.3 N-m | 8710-1766 | | 1 | Torque Wrench 5/16", 0.9 N-m | 8710-1765 | 1 | USB A-B Cable, 1.8 m | 8121-0506 | | 1 | USB A-B Cable, 1.8 m | 8121-0506 | 1 | Reference Guide | N4693-90001 | | 1 | Reference Guide | N4693-90001 | | | | a. Shipped only with N4431B. ## N4431B Options Option 010 configures the module with 3.5 mm -f- connectors on all ports. #### Preparing ECal for Use N4431B Series Kit Contents - Option 020 configures the module with Type-N 50 ohm -f- connectors on all ports. - Option UK6 adds a commercial calibration certificate with measured data. - Option 150 adds a storage box for the ECal module and accessories. ## N469xA/B/C Series Kit Contents #### NOTE The N4690/1/6A are no longer available for purchase, but may be returned to Keysight for service and recertification. The following table lists the items in each N469xA/B/C kit. The ECal module listed in the table with each kit describes a unit having a male and female connector (Option M0F). See **Chapter 6**, "Replaceable Parts." for the part number of other configurations. Table 2-4 N469xA/B/C Kit Contents | N4690B 1 Microwave Module, Type-N N4690-60004, or N4690-60005, or N4690-60006 1 Torque Wrench, 3/4", 1.3 N-m 8710-1766 1 Open-End Wrench, 1/2" to 9/16" 8710-1770 1 USB A-B Cable, 1.8 m 8121-0506 1 Reference Guide N4693-90001 N4690-60007, or N4690-60007, or N4690-60008, or
N4690-60009 1 Torque Wrench, 3/4", 1.3 N-m 8710-1766 1 Open-End Wrench, 1/2" to 9/16" 8710-1770 1 USB A-B Cable, 1.8 m 8121-0506 1 Reference Guide N4693-90001 N4691B 1 Microwave Module, 3.5 mm N4691-60004, or N4691-60005, or N4691-60006 1 Torque Wrench, 20 mm, 0.9 N-m 8710-1764 1 Torque Wrench, 5/16", 0.9 N-m 8710-1765 1 Open-End Wrench, 1/2" to 9/16" 8710-1770 1 Spanner Wrench 08513-20014 1 USB A-B Cable, 1.8 m 8121-0506 | Qty | Description | Part No. | | | | |--|--------|--------------------------------|-----------------|--|--|--| | 1 Microwave Module, Type-N N4690-60004, or N4690-60005, or N4690-60006 1 Torque Wrench, 3/4", 1.3 N-m 8710-1766 1 Open-End Wrench, 1/2" to 9/16" 8710-1770 1 USB A-B Cable, 1.8 m 8121-0506 1 Reference Guide N4693-90001 N4690C 1 Microwave Module, Type-N N4690-60007, or N4690-60009, or N4690-60009 1 Torque Wrench, 3/4", 1.3 N-m 8710-1766 1 Open-End Wrench, 1/2" to 9/16" 8710-1770 1 USB A-B Cable, 1.8 m 8121-0506 1 Reference Guide N4693-90001 N4691B 1 Microwave Module, 3.5 mm N4691-60004, or N4691-60005, or N4691-60006, or N4691-60006 1 Torque Wrench, 20 mm, 0.9 N-m 8710-1764 1 Torque Wrench, 5/16", 0.9 N-m 8710-1765 1 Open-End Wrench, 1/2" to 9/16" 8710-1770 1 Spanner Wrench 08513-20014 | Ψty | Description | i aiciio. | | | | | N4690-60005, or N4690-60006 1 Torque Wrench, 3/4", 1.3 N-m 8710-1766 1 Open-End Wrench, 1/2" to 9/16" 8710-1770 1 USB A-B Cable, 1.8 m 8121-0506 1 Reference Guide N4693-90001 N4690C 1 Microwave Module, Type-N N4690-60007, or N4690-60008, or N4690-60009 1 Torque Wrench, 3/4", 1.3 N-m 8710-1766 1 Open-End Wrench, 1/2" to 9/16" 8710-1770 1 USB A-B Cable, 1.8 m 8121-0506 1 Reference Guide N4693-90001 N4691B 1 Microwave Module, 3.5 mm N4691-60004, or N4691-60005, or N4691-60005, or N4691-60006 1 Torque Wrench, 20 mm, 0.9 N-m 8710-1764 1 Torque Wrench, 5/16", 0.9 N-m 8710-1765 1 Open-End Wrench, 1/2" to 9/16" 8710-1770 1 Spanner Wrench 08513-20014 | N469 | N4690B | | | | | | 1 Open-End Wrench, 1/2" to 9/16" 8710-1770 1 USB A-B Cable, 1.8 m 8121-0506 1 Reference Guide N4693-90001 N4690C 1 Microwave Module, Type-N N4690-60007, or N4690-60008, or N4690-60009 1 Torque Wrench, 3/4", 1.3 N-m 8710-1766 1 Open-End Wrench, 1/2" to 9/16" 8710-1770 1 USB A-B Cable, 1.8 m 8121-0506 1 Reference Guide N4693-90001 N4691B 1 Microwave Module, 3.5 mm N4691-60004, or N4691-60006, or N4691-60006 1 Torque Wrench, 20 mm, 0.9 N-m 8710-1764 1 Torque Wrench, 5/16", 0.9 N-m 8710-1765 1 Open-End Wrench, 1/2" to 9/16" 8710-1770 1 Spanner Wrench 08513-20014 | 1 | Microwave Module, Type-N | N4690-60005, or | | | | | 1 USB A-B Cable, 1.8 m 8121-0506 1 Reference Guide N4693-90001 N4690C 1 Microwave Module, Type-N N4690-60007, or N4690-60008, or N4690-60009 1 Torque Wrench, 3/4", 1.3 N-m 8710-1766 1 Open-End Wrench, 1/2" to 9/16" 8710-1770 1 USB A-B Cable, 1.8 m 8121-0506 1 Reference Guide N4693-90001 N4691B 1 Microwave Module, 3.5 mm N4691-60004, or N4691-60005, or N4691-60006 1 Torque Wrench, 20 mm, 0.9 N-m 8710-1764 1 Torque Wrench, 5/16", 0.9 N-m 8710-1765 1 Open-End Wrench, 1/2" to 9/16" 8710-1770 1 Spanner Wrench 08513-20014 | 1 | Torque Wrench, 3/4", 1.3 N-m | 8710-1766 | | | | | N4690C 1 Microwave Module, Type-N N4690-60007, or N4690-60008, or N4690-60009 1 Torque Wrench, 3/4", 1.3 N-m 8710-1766 1 Open-End Wrench, 1/2" to 9/16" 8710-1770 1 USB A-B Cable, 1.8 m 8121-0506 1 Reference Guide N4693-90001 N4691B 1 Microwave Module, 3.5 mm N4691-60004, or N4691-60005, or N4691-60006 1 Torque Wrench, 20 mm, 0.9 N-m 8710-1764 1 Torque Wrench, 5/16", 0.9 N-m 8710-1765 1 Open-End Wrench, 1/2" to 9/16" 8710-1770 1 Spanner Wrench 08513-20014 | 1 | Open-End Wrench, 1/2" to 9/16" | 8710-1770 | | | | | N4690C 1 Microwave Module, Type-N N4690-60007, or N4690-60008, or N4690-60009 1 Torque Wrench, 3/4", 1.3 N-m 8710-1766 1 Open-End Wrench, 1/2" to 9/16" 8710-1770 1 USB A-B Cable, 1.8 m 8121-0506 1 Reference Guide N4693-90001 N4691B 1 Microwave Module, 3.5 mm N4691-60004, or N4691-60005, or N4691-60006 1 Torque Wrench, 20 mm, 0.9 N-m 8710-1764 1 Torque Wrench, 5/16", 0.9 N-m 8710-1765 1 Open-End Wrench, 1/2" to 9/16" 8710-1770 1 Spanner Wrench 08513-20014 | 1 | USB A-B Cable, 1.8 m | 8121-0506 | | | | | 1 Microwave Module, Type-N N4690-60007, or N4690-60008, or N4690-60009 1 Torque Wrench, 3/4", 1.3 N-m 8710-1766 1 Open-End Wrench, 1/2" to 9/16" 8710-1770 1 USB A-B Cable, 1.8 m 8121-0506 1 Reference Guide N4693-90001 N4691B 1 Microwave Module, 3.5 mm N4691-60004, or N4691-60005, or N4691-60006 1 Torque Wrench, 20 mm, 0.9 N-m 8710-1764 1 Torque Wrench, 5/16", 0.9 N-m 8710-1765 1 Open-End Wrench, 1/2" to 9/16" 8710-1770 1 Spanner Wrench 08513-20014 | 1 | Reference Guide | N4693-90001 | | | | | N4690-60008, or N4690-60009 1 Torque Wrench, 3/4", 1.3 N-m 8710-1766 1 Open-End Wrench, 1/2" to 9/16" 8710-1770 1 USB A-B Cable, 1.8 m 8121-0506 1 Reference Guide N4693-90001 N4691B 1 Microwave Module, 3.5 mm N4691-60004, or N4691-60005, or N4691-60006 1 Torque Wrench, 20 mm, 0.9 N-m 8710-1764 1 Torque Wrench, 5/16", 0.9 N-m 8710-1765 1 Open-End Wrench, 1/2" to 9/16" 8710-1770 1 Spanner Wrench 08513-20014 | N4690C | | | | | | | 1 Open-End Wrench, 1/2" to 9/16" 8710-1770 1 USB A-B Cable, 1.8 m 8121-0506 1 Reference Guide N4693-90001 N4691B 1 Microwave Module, 3.5 mm N4691-60004, or N4691-60005, or N4691-60005, or N4691-60006 1 Torque Wrench, 20 mm, 0.9 N-m 8710-1764 1 Torque Wrench, 5/16", 0.9 N-m 8710-1765 1 Open-End Wrench, 1/2" to 9/16" 8710-1770 1 Spanner Wrench 08513-20014 | 1 | Microwave Module, Type-N | N4690-60008, or | | | | | 1 USB A-B Cable, 1.8 m 8121-0506 1 Reference Guide N4693-90001 N4691B 1 Microwave Module, 3.5 mm N4691-60004, or N4691-60005, or N4691-60006 1 Torque Wrench, 20 mm, 0.9 N-m 8710-1764 1 Torque Wrench, 5/16", 0.9 N-m 8710-1765 1 Open-End Wrench, 1/2" to 9/16" 8710-1770 1 Spanner Wrench 08513-20014 | 1 | Torque Wrench, 3/4", 1.3 N-m | 8710-1766 | | | | | N4691B 1 Microwave Module, 3.5 mm N4691-60004, or N4691-60005, or N4691-60006 1 Torque Wrench, 20 mm, 0.9 N-m 8710-1764 1 Torque Wrench, 5/16", 0.9 N-m 8710-1765 1 Open-End Wrench, 1/2" to 9/16" 8710-1770 1 Spanner Wrench 08513-20014 | 1 | Open-End Wrench, 1/2" to 9/16" | 8710-1770 | | | | | N4691B 1 Microwave Module, 3.5 mm N4691-60004, or N4691-60005, or N4691-60006 1 Torque Wrench, 20 mm, 0.9 N-m 8710-1764 1 Torque Wrench, 5/16", 0.9 N-m 8710-1765 1 Open-End Wrench, 1/2" to 9/16" 8710-1770 1 Spanner Wrench 08513-20014 | 1 | USB A-B Cable, 1.8 m | 8121-0506 | | | | | 1 Microwave Module, 3.5 mm N4691-60004, or N4691-60005, or N4691-60006 1 Torque Wrench, 20 mm, 0.9 N-m 8710-1764 1 Torque Wrench, 5/16", 0.9 N-m 8710-1765 1 Open-End Wrench, 1/2" to 9/16" 8710-1770 1 Spanner Wrench 08513-20014 | 1 | Reference Guide | N4693-90001 | | | | | N4691-60005, or
N4691-60006 Torque Wrench, 20 mm, 0.9 N-m 8710-1764 Torque Wrench, 5/16", 0.9 N-m 8710-1765 Open-End Wrench, 1/2" to 9/16" 8710-1770 Spanner Wrench 08513-20014 | N4691B | | | | | | | 1 Torque Wrench, 5/16", 0.9 N-m 8710-1765 1 Open-End Wrench, 1/2" to 9/16" 8710-1770 1 Spanner Wrench 08513-20014 | 1 | Microwave Module, 3.5 mm | N4691-60005, or | | | | | 1 Open-End Wrench, 1/2" to 9/16" 8710-1770 1 Spanner Wrench 08513-20014 | 1 | Torque Wrench, 20 mm, 0.9 N-m | 8710-1764 | | | | | 1 Spanner Wrench 08513-20014 | 1 | Torque Wrench, 5/16", 0.9 N-m | 8710-1765 | | | | | | 1 | Open-End Wrench, 1/2" to 9/16" | 8710-1770 | | | | | 1 USB A-B Cable, 1.8 m 8121-0506 | 1 | Spanner Wrench | 08513-20014 | | | | | | 1 | USB A-B Cable, 1.8 m | 8121-0506 | | | | Table 2-4 N469xA/B/C Kit Contents | Qty | Description | Part No. | | |-----|--------------------------------|-------------|--| | 1 | Reference Guide | N4693-90001 | | | N46 | N4692A | | | | 1 | Microwave Module, 2.92 mm | N4692-60001 | | | 1 | Torque Wrench, 20 mm, 0.9 N-m | 8710-1764 | | | 1 | Torque Wrench, 5/16", 0.9 N-m | 8710-1765 | | | 1 | Open-End Wrench, 1/2" to 9/16" | 8710-1770 | | | 1 | Spanner Wrench | 08513-20014 | | | 1 | USB A-B Cable, 1.8 m | 8121-0506 | | | 1 | Reference Guide | N4693-90001 | | | N46 | 93A | | | | 1 | Microwave Module, 2.4 mm | N4693-60001 | | | 1 | Torque Wrench, 20 mm, 0.9 N-m | 8710-1764 | | | 1 | Torque Wrench, 5/16", 0.9 N-m | 8710-1765 | | | 1 | Open-End Wrench, 1/2" to 9/16" | 8710-1770 | | | 1 | Spanner Wrench | 08513-20014 | | | 1 | USB A-B Cable, 1.8 m | 8121-0506 | | | 1 | Reference Guide | N4693-90001 | | | N46 | N4694A | | | | 1 | Microwave Module, 1.85 mm | N4694-60001 | | | 1 | Torque Wrench, 20 mm, 0.9 N-m | 8710-1764 | | | 1 | Torque Wrench, 5/16", 0.9 N-m | 8710-1765 | | | 1 | Open-End Wrench, 1/2" to 9/16" | 8710-1770 | | | 1 | Spanner Wrench | 08513-20014 | | | 1 | USB A-B Cable, 1.8 m | 8121-0506 | | | 1 | Reference Guide | N4693-90001 | | | N46 | N4696B | | | | 1 | Microwave Module, 7 mm | N4696-60004 | | | 1 | Torque Wrench, 3/4", 1.3 N-m | 8710-1766 | | | 1 | Open-End Wrench, 1/2" to 9/16" | 8710-1770 | |
| | | | | Table 2-4 N469xA/B/C Kit Contents | Qty | Description | Part No. | |-----|----------------------|-------------| | 1 | USB A-B Cable, 1.8 m | 8121-0506 | | 1 | Reference Guide | N4693-90001 | ### N469xA/B/C Options - Option 00M configures the microwave module with two male connectors. - Option 00F configures the microwave module with two female connectors. - Option MOF configures the module with one male connector and one female connector. - Option 00A adds one -m- to -m- and one -f- to -f- adapter (not supplied with N4696B). - Option UK6 adds a commercial calibration certificate with measured data. - Option 150 adds a storage box for the ECal module and accessories. ### N4432A and N4433A Series Kit Contents The following tables list the items in each N4432A and N4433A kit. For the N4432A kit, Option 020 is configured with type-N 50 ohm -f- connectors on all ports. For the N4433A kit, Option 010 is configured with 3.5 mm -f- connectors on all ports. See Table 1-7 on page 10 and Table 1-8 on page 10 for other configurations available. #### NOTE For ECals with Option 010 or mixed options with 3.5 mm -f- connectors: When a 3.5 mm female connector's contact fingers are bent or broken, you can perform a self-repair on the inner contacts by using a connector repair kit. For information on the 3.5 mm Connector Repair Kit: - For ordering information, refer to "3.5 mm Modules and Accessories" on page 4 and Table 6-3 on page 4 and to "Contacting Keysight" on page 4 - For 3.5 mm Slotless Connector repair, refer to https://www.keysight.com/us/en/assets/9018-40566/service-manuals/9 018-40566.pdf (85052-90070) and - For additional ECal repair information, refer to http://mktwww.srs.is.keysight.com/field/service/network/ecal/repair.htm Table 2-5 N4432A Kit Contents | Qty | Description | Part No. | |-------------------|--|-------------| | N4432A Option 020 | | | | 1 | Microwave Module, Type-N
50 Ohm -f- | N4432-60003 | | 1 | Torque Wrench 3/4", 1.3 N-m | 8710-1766 | | 1 | USB A-B Cable, 1.8 m | 8121-0506 | | 1 | Reference Guide | N4693-90001 | Table 2-6 N4433A Kit Contents | Qty | Description | Part No. | |-----|------------------------------|-------------| | N44 | 33A Option 010 | | | 1 | Microwave Module, 3.5 mm -f- | N4433-60003 | | 1 | Torque Wrench 20 mm, 0.9 N-m | 8710-1764 | | 1 | Torque Wrench 5/16", 0.9 N-m | 8710-1765 | | 1 | USB A-B Cable, 1.8 m | 8121-0506 | | 1 | Reference Guide | N4693-90001 | | | | | ## N4432A Options - Option 020 configures the module with Type-N 50 ohm -f- connectors on all ports. - Option UK6 adds a commercial calibration certificate with measured data. - Option 1A7 adds ISO 17025 compliant calibration. - Option A6J adds ANSI Z540 compliant calibration. - Option 150 adds a storage box for the ECal module and accessories. ## N4433A Options - Option 010 configures the module with 3.5 mm -f- connectors on all ports. - Option UK6 adds a commercial calibration certificate with measured data. - Option 1A7 adds ISO 17025 compliant calibration. - Option A6J adds ANSI Z540 compliant calibration. - Option 150 adds a storage box for the ECal module and accessories. ## Operating and Safety Precautions Observe the following guidelines before connecting or operating your ECal module. ### ESD Damage Protection against electrostatic discharge (ESD) is important while handling and operating your ECal module. Static electricity can build up on your body and can easily damage sensitive components when discharged. Static discharges too small to be felt can cause permanent damage to the unit. To prevent damage from ESD: - Use a grounded antistatic mat in front of your test equipment and wear a grounded wrist strap attached to it when handling or operating the ECal module. - Wear a heel strap when working in an area with a conductive floor. - Ground yourself before you clean, inspect, or make a connection to an ECal module. You can, for example, grasp the grounded outer shell of the analyzer test port or cable connector briefly. - Avoid touching the center conductor of the test ports. For more information about preventing ESD, see "Electrostatic Discharge" on page 1. ### Connector Care Because connectors can become defective due to wear during normal use, all connectors should be inspected and maintained to maximize their service life. For more detailed information, see "Visual Inspection" on page 3. - Inspect the mating surface each time a connection is made. Metal particles from connector threads often find their way onto the mating surface when a connection is made or disconnected. - Clean dirt and contamination from the connector mating surface and threads. This simple step can extend the service life of the connector and improve the quality of your calibration and measurements. - Gage connectors periodically. This not only provides assurance of proper mechanical tolerances, and thus connector performance, but can also indicate situations where the potential for damage to another connector may exist. CAUTION ECal modules can be damaged if you apply excessive torque to the connectors. See Table 4-1 on page 20 for required torque settings. ## Input Power Level Before performing a calibration, make sure the input power and DC levels do not exceed the values indicated in Table 2-7. Table 2-7 Input Power Limits | Parameter | ECal Module Series | | | | |---|--------------------|-----------|-------------------------|------------| | | 8509x | N4431x | N4432A
and
N4433A | N469xA/B/C | | Typical Maximum Input Power ^a , ^b | +9.0 dBm | +7.0 dBm | -7.0 dBm | -5.0 dBm | | Typical Maximum DC Level Applied to Test Port | ± 20 Volts | ± 3 Volts | ± 3 Volts | ± 10 Volts | | Typical Damage Level | +20.0 dBm | +20.0 dBm | +20.0 dBm | +10.0 dBm | a. If the maximum input power is exceeded when calibrating, compression may occur. ## **Operating Temperature** The temperature of the ECal module must be within the following temperature range to meet the operating specifications. 8509x Series: +20 °C to +30 °C N443xA/B Series: +20 °C to +30 °C N469xA/B/C Series: +20 °C to +26 °C For more details, see "Environmental Specifications" on page 2. b. When using the PNA-X, the power level can be increased after calibration with minimal impact on measurement accuracy. ## Connecting and Disconnecting ECal Module ECal modules connect to PNA or ENA network analyzers with the USB cable (supplied with the kit). You can connect (or disconnect) ECal modules when the analyzer is on or off, but should avoid doing so while data transfer is in progress. ### Connect ECal Module to PNA or ENA Analyzer ECal modules are controlled and powered by the analyzer through a USB cable. When you connect the module to the analyzer, the analyzer automatically recognizes the type of module, frequency range, and connector type. ### CAUTION Exercise the necessary ESD precautions before connecting the ECal module to the analyzer. See "Electrostatic Discharge" on page 1. To connect ECal module to the PNA or ENA network analyzer: - 1. Connect one end of the USB cable to the ECal module as shown in Figure 2-2 on page 15. - 2. Connect the other end of the cable to the USB port on the front or rear panel of the analyzer (as shown in Figure 2-3 on page 15). Depending on available USB ports, two or more ECal modules may be connected to the analyzer. #### NOTE When you connect an ECal module that has a serial number never before seen by that PNA, and you have Administrator privileges (the default setting), the **Welcome to the Found New Hardware Wizard** appears to assist you in completing the first-time registration for the module. If "Can Windows connect to Windows Update to search for software?" appears, select "No, not this time." Click Next or Finish at the remaining dialog prompts. You must be logged on to the PNA with Administrator privileges (the default setting), or know the Administrator login and password, to complete the first-time registration process. For more information on privileges, view the PNA online Help table of contents and click on "Administrative Tasks." To view the PNA online Help, refer to "Finding More Information on Performing a Calibration" on page 6. - **3.** The LED (on the module) indicates WAIT until the ECal module reaches operating temperature. - 4. When the green LED turns on, the module is ready for use. Figure 2-2 USB Connection to Module Figure 2-3 USB Connection to PNA or ENA Analyzer ### Connect ECal Module to VNA Analyzer #### NOTE This section is for REFERENCE ONLY. VNA analyzers, the 85097B Interface Kit, and the 8121-1047 adapter cable are discontinued products. VNA network analyzers require the 85097B Interface Kit, which supplies power and allows data transfer between the analyzer and the ECal module. The interface kit contains an interface unit, power supply, and cables to connect the interface unit to the analyzer and the ECal module. An adapter cable, supplied with Option 100, is required to connect microwave ECal modules (N469xA/B/C series) to the interface unit. This cable may also be ordered separately. For more information about the 85097B, refer to "Other ECal Accessories" on page 11. #### **CAUTION** Exercise the necessary ESD precautions before connecting the ECal module to the analyzer. See "Electrostatic Discharge" on page 1. To connect ECal module to the VNA network analyzer: - 1. Connect interface unit to VNA: - a. Connect one end of the DB25 to DB25 cable to the connector on the interface unit labeled "DB25 Interface to Parallel Interface on Network Analyzer." - **b.** Connect the other end of the cable to the connector labeled "PARALLEL PORT" on the rear panel of the VNA. #### CALITION Connecting the DB25 cable to any other connector on the analyzer WILL cause damage. - 2. Connect an RF Module: - a. Connect one end of the DB25 to DB25 cable to the parallel port connector on the ECal module. See Figure 2-4
n page 2-18. - b. Connect the other end of the cable to the connector on the interface unit labeled "DB25 Interface to ECal Module A" or "DB25 Interface to ECal Module B." See Figure 2-5 n page 2-18. Two ECal modules may be connected at the same time. - **3.** Connect a Microwave Module (requires adapter cable, part no. 8121-1047): - a. Connect the miniature (36-pin) connector on the adapter cable to the parallel port connector on the ECal module. See Figure 2-4 n page 2-18. Preparing ECal for Use Connecting and Disconnecting ECal Module - b. Connect the DB25 connector on the adapter cable to the connector on the interface unit labeled "DB25 Interface to ECal Module A" or "DB25 Interface to ECal Module B." See Figure 2-5 n page 2-18. - **4.** Connect the interface power supply to the interface unit and then connect to AC power. NOTE The LED on the ECal module indicates WAIT until the unit reaches operating temperature. Figure 2-5 Interface Connections to VNA Analyzer Keysight Electronic Calibration Modules RF/Microwave Two Port and Four Port Reference Guide # 3 Operating ECal Module ## Setting Up a Calibration Use the following procedure as a starting point for calibrating the network analyzer with an ECal module. For more detailed information about adjusting the settings of your analyzer, refer to the appropriate user guide or online Help. ### Required Procedure for All Calibrations For all calibration types, complete the following steps: - Connect an ECal module to the analyzer having the appropriate frequency range and connector type. See "Connecting and Disconnecting ECal Module" on page 14. - **2.** Allow the module to warm up for 15 minutes (20 minutes for a four-port module) or until the module indicates READY. - **3.** Set up the analyzer and the device under test (DUT) in the measurement configuration. Select the frequency, power, sweep and other stimulus settings. - **4.** View the response (uncorrected) and optimize the analyzer settings as needed. - **5.** Remove the DUT from the measurement ports and connect the ECal module. - **6.** Select the desired calibration type and perform the calibration. - 7. Remove the ECal module and re-connect the DUT. CAUTION Excessive torque can damage ECal module connectors. See Table 4-1 on page 20 for the required torque setting for each connector type. NOTE Terminate any unused ECal ports with a 50 ohm load for optimal performance. ## Calibration Types Available The following table contains the calibration types and advanced settings available for all compatible network analyzers: Table 3-1 Calibration Types and Advanced Settings Available | | Network Analy | zer Series | |---|------------------|------------------| | Calibration Types | | | | | PNA | ENA ^a | | 1-Port Reflection | Yes | Yes | | Full 2-Port | Yes | Yes | | Full 2-Port (with isolation) ^b | Yes | Yes | | Full 3-Port | Yes | Yes | | Full 4-Port | Yes | Yes | | Enhanced Response | Yes | Yes | | QSOLT | Yes | No | | Advanced Settings | | | | Adapter Removal | Yes | No | | Flush (zero length) THRU | Yes | No | | Unknown THRU | Yes ^c | No | | User-Characterization | Yes | Yes ^d | - a. The N4693A and N4694A are not supported on the ENA. - b. 8509xC only. - c. Unknown THRU setting available with E835xA and E836xA,B analyzers. - d. User-Characterization available with firmware revision A.03.50 (February 2003). ### When to Correct for Isolation Correction for isolation is a consideration when measuring high-loss devices such as saw filters or diplexers. When maximum dynamic range is required, correction for isolation can remove the errors due to crosstalk (between test ports) for transmission measurements. When you include isolation with a two, three, or four-port calibration, the analyzer automatically applies averaging to reduce noise in the measurement. Without averaging, you will have noise in the measurement of the crosstalk, and could raise the noise floor when the analyzer uses this in its error correction. Operating ECal Module Setting Up a Calibration The analyzer system isolation is normally sufficient for most measurements, and correction for it is usually unnecessary. As long as crosstalk is below the noise floor, it is best NOT to correct for isolation using ECal. As of PNA firmware release 4.26, measuring isolation as part of the ECal process is no longer supported. #### Calibration Methods for Non-Insertable Devices A "non-insertable" device means that the measurement ports cannot be connected together to establish a THRU connection during calibration for transmission. Because the module typically forms the THRU path, you can use one of the following methods to perform a calibration for non-insertable devices: ### Configure ECal Module the Same as Device The simplest way to calibrate for non-insertable devices is to configure an ECal module with the same connector types as the DUT. RF ECal modules can be configured with mixed connectors to match the connector types on the DUT. Refer to "Models and Options" on page 4. You can also configure the module with different connector types by performing a User-Characterization (see below). ### Use Adapter Removal Calibration Adapter removal provides an accurate way to calibrate for non-insertable devices, but requires extra calibration steps to characterize the adapter. The adapter type used for this calibration must be a -m- to -m- or -f- to -f- and have the same connector type as the module. In addition, the module must have a male connector on one test port and a female connector on the other test port (of the same connector type). #### Use Unknown Thru Calibration Unknown Thru calibration is currently available with all PNA network analyzers except the E8801/2/3A. It is easy to perform and can be used on any two ports when using a multiport PNA. It causes minimal cable movement if the Thru standard has the same footprint as the DUT. In fact, the DUT can often be the Thru standard. A 1-port calibration is performed on both ports. The unknown Thru is connected between the two ports and measured. Next, the user must confirm the Estimated Delay. This requires knowing the phase response to within 1/4 wavelength. If the phase response is unknown, the Delay value can be measured independently and entered in the dialog box. #### Perform a User-Characterization Normally, when you perform a calibration with an ECal module, the error terms for a calibration are computed using the factory characterization (data) stored in the module. User-Characterization allows you change the characterization of the module in two ways: Change the connector configuration: allows you to add an adapter or fixture to the test port of the module and embed the effects into the characterization of the module. The result of the new characterization extends the reference plane from one or more of the module's test ports to those on the adapter (or fixture). Operating ECal Module Setting Up a Calibration Modify the state settings: allows you to specify the number of data points (1601 max.) or other stimulus settings the module uses to perform a calibration. When you perform a User-Characterization, the factory characterization data remains stored in the module's memory. At calibration, you can select the factory characterization or any of the user-defined characterizations stored in the module. The module can store up to five user-defined characterizations (in addition to the factory characterization data). User-Characterization is currently available with PNA and ENA network analyzers. To perform a User-Characterization, a calibration kit (having the same connector type as the new reference plane) is required. For detailed information on calibration methods using an ENA or PNA series network analyzer, refer to the appropriate user guide or online Help. To use the Internet to view the ENA or PNA online Help, use the steps listed in "Finding More Information on Performing a Calibration" on page 6. ## Finding More Information on Performing a Calibration For detailed information on performing a calibration using an ENA or PNA series network analyzer, refer to the appropriate user guide or online Help. - To view the ENA or PNA Help file that is embedded in the analyzer, press the Help key on the front panel of the network analyzer. - To view a user guide or Help file on the Internet, use the following steps: - 1. Go to www.keysight.com. - 2. Enter your analyzer model number (Ex: N5242A) in the search function and click Search. - 3. Click on the Manuals hyperlink. - 4. Open the PDF of the User Guide or Help. CAUTION Do not perform a calibration procedure unless you have cleaned and visually inspected all connectors and have taken the necessary ESD precautions. ## Validating a Calibration The accuracy of a completed calibration should be validated periodically, because the following sources of error that can invalidate it: - bad cables - dirty or worn connectors - operator error - measurement uncertainties from interpolation The following paragraphs discuss two methods of validating the accuracy of a calibration: - 1. Performing the ECal module's ECal Confidence Check. - 2. Performing the analyzer's System Verification Procedure using standards in a Keysight verification kit. Which method you choose depends largely on the level of accuracy required and the availability of a Keysight verification kit. ### ECal Confidence Check – Basic Validation of the Calibration The ECal Confidence Check allows you to measure an impedance state in the ECal module – called the confidence state – and compare your measurement data with factory measurement data stored in ECal memory (of the same confidence state). The ECal Confidence Check overlays the two measurement traces so that the differences between your data and the factory data can be easily viewed. - The ECal Confidence Check provides a basic validation that you have completed the ECal calibration
correctly and that the calibration is activated. - The ECal Confidence Check is not a method for system verification. The ECal Confidence Check's impedance state physically shares some of the same hardware as the ECal calibration impedance states. System verification requires a verification kit because it has devices that are physically different from those in a calibration kit. - Keysight recommends that upon receipt of a new ECal module, you perform the ECal Confidence Check and save the measurement results as a baseline for future reference. - Periodically, it is recommended that additional ECal confidence checks be performed and the test results compared to the baseline data. - The interpretation of how much variation is acceptable between your data and the factory data is determined by your level of confidence in the calibration, based on your historical records of baseline data. Operating ECal Module Validating a Calibration Before performing the ECal Confidence Check, the analyzer must be calibrated and the calibration type should be appropriate for the measurement being made. For example, you cannot measure the confidence state with an S22 measurement if an S11 1-port calibration is active. NOTE Terminate any unused ECal ports with a 50 ohm load. NOTE ECal Confidence Check is not available with ENA-L series network analyzers. For detailed information on performing an ECal Confidence Check using an ENA or PNA series network analyzer, refer to the appropriate user guide or online Help. To use the Internet to view the ENA or PNA online Help, use the steps listed in "Finding More Information on Performing a Calibration" on page 6. System Verification Procedure – Traceable Accuracy Validation of the Calibrated Measurement System NOTE This method of validating the calibration requires a Keysight verification kit. Using your analyzer's built-in System Verification Procedure to measure the standards in a Keysight verification kit provides a traceable accuracy validation of your calibrated measurement system. Following the measurement of each standard, the System Verification Procedure provides a pass/fail result, determining if your calibration provides measurements that meet the limits of uncertainty. - The analyzer's built-in System Verification Procedure provides a traceable accuracy validation that you have completed the ECal calibration correctly and that the limits of uncertainty are met. - The System Verification Procedure is also a method for verifying the performance of your analyzer. - Verification kits use accurately known standards with well defined magnitude and phase response. These kits include precision airlines, mismatch airlines, and precision fixed attenuators. - Each verification kit standard is measured precisely by Keysight's accredited test laboratory. The measurement data and uncertainty of each standard are provided in each kit on a disk or USB storage drive. - Verification kits may be re-certified by Keysight. Contact Keysight for information about ordering verification kits - see "Contacting Keysight" on page 14. Operating ECal Module Validating a Calibration For detailed information on using your analyzer's built-in System Verification Procedure, refer to the appropriate service guide or online Help. To use the internet to view the ENA or PNA online Help, use the steps listed in "Finding More Information on Performing a Calibration" on page 6. Operating ECal Module Validating a Calibration Keysight Electronic Calibration Modules RF/Microwave Two Port and Four Port Reference Guide ## 4 Use, Maintenance, and Care of the Devices ## Electrostatic Discharge Protection against electrostatic discharge (ESD) is essential while connecting, inspecting, or cleaning devices attached to static-sensitive circuits (such as those found in network analyzers and ECal modules). Static electricity can build up on your body and can easily damage sensitive internal circuit elements when discharged. Static discharges too small to be felt can cause permanent damage. Devices such as calibration components and devices under test (DUTs), can also carry an electrostatic charge. To prevent damage to network analyzer components and devices: - **always** wear a grounded wrist strap having a 1 M Ω resistor in series with it when handling components and devices or when making connections to the test set. - always use a grounded, conductive table mat while making connections. - always wear a heel strap when working in an area with a conductive floor. If you are uncertain about the conductivity of your floor, wear a heel strap. - always ground yourself before you clean, inspect, or make a connection to a static-sensitive device or test port. You can, for example, grasp the grounded outer shell of the test port or cable connector briefly. - always ground the center conductor of a test cable before making a connection to the analyzer test port or other static-sensitive device. This can be done as follows: - 1. Connect a short (from your calibration kit) to one end of the cable to short the center conductor to the outer conductor. - 2. While wearing a grounded wrist strap, grasp the outer shell of the cable connector. - 3. Connect the other end of the cable to the test port. - 4. Remove the short from the cable. For parts numbers for ESD protection supplies, refer to "Other ECal Accessories" on page 6-11. Figure 4-1 ESD Protection Using Mat, Wrist Strap, and Grounded Power Cord esd_setup Use, Maintenance, and Care of the Devices Visual Inspection ## Visual Inspection Visual inspection and, if necessary, cleaning should be done every time a connection is made. Metal particles from the connector threads may fall into the connector when it is disconnected. ### CAUTION Devices with damaged connectors should immediately be discarded or clearly marked and set aside for repair. A damaged device will in turn damage any good connector to which it is attached. Try to determine the cause of the damage before connecting a new, undamaged connector in the same configuration. Magnification is helpful when inspecting connectors, but it is not required and may actually be misleading. Defects and damage that cannot be seen without magnification generally have no effect on electrical or mechanical performance. Magnification is of great use in analyzing the nature and cause of damage and in cleaning connectors, but it is not required for inspection. ### Look for Obvious Defects and Damage First Examine the connectors first for obvious defects and damage: badly worn plating on the connector interface, deformed threads, or bent, broken, or misaligned center conductors. #### What Causes Connector Wear? Connector wear is caused by connecting and disconnecting the devices. The more use the device gets, the faster it wears and degrades. The wear is greatly accelerated when connectors are not kept clean, or are not properly connected. This is especially true with electrically characterized devices such as ECal modules. ECal modules should have a long life if their use is on the order of a few times per week. The test port connectors on the network analyzer may have many connections each day, and are therefore more subject to wear. It is recommended that an adapter be used as a test port saver to minimize the wear on the connectors. Replace devices with worn connectors. ## Inspect the Mating Plane Surfaces Uniform contact between the connectors at all points on their mating plane surfaces is required for a good connection. See Figure 4-2 for an example of locations of mating plane surfaces. Look especially for deep scratches or dents, and for dirt and metal particles on the connector mating plane surfaces. Also look for signs of damage due to excessive or uneven wear or misalignment. Figure 4-2 Type-N Connector Pin Depth and Mating Surfaces Light burnishing of the mating plane surfaces is normal, and is evident as light scratches or shallow circular marks distributed more or less uniformly over the mating plane surface. Other small defects and cosmetic imperfections are also normal. None of these affect electrical or mechanical performance. If a connector shows deep scratches or dents, particles clinging to the mating plane surfaces, or uneven wear, clean and inspect it again. Use, Maintenance, and Care of the Devices Inspect Female Connectors ## Inspect Female Connectors When using slotless connectors like the 2.4 mm, 3.5 mm, or some type-N 50 Ω female connectors, pay special attention to the contact fingers on the female center conductor. These can be bent or broken, and damage to them is not always easy to see. A connector with damaged contact fingers will not make good electrical contact and must be repaired or replaced. NOTE Due to the tighter mechanical specifications of precision devices, inspection is particularly important when you are mating nonprecision to precision devices. NOTE For ECals with Option 010 or mixed options with 3.5 mm -f- connectors: When a 3.5 mm female connector's contact fingers are bent or broken, you can perform a self-repair on the inner contacts by using a connector repair kit. For information on the 3.5 mm Connector Repair Kit: - For ordering information, refer to "3.5 mm Modules and Accessories" on page 6-4 and Table 6-3 on page 6-4 and to "Contacting Keysight" on page 1-4 - For 3.5 mm Slotless Connector repair, refer to https://www.keysight.com/us/en/assets/9018-40566/service-manuals/9 018-40566.pdf (85052-90070) and - For additional ECal repair information, refer to http://mktwww.srs.is.keysight.com/field/service/network/ecal/repair.htm Use, Maintenance, and Care of the Devices Cleaning Connectors ## Cleaning Connectors Clean connector interfaces prolong connector life and produce more accurate and repeatable measurements. NOTE The following cleaning procedure can be used for most coaxial connectors. For 7 mm connectors, refer to "Cleaning Precision 7 mm Connectors" on page 4-8. ### WARNING
Always use protective eyewear when using compressed air or nitrogen. ### Cleaning Coax Connectors ### 1. Use compressed Air or Nitrogen Use compressed air (or nitrogen) to loosen particles on the connector mating plane surfaces. You can use any source of clean, dry, low-pressure compressed air or nitrogen that has an effective oil-vapor filter and liquid condensation trap placed just before the outlet hose. Ground the hose nozzle to prevent electrostatic discharge, and set the air pressure to less than 414 kPa (60 psi) to control the velocity of the air stream. High-velocity streams of compressed air can cause electrostatic effects when directed into a connector. These electrostatic effects can damage the device. For additional information refer to "Electrostatic Discharge" on page 4-1 earlier in this chapter. ### WARNING Keep isopropyl alcohol away from heat, sparks, and flame. Store in a tightly closed container. Isopropyl alcohol is extremely flammable. In case of fire, use alcohol foam, dry chemical, or carbon dioxide; water may be ineffective. Use isopropyl alcohol with adequate ventilation and avoid contact with eyes, skin, and clothing. It causes skin irritation, may cause eye damage, and is harmful if swallowed or inhaled. It may be harmful if absorbed through the skin. Wash thoroughly after handling. In case of spill, soak up with sand or earth. Flush spill area with water. Dispose of isopropyl alcohol in accordance with all applicable federal, state, and local environmental regulation. #### 2. Clean the Connector Threads ### **CAUTION** Use ONLY isopropyl alcohol to clean connector surfaces. Any other solvent may damage the insulators, support beads, and seals in the connector. Never immerse the connector in solvents of any kind. The solvent can become trapped within the assembly and cause SWR, phase, and insertion loss problems. Moisten (don't soak) a lint-free swab or cleaning cloth with isopropyl alcohol to remove any dirt or stubborn contaminants that cannot be removed with compressed air or nitrogen. Refer to "Other ECal Accessories" on page 6-11 for cleaning swabs and other connector cleaning supplies. - a. Apply a small amount of isopropyl alcohol to a lint-free swab. - **b.** Clean the connector threads. - **c.** Let the alcohol evaporate, then blow the threads dry with a gentle stream of clean, low-pressure compressed air or nitrogen. Always completely dry a connector before you reassemble or use it. #### 3. Clean the Mating Plane Surfaces - **a.** Apply a small amount of isopropyl alcohol to a new lint-free cleaning cloth or swab. - b. Clean the center and outer conductor mating plane surfaces. Refer to Figure 4-2 on page 4. When cleaning a female connector; use short strokes to avoid snagging the swab on the center conductor contact fingers. - c. Let the alcohol evaporate, then blow the mating plane surface dry with a gentle stream of clean, low-pressure compressed air or nitrogen. Always completely dry a connector before you reassemble or use it. #### 4. Inspect Each Connector Inspect the connector to make sure that no particles or residue are present. Use, Maintenance, and Care of the Devices Cleaning Connectors ### Cleaning Precision 7 mm Connectors You do not have to remove the center conductor collet to clean a precision 7 mm connector. With the Center Collet in Place - 1. Dispense a small amount of isopropyl alcohol on the lint free cloth. - 2. Retract the connector sleeve threads to expose the connector interface. - **3.** Gently press the contact end of the connector into the moistened cloth and rotate the connector. The cloth scrubs away dirt and contaminants on the connector interface without damaging it. - **4.** Blow the connector dry with a gentle stream of compressed air or nitrogen. NOTE When not in use, keep the cloth in a plastic bag or box so that it does not collect dust or dirt. For Fixed Connectors (attached to a device that cannot be freely moved) - 1. Fold a lint-free cleaning cloth several times. - 2. Moisten the cloth with isopropyl alcohol. - **3.** Press the moistened cloth against the connector interface and rotate the cloth to clean the connector. - **4.** Blow the connector dry with a gentle stream of compressed air or nitrogen. Cleaning a Removed Center Collet Any time you remove the center conductor collet, clean and inspect the interior surfaces as described in "Cleaning Connectors" on page 4-6. Use, Maintenance, and Care of the Devices Gaging Connectors ## **Gaging Connectors** The gages available from Keysight Technologies are intended for preventive maintenance and troubleshooting purposes only. They are effective in detecting excessive center conductor protrusion or recession, and conductor damage on DUTs, test accessories, and ECal module test ports. Do not use the gages for precise pin depth measurements. ### Connector Gage Accuracy The connector gages are only capable of performing coarse measurements. They do not provide the degree of accuracy necessary to precisely measure the pin depth. This is partially due to the repeatability uncertainties that are associated with pin-depth measurements. With proper technique, the gages are useful in detecting gross pin depth errors on device connectors. To achieve maximum accuracy, random errors must be reduced by taking the average of at least three measurements having different gage orientations on the connector. Even the resultant average can be in error by as much as ± 0.0001 inch (± 0.0025 mm) due to systematic (biasing) errors usually resulting from worn gages and gage masters. The information in "Typical Pin Depth Values" on page 5-15 assumes new gages and gage masters. Therefore, these systematic errors were not included in the uncertainty analysis. As the gages endure more use, the systematic errors can become more significant in the accuracy of the measurement. The measurement uncertainties are primarily a function of the assembly materials and design, and the unique interaction each device type has with the gage. Therefore, these uncertainties can vary among the different devices. The observed pin depth limits add in these uncertainties to the typical factory pin depth values to provide practical limits that can be referenced when using the gages. NOTE When measuring pin depth, the measured value (resultant average of three or more measurements) contains measurement uncertainty and is not necessarily the true value. Always compare the measured value with the **observed** pin depth limits (which account for measurement uncertainties) in "Typical Pin Depth Values" on page 5-15 to evaluate the condition of device connectors. Use, Maintenance, and Care of the Devices Gaging Connectors ### When to Gage Connectors Gage a connector at the following times: - Prior to using an ECal module for the first time: record the pin depth measurement so that it can be compared with future readings. This serves as a good troubleshooting tool when you suspect damage may have occurred to the device. - If either visual inspection or electrical performance suggests that the connector interface may be out of typical range (due to wear or damage, for example). - If a module is used by someone else, or on another system or piece of equipment. - Initially after every 100 connections, and after that as often as experience suggests. #### NOTE When using the 7 mm module, you must remove the 7 mm collet before gaging the pin depth of the connectors. Use the collet extraction tool provided in your 7 mm module to remove the collet. ## Recognizing Gage Types A gage is referred to by the sex of the connector it measures. For example, a male gage measures male connectors and therefore has a corresponding female connector. - See Figure 4-3 on page 4-11 for an illustration of a typical gage for 3.5 mm, 2.92mm, 2.4 mm, and 1.85 mm connectors. - See Figure 4-4 on page 4-12 for an illustration of a typical gage for type-N connectors. - See Figure 4-5 on page 4-13 for an illustration of a typical gage for 7 mm connectors. ### NOTE A 3.5 mm gage set can measure 3.5 mm and 2.92 mm connectors. A 2.4 mm gage set can measure 2.4 mm and 1.85 mm connectors. ## Reading the Connector Gage The gage dial is divided up into increments of 0.0001 inch (0.0025 mm) and major divisions of 0.001 inch (0.0025 mm). For type-N gages, see **Figure 4-4 on page 4-12**. For each revolution of the large dial, the smaller dial indicates a change of 0.01 inch (0.025 mm). Use the small dial as the indicator of multiples of 0.01 inch (0.0025 mm). In most connector measuring applications, this value will be zero. When making a measurement, the gage dial indicator will travel in one of two directions. If the center conductor is recessed from the zero reference plane, the indicator will move counterclockwise to determine the amount of recession, which is read as a negative value. If center conductor protrudes, the indicator will move clockwise to measure the amount of protrusion, which is read as a positive value. Refer to "Typical Pin Depth Values" on page 5-15 for definitions of protrusion and recession. Figure 4-3 Typical Gage: 3.5 mm, 2.92 mm, 2.4 mm and 1.85 mm Connectors 3_5mm Figure 4-4 Typical Gage: Type-N Connectors ku311b Figure 4-5 Typical Gage: 7 mm Connectors ku312b ### Gaging Procedures ### **Zeroing Connector Gages** For type-N gages, the paired gage master is labeled with an offset value to compensate for its inaccuracy with its gage. This label appears on the bottom of all type-N gage masters that have been paired with gages. When setting a type-N gage with its master, always set the gage to the master offset value shown on the label, not to the zero, unless that is the offset value indicated. The design of the gages used to measure 3.5 mm, 2.92 mm, 2.4 mm, 1.85 and 7 mm connectors are different than the type-N gage design. The primary difference is that the type-N gages require an offset to compensate for inaccuracies in the gage masters. -
Select the proper gage for your connector. Always use gages that are intended for pin depth measurements. Refer to Chapter 6, "Replaceable Parts." for gage model numbers listed with the associated connector types. - 2. Inspect and clean the gage, gage master, and device to be gaged. Refer to "Visual Inspection" on page 4-3 and "Cleaning Connectors" on page 4-6. ### CAUTION Before continuing, make sure you are familiar with the proper connection and torque techniques for your connector type. Refer to "Making Connections" on page 4-16. - **3.** While holding the gage by the barrel, attach the gage to the gage master. Connect the gage master finger tight. Do not overtighten. - **4.** Use the torque wrench recommended for use with your connector type to tighten the connecting nut to the gage master. Refer to Table 4-1 on page 20. - 5. Type-N: Loosen the dial lock screw on the gage and rotate the gage dial so that the pointer corresponds to the correction value noted on the gage master. Do not adjust the gage dial to zero unless the correction value on the gage master is zero. - 3.5 mm, 2.4 mm, and 7 mm: The gage pointer should line up exactly with the zero mark on the gage. If not, adjust the zero set knob or rotate the gage dial until the gage pointer lines up exactly with zero. - **6.** Tighten the dial lock screw and remove the gage master. - **7.** Attach and torque the gage master once again to verify that the setting is repeatable. Remove the gage master. ### Gaging Technique ### **CAUTION** Remove the collet when gaging 7 mm connectors. - 1. Connect and torque the device being measured to the gage. - **2.** Gently tap the barrel of the gage with your finger to settle the gage reading. - **3.** Type-N and 7mm: Read the gage indicator dial. If the needle has moved clockwise, the center conductor is **protruding** by an amount indicated by the black numbers. If the needle has moved counterclockwise, the center conductor is **recessed** by an amount indicated by the red numbers. - 3.5 mm and 2.4 mm: Read the gage indicator dial. Read only the black \pm signs; not the red \pm signs. - 4. For maximum accuracy, measure the connector a minimum of three times and take an average of the readings. After each measurement, rotate the gage a quarter-turn to reduce measurement variations that result from the gage or the connector face not being exactly perpendicular to the center axis. - 5. Compare the average reading with the observed pin depth limits in the tables located in "Typical Pin Depth Values" on page 5-15 for each type of connector. ## Making Connections Good connections are essential for accurate calibrations and measurements and require a skilled operator. The most common cause of measurement error is poor connections. 3.5 mm, 2.92 mm, 2.4 mm, 1.85 mm, Type-N, 7-16, and Type-F Devices - 1. Handle the devices at a static-safe work station, only. See "Electrostatic Discharge" on page 4-1. - 2. Carefully align the connectors. The male connector center pin must slip concentrically into the contact finger of the female connector. ### CAUTION Do not turn the device body. Only turn the connector nut. Damage to the center conductor can occur if the device body is twisted. - 3. Push the connectors straight together and tighten the connector nut finger tight. Do not twist or screw the connector together. As the center conductors mate, there is usually a slight resistance - **4.** The preliminary connection is tight enough when the mating plane surfaces make uniform, light contact. Do not overtighten this connection. - A connection in which the outer conductors make gentle contact at all points on both mating surfaces is sufficient. Very light finger pressure is enough to accomplish this. - **5.** Make sure the connectors are properly supported. Relieve any side pressure on the connection from long or heavy devices or cables. - **6.** Torque the connection according to the procedures described in "Final Connection Using a Torque Wrench" on page 4-17. ### 7 mm Devices - Fully extend the connector sleeve on one of the connectors. Spin its knurled connector nut to make sure the threads are fully extended. Fully retract the sleeve on the other connector. The extended sleeve creates a cylinder into which the other connector fits. - If one of the connectors is fixed (such as on a test port), fully extend that connector sleeve and fully retract the sleeve on the movable connector. - **2.** Carefully align the connectors. As you make the actual connection, be sure the connectors align perfectly. - **3.** Push the connectors straight together. Do **not** twist or screw the connectors together. Use, Maintenance, and Care of the Devices Making Connections - 4. Engage the connector nut (of the connector with the retracted sleeve) over the threads of the other connector (the connector with the extended sleeve). Turn only the connector nut. Let the connector nut pull the two connectors straight together. - **5.** Do not overtighten this connection. A connection in which the outer conductors make gentle contact at all points on both mating surfaces is sufficient. Very light finger pressure is enough to accomplish this. - **6.** Make sure the connectors are properly supported. Relieve any side pressure on the connection from long or heavy devices or cables. - 7. Torque the connection according to the procedures described in the following section. #### Final Connection Using a Torque Wrench Using a torque wrench guarantees the connection is not too tight, preventing possible connector damage. It also guarantees that all connections are equally tight. Use the recommended torque wrench to make a final connection. Table 4-1 on page 4-20 provides information on the torque wrench recommended for use with each connector type. - Turn the connector nut. This may be possible to do by hand if one of the connectors is fixed (as on a test port). However, it is recommended that you use an open-end wrench to keep the body of the device from turning. - 2. Position both wrenches within 90 degrees of each other before applying force. Wrenches opposing each other (greater than 90 degrees apart) will cause a lifting action that can misalign and stress the connections of the device involved. This is especially true when several devices are connected together. Refer to Figure 4-6. w j 56 f **3.** Hold the torque wrench lightly, at the end of the handle only (beyond the aroove). See Figure 4-7. Figure 4-7 Using the Torque Wrench - **4.** Carefully align the connectors. As you make the actual connection, be sure the connectors align perfectly. - **5.** Push the connectors straight together. Do not twist or screw the connectors together. Engage the connector nut over the threads of the other connector. Turn only the connector nut. Let the connector nut pull the two connectors straight together. - Do not over tighten this connection. A connection in which the outer conductors make gentle contact at all points on both mating surfaces is sufficient. Very light finger pressure is enough to accomplish this. - **6.** Make sure the connectors are properly supported. Relieve any side pressure on the connection from long or heavy devices or cables. - **7.** Apply force downward to the wrench handle. This applies torque to the connection through the wrench. Do not hold the wrench so tightly that you push the handle straight down along its length rather than pivoting it, otherwise you apply an unknown amount of torque. #### **CAUTION** You don't have to fully break the handle of the torque wrench to reach the specified torque; doing so can cause the handle to kick back and loosen the connection. Any give at all in the handle is sufficient torque. **8.** Tighten the connection just to the torque wrench break point. The wrench handle gives way at its internal pivot point. Do not tighten the connection further. See Figure 4-7. Table 4-1 ECal Module Torque Wrench Information | Connector Type | Torque Wrench
Part Number | Wrench
Opening | Torque Setting | Torque Tolerance ^a | |--|------------------------------|-------------------|---------------------|-------------------------------| | 3.5 mm, 2.92 mm, 2.4
mm, 1.85 mm (test
port) | 8710-1764 | 20 mm | 90 N-cm (8 in-lb) | ±9 N-cm (±0.8 in-lb) | | 3.5 mm, 2.92 mm, 2.4
mm, 1.85 mm
(adapters) | 8710-1765 | 5/16 in | 90 N-cm (8 in-lb) | ±9 N-cm (±0.8 in-lb) | | Type-N 50 Ω , 75 Ω | 8710-1766 | 3/4 in | 135 N-cm (12 in-lb) | ±13.5 N-cm (±1.2 in-lb) | | 7 mm | 8710-1766 | 3/4 in | 135 N-cm (12 in-lb) | ±13.5 N-cm (±1.2 in-lb) | | 7-16 | 8710-2175 | 1 1/16 in | 226 N-cm (20 in-lb) | ±22.6 N-cm (±2 in-lb) | a. Many older Keysight calibration module manuals list different torque tolerances for the various torque wrenches. The correct torque tolerance for Keysight torque wrenches is ±10% of the torque setting as listed in this table. ## Separating Connections To avoid lateral (bending) force on the connector mating plane surfaces, always support the devices and connections. #### CAUTION Do **not** turn the device body. Only turn the connector nut. Damage to the center conductor can occur if the device body is twisted. - 1. Use an open-end wrench or spanner wrench to prevent the device body from turning. - 2. Use another open-end wrench or the torque wrench to loosen the connector nut. - 3. Complete the separation by hand, turning only the connector nut. - 4. Pull the connectors straight apart without twisting, rocking, or bending. ## Handling and Storage - Use the plastic end caps and store the calibration devices in the foam-lined storage case when not in use. - Never store connectors loose in a box, in a desk, or in a bench drawer. This is the most common cause of connector damage during storage. Keysight recommends that you purchase the optional ECal Storage Box (not included with an ECal kit). Refer to "ECal Kit Storage Box (Option 150)" on page
4-22. This is a container for securing your ECal module and accessories, such as a USB cable, wrenches, and adapters. For ordering information, see "Other ECal Accessories" on page 6-11. - Keep connectors clean. - Do not touch mating plane surfaces. Natural skin oils and microscopic particles of dirt are easily transferred to a connector interface and are very difficult to remove. - Do not set connectors contact-end down on a hard surface. The plating and the mating plane surfaces can be damaged if the interface comes in contact with any hard surface. Use, Maintenance, and Care of the Devices ECal Kit Storage Box (Option 150) ## ECal Kit Storage Box (Option 150) The ECal kit storage box is a wooden box that can be ordered separately as Option 150. It is a container for securing the contents of your ECal kit — the ECal module and accessories, such as a USB cable, wrenches and adapters. Inside the storage box, these items are safely placed within the ESD-safe foam cutouts, so they are protected from the work environment and are easily located when needed. The ECal kit storage box is not designed for shipping. Please retain the original shipping container to ship the ECal module and accessories back to Keysight for repair and recertification. Keysight Electronic Calibration Modules RF/Microwave Two Port and Four Port Reference Guide # 5 Specifications and Characteristics Specifications: Terminology and Definitions The following terms and definitions apply to Keysight's 8509x, N443xA/B, and N469xA/B/C series of ECal modules. The definitions are specific to these modules and are not necessarily valid definitions for other Keysight Technologies products. Table 5-1 Specifications and Characteristics Terminology | Terms | Definitions | |-----------------------------------|--| | Operating Temperature Range | The temperature range over which the ECal modules maintain conformance to their specifications. | | Error-Corrected Temperature Range | The allowable network analyzer ambient temperature drift during measurement calibration and during measurements when network analyzer correction is turned on. It is also the range over which the network analyzer maintains its specified performance while correction is turned on. If this temperature range is exceeded, the error-corrected performance of the network analyzer is degraded. | | Measurement Calibration | This calibration determines the corrections necessary for accuracy-enhanced (correction on) measurements. | | Connector Pin Depth Values | Pin depth is a relative measurement value between the center conductor and outer conductor mating surfaces. All references to pin depth in this manual treat positive (+) values as protrusions of the center conductor, and negative (-) values as recessions of the center conductor. See "Typical Pin Depth Values" on page 15 | | Electrical Specifications | Warranted performance. Specifications include guard bands to account for the expected statistical distribution, measurement uncertainties, and changes in performance due to environmental conditions. Included with Option UK6. | | Characteristic Performance | A performance parameter that the product is expected to meet before it leaves the factory, but is not verified in the field and is not covered by the product warranty. A characteristic includes the same guard bands as a specification. | | Typical Corrected Performance | Expected performance of an average unit which does not include guard bands. It is not covered by the product warranty. | ## **Environmental Specifications** NOTE Samples of this product have been type-tested in accordance with the Keysight Environmental Test Manual and verified to be robust against the environmental stresses of storage, transportation and end-use; those stresses include but are not limited to temperature, humidity, shock, vibration, and power-line conditions. Test methods are aligned with IEC 60068-2 and levels are similar to MIL-PRF-28800F Class 3. Table 5-2 Environmental Specifications for all ECal Modules | Specifications | Limits | |---|--| | Temperature Operating (8509xC series) Operating (N443xA/B series) Operating (N469xA/B/C series) Storage Error-corrected range | +20 °C to +30 °C
+20 °C to +30 °C
+20 °C to +26 °C
-40 °C to +70 °C
±1 °C of measurement calibration temperature | | Relative Humidity | Type tested, 0% to 95% at 40°C, non-condensing | ### Operating Temperature and Accuracy Enhancement Because the dimensions of critical components may vary over temperature, certain electrical characteristics may change as well. Thus, the operating temperature is a critical factor in its performance, and must be stable before use. In addition, excessive air flow can prevent the ECal module from warming up properly. Measurement calibration, performance verification, and actual device measurements must be made within ±1 °C of the error-corrected operating temperature range specification of the network analyzer. If the ambient operating temperature drift of the network analyzer exceeds the allowable error-corrected temperature range, a new measurement calibration must be performed to ensure optimum accuracy. NOTE Avoid prolonged handling of the module, connectors, and cables. Your fingers are a heat source that can increase the temperature of these devices. ### Barometric Pressure and Relative Humidity Barometric pressure and relative humidity also affect module performance. The dielectric constant of the air between the inner and outer conductors of the module changes as the air pressure and humidity change. ### Characteristic Performance Characteristic performance for RF and microwave ECal modules are provided in the following tables, which describe non-warranted performance that most units exhibit. #### 8509x Series Table 5-3 Characteristic Performance for 85091C (7 mm)^a | Parameter | Frequenc | Frequency Range | | | | | | | |--|-------------------------|--------------------|-------------------|-------------------|-------------------|--|--|--| | | 300 kHz
to 10
MHz | 10 MHz
to 1 GHz | 1 GHz
to 3 GHz | 3 GHz
to 6 GHz | 6 GHz
to 9 GHz | | | | | Directivity (dB) | 45 | 52 | 52 | 50 | 45 | | | | | Source Match (dB) | 36 | 45 | 44 | 41 | 34 | | | | | Reflection Tracking (±dB) | 0.1 | 0.04 | 0.04 | 0.07 | 0.1 | | | | | Transmission Tracking (±dB) ^b | 0.08 | 0.05 | 0.05 | 0.07 | 0.15 | | | | | Load Match (dB) ^b | 40 | 46 | 45 | 43 | 38 | | | | a. When applied power exceeds +9 dBm, calibration results will be degraded from the performance indicated in this table. Table 5-4 Characteristic Performance for 85092C (Type-N 50Ω)^a | Parameter | Frequency Range | | | | | | | |--|----------------------|--------------------|-------------------|-------------------|-------------------|--|--| | | 300 kHz
to 10 MHz | 10 MHz
to 1 GHz | 1 GHz
to 3 GHz | 3 GHz
to 6 GHz | 6 GHz
to 9 GHz | | | | Directivity (dB) | 45 | 52 | 52 | 49 | 45 | | | | Source Match (dB) | 36 | 45 | 44 | 41 | 36 | | | | Reflection Tracking (±dB) | 0.1 | 0.04 | 0.04 | 0.06 | 0.07 | | | | Transmission Tracking (±dB) ^b | 0.12 | 0.05 | 0.06 | 0.11 | 0.17 | | | | Load Match (dB) ^b | 36 | 41 | 45 | 40 | 37 | | | a. When applied power exceeds +9 dBm, calibration results will be degraded from the performance indicated in this table. b. Values based on using the network analyzer N5231A Option 200. b. Values based on using the network analyzer N5231A Option 200. Table 5-5 Characteristic Performance for 85093C (3.5 mm)^a | Parameter | Frequency Range | | | | | | |--|----------------------|--------------------|-------------------|-------------------|-------------------|--| | | 300 kHz
to 10 MHz | 10 MHz
to 1 GHz | 1 GHz
to 3 GHz | 3 GHz
to 6 GHz | 6 GHz
to 9 GHz | | | Directivity (dB) | 45 | 52 | 52 | 50 | 47 | | | Source Match (dB) | 36 | 44 | 44 | 39 | 34 | | | Reflection Tracking (±dB) | 0.1 | 0.03 | 0.04 | 0.05 | 0.07 | | | Transmission Tracking (±dB) ^b | 0.13 | 0.05 | 0.05 | 0.10 | 0.16 | | | Load Match (dB) ^b | 36 | 42 | 45 | 42 | 39 | | a. When applied power exceeds +9 dBm, calibration results will be degraded from the performance indicated in this table. Table 5-6 Characteristic Performance for 85096C (Type-N 75Ω)^a | Parameter | Frequency Range | | | | | | | |--|----------------------|----------------------|-----------------------|---------------------|--|--|--| | | 300 kHz
to 10 MHz | 10 MHz
to 300 MHz | 300 MHz
to 1.3 GHz | 1.3 GHz
to 3 GHz | | | | | Directivity (dB) | 45 | 50 | 48 | 43 | | | | | Source Match (dB) | 36 | 48 | 45 | 38 | | | | | Reflection Tracking (±dB) | 0.1 | 0.03 | 0.06 | 0.10 | | | | | Transmission Tracking (±dB) ^b | 0.13 | 0.05 | 0.06 | 0.10 | | | | | Load Match (dB) ^b | 36 | 42 | 41 | 37 | | | | a. When applied power exceeds +9 dBm, calibration results will be degraded from the performance indicated in this table. b. Values based on using the network analyzer N5231A Option 200. b. Values based on using the network analyzer E5061B Option 237. Table 5-7 Characteristic Performance for 85098C (7-16)^a | Parameter | Frequency Range | | | | | | | |--|----------------------
--------------------|-------------------|-------------------|---------------------|--|--| | | 300 kHz
to 10 MHz | 10 MHz
to 1 GHz | 1 GHz
to 3 GHz | 3 GHz
to 6 GHz | 6 GHz
to 7.5 GHz | | | | Directivity (dB) | 45 | 47 | 47 | 46 | 45 | | | | Source Match (dB) | 36 | 43 | 43 | 38 | 37 | | | | Reflection Tracking (±dB) | 0.10 | 0.03 | 0.03 | 0.05 | 0.06 | | | | Transmission Tracking (±dB) ^b | 0.13 | 0.06 | 0.07 | 0.12 | 0.14 | | | | Load Match (dB) ^b | 36 | 40 | 38 | 36 | 34 | | | a. When applied power exceeds +9 dBm, calibration results will be degraded from the performance indicated in this table. Table 5-8 Characteristic Performance for 85099C (Type-F)a, b | Parameter | Frequency Range | | | | | | | |--|----------------------|----------------------|-----------------------|---------------------|--|--|--| | | 300 kHz
to 10 MHz | 10 MHz
to 300 MHz | 300 MHz
to 1.3 GHz | 1.3 GHz
to 3 GHz | | | | | Directivity (dB) | 45 | 50 | 48 | 43 | | | | | Source Match (dB) | 36 | 48 | 45 | 38 | | | | | Reflection Tracking (±dB) | 0.10 | 0.03 | 0.07 | 0.15 | | | | | Transmission Tracking (±dB) ^c | 0.14 | 0.05 | 0.07 | 0.11 | | | | | Load Match (dB) ^c | 36 | 42 | 41 | 36 | | | | a. When mated with male connectors with a 0.77 mm (.030 in) to 0.86 (0.34) pin diameter b. Values based on using the network analyzer N5231A Option 200. b. When applied power exceeds +9 dBm, calibration results will be degraded from the performance indicated in this table. c. Values based on using the network analyzer E5061B Option 237. #### N4431B (3.5 mm) The characteristic performance in the following table applies to N4431B Option 010 (3.5 mm female connectors on all ports). The data describes performance when measuring "thru path" A-B, C-D, A-D and B-C. Table 5-9 Characteristic Performance for N4431B Option 010^a | Parameter | Frequency Range | | | | | | | | |--|---------------------------------|--------------------|-------------------|-------------------|-------------------|-------------------|----------------------|--| | | 9 kHz ^b
to 10 MHz | 10 MHz
to 1 GHz | 1 GHz
to 3 GHz | 3 GHz
to 6 GHz | 6 GHz
to 8 GHz | 8 GHz
to 9 GHz | 9 GHz
to 13.5 GHz | | | Directivity (dB) | 45 | 53 | 52 | 48 | 46 | 44 | 40 | | | Source Match (dB) | 36 | 50 | 47 | 45 | 44 | 43 | 32 | | | Reflection Tracking (±dB) | 0.10 | 0.03 | 0.03 | 0.04 | 0.04 | 0.05 | 0.10 | | | Transmission Tracking (±dB) ^C | 0.10 | 0.04 | 0.06 | 0.12 | 0.16 | 0.17 | 0.44 | | | Load Match (dB) ^c | 39 | 45 | 45 | 40 | 38 | 36 | 32 | | - a. When applied power exceeds +7 dBm, calibration results will be degraded from the performance indicated in this table. - b. Performance from 9 kHz to 300 kHz is valid only for the E5071C ENA network analyzer with firmware version A.09.10 or higher. - c. Values based on using the network analyzer N5231A Option 400. The characteristic performance in the following table applies to N4431B Option 010 (3.5 mm female connectors on all ports). The data describes performance when measuring "thru path" A-C and B-D. Table 5-10 Characteristic Performance for N4431B Option 010^a | Parameter | Frequency Range | | | | | | | | |--|---------------------------------|--------------------|-------------------|-------------------|-------------------|-------------------|----------------------|--| | | 9 kHz ^b
to 10 MHz | 10 MHz
to 1 GHz | 1 GHz
to 3 GHz | 3 GHZ
to 6 GHz | 6 GHz
to 8 GHz | 8 GHz
to 9 GHz | 9 GHz
to 13.5 GHz | | | Directivity (dB) | 45 | 53 | 52 | 48 | 46 | 44 | 40 | | | Source Match (dB) | 36 | 50 | 47 | 45 | 44 | 43 | 32 | | | Reflection Tracking (±dB) | 0.10 | 0.03 | 0.03 | 0.04 | 0.04 | 0.05 | 0.10 | | | Transmission Tracking (±dB) ^c | 0.10 | 0.04 | 0.06 | 0.11 | 0.14 | 0.15 | 0.30 | | | Load Match (dB) ^c | 38 | 45 | 45 | 40 | 38 | 36 | 32 | | a. When applied power exceeds +7 dBm, calibration results will be degraded from the performance indicated in this table. b. Performance from 9 kHz to 300 kHz is valid only for the E5071C ENA network analyzer with firmware version A.09.10 or higher. c. Values based on using the network analyzer N5231A Option 400. ### N4431B (Type-N 50 Ω) The characteristic performance in the following table applies to N4431B Option 020 (type-N female connectors on all ports). The data describes performance when measuring "thru path" A-B, C-D, A-D and B-C. Table 5-11 Characteristic Performance for N4431B Option 020^a | Parameter | Frequency Range | | | | | | | | |--|---------------------------------|--------------------|-------------------|-------------------|-------------------|-------------------|----------------------|--| | | 9 kHz ^b
to 10 MHz | 10 MHz
to 1 GHz | 1 GHz
to 3 GHz | 3 GHz
to 6 GHz | 6 GHz
to 8 GHz | 8 GHz
to 9 GHz | 9 GHz
to 13.5 GHz | | | Directivity (dB) | 45 | 53 | 52 | 46 | 44 | 42 | 38 | | | Source Match (dB) | 36 | 47 | 43 | 42 | 40 | 39 | 31 | | | Reflection Tracking (±dB) | 0.10 | 0.03 | 0.04 | 0.04 | 0.05 | 0.06 | 0.11 | | | Transmission Tracking (±dB) ^c | 0.10 | 0.04 | 0.07 | 0.12 | 0.16 | 0.18 | 0.45 | | | Load Match (dB) ^c | 39 | 45 | 44 | 39 | 37 | 35 | 31 | | a. When applied power exceeds +7 dBm, calibration results will be degraded from the performance indicated in this table. The characteristic performance in the following table applies to N4431B Option 020 (type-N female connectors on all ports). The data describes performance when measuring "thru path" A-C and B-D. Table 5-12 Characteristic Performance for N4431B Option 020^a | Parameter | Frequency Range | | | | | | | | |--|---------------------------------|--------------------|-------------------|-------------------|-------------------|-------------------|----------------------|--| | | 9 kHz ^b
to 10 MHz | 10 MHz
to 1 GHz | 1 GHz
to 3 GHz | 3 GHz
to 6 GHz | 6 GHz
to 8 GHz | 8 GHz
to 9 GHz | 9 GHz
to 13.5 GHz | | | Directivity (dB) | 45 | 53 | 52 | 46 | 44 | 42 | 38 | | | Source Match (dB) | 36 | 47 | 43 | 42 | 40 | 39 | 31 | | | Reflection Tracking (±dB) | 0.10 | 0.03 | 0.04 | 0.04 | 0.05 | 0.06 | 0.11 | | | Transmission Tracking (±dB) ^c | 0.10 | 0.04 | 0.06 | 0.11 | 0.14 | 0.15 | 0.31 | | | Load Match (dB) ^c | 38 | 45 | 44 | 39 | 37 | 35 | 31 | | a. When applied power exceeds +7 dBm, calibration results will be degraded from the performance indicated in this table. b. Performance from 9 kHz to 300 kHz is valid only for the E5071C ENA network analyzer with firmware version A.09.10 or higher. c. Values based on using the network analyzer N5231A Option 400. b. Performance from 9 kHz to 300 kHz is valid only for the E5071C ENA network analyzer with firmware version A.09.10 or higher. c. Values based on using the network analyzer N5231A Option 400. ## N4432A (Type-N 50 Ω) The characteristic performance in the following table applies to N4432A Option 020 (type-N female connectors on all ports). | Parameter | Frequency Range | | | | | | | | |--|----------------------|--------------------|-------------------|----------------------|-----------------------|--|--|--| | | 300 kHz
to 10 MHz | 10 MHz
to 5 GHz | 5 GHz
to 9 GHz | 9 GHz
to 13.5 GHz | 13.5 GHz
to 18 GHz | | | | | Directivity (dB) | 45 | 50 | 47 | 41 | 40 | | | | | Source Match (dB) | 35 | 41 | 37 | 34 | 34 | | | | | Reflection Tracking (±dB) | 0.10 | 0.06 | 0.10 | 0.15 | 0.14 | | | | | Transmission Tracking (±dB) ^a | 0.18 | 0.05 | 0.10 | 0.17 | 0.21 | | | | | Load Match (dB) ^a | 35 | 42 | 39 | 35 | 33 | | | | a. Values based on using the network analyzer N5232A Option 400. ### N4433A (3.5 mm) The characteristic performance in the following table applies to N4433A Option 010 (3.5 mm female connectors on all ports). | Parameter | Frequency Range | | | | | | | | |--|----------------------|--------------------|-------------------|----------------------|-------------------|--|--|--| | | 300 kHz
to 10 MHz | 10 MHz
to 5 GHz | 5 GHz
to 9 GHz | 9 GHz
to 13.5 GHz | 13.5
to 20 GHz | | | | | Directivity (dB) | 45 | 50 | 47 | 45 | 40 | | | | | Source Match (dB) | 36 | 42 | 39 | 37 | 31 | | | | | Reflection Tracking (±dB) | 0.10 | 0.06 | 0.09 | 0.10 | 0.18 | | | | | Transmission Tracking (±dB) ^a | 0.18 | 0.05 | 0.09 | 0.12 | 0.23 | | | | | Load Match (dB) ^a | 35 | 42 | 39 | 38 | 32 | | | | a. Values based on using the network analyzer N5232A Option 400. ### N469xA/B/C Series Table 5-13 Characteristic Performance for N4690B and N4690C (Type-N 50 Ω)^a | Parameter | Frequency Range | | | | | | | | |------------------------------|---------------------|--------------------|----------------------|---------------------|--------------------|---------------------|--|--| | | 300 kHz
to 2 MHz | 2 MHz
to 10 MHz | 10 MHz
to 500 MHz | 500 MHz
to 2 GHz | 2 GHz
to 10 GHz | 10 GHz
to 18 GHz | | | | Directivity (dB) | 30 | 40 | 45 | 48 | 44 | 42 | | | | Source Match (dB) | 28 | 35 | 40 | 43 | 40 | 35 | | | | Reflection Tracking (±dB) | 0.12 | 0.07 | 0.05 | 0.03 | 0.03 | 0.05 | | | | Transmission Tracking (±dB) | 0.37 ^b | 0.08 ^b | 0.10 ^c | 0.04 ^c | 0.05 ^c | 0.08 ^c | | | | Load Match w/ ECal Thru (dB) | 26 ^b | 37 ^b | 33 ^c | 42 ^c | 39 ^c | 34 ^c | | | a. When applied power exceeds -5 dBm, calibration results will be degraded from the performance indicated in this table. Table 5-14 Characteristic Performance for N4691B (3.5 mm)^a | Parameter | Frequency Range | | | | | | | | |------------------------------|---------------------|--------------------|-------------------------|---------------------|--------------------|---------------------|-----------------------|--| | | 300 kHz
to 2 MHz | 2 MHz
to 10 MHz | 10 MHz
to 500
MHz | 500 MHz
to 2 GHz | 2
GHz
to 10 GHz | 10 GHz
to 20 GHz | 20 GHz
to 26.5 GHz | | | Directivity (dB) | 31 | 41 | 46 | 52 | 48 | 46 | 44 | | | Source Match (dB) | 29 | 36 | 41 | 47 | 45 | 42 | 40 | | | Reflection Tracking (±dB) | 0.11 | 0.06 | 0.05 | 0.02 | 0.03 | 0.04 | 0.05 | | | Transmission Tracking (±dB) | 0.37 ^b | 0.08 ^b | 0.09 ^c | 0.03 ^c | 0.04 ^c | 0.06 ^c | 0.08 ^c | | | Load Match w/ ECal Thru (dB) | 27 ^b | 37 ^b | 34 ^c | 46 ^c | 43 ^c | 40 ^c | 38 ^c | | a. When applied power exceeds -5 dBm, calibration results will be degraded from the performance indicated in this table. b. Values based on using the network analyzer N5231A Option 200. c. Values based on using the network analyzer N5222A Option 200. b. Values based on using the network analyzer N5231A Option 200. c. Values based on using the network analyzer N5222A Option 200. Table 5-15 Characteristic Performance for N4692A (2.92 mm)^a | Parameter | Frequency Range | | | | | | | |--|----------------------------------|----------------------|---------------------|--------------------|---------------------|---------------------|--| | | 10 MHz
to 45 MHz ^b | 45 MHz
to 200 MHz | 200 MHz
to 2 GHz | 2 GHz
to 20 GHz | 20 GHz
to 30 GHz | 30 GHz
to 40 GHz | | | Directivity (dB) | 35 | 41 | 45 | 42 | 39 | 38 | | | Source Match (dB) | 30 | 36 | 36 | 35 | 30 | 29 | | | Reflection Tracking (±dB) | 0.10 | 0.08 | 0.08 | 0.08 | 0.10 | 0.10 | | | Transmission Tracking (±dB) ^c | 0.15 | 0.11 | 0.09 | 0.11 | 0.14 | 0.15 | | | Load Match (dB) ^c | 29 | 34 | 35 | 33 | 28 | 27 | | a. When applied power exceeds -5 dBm, calibration results will be degraded from the performance indicated in this table. Table 5-16 Characteristic Performance for N4693A (2.4 mm)^a | Parameter | Frequency Range | | | | | | | | |--|----------------------------------|----------------------|---------------------|--------------------|---------------------|---------------------|---------------------|--| | | 10 MHz
to 45 MHz ^b | 45 MHz
to 200 MHz | 200 MHz
to 2 GHz | 2 GHz
to 10 GHz | 10 GHz
to 20 GHz | 20 GHz
to 40 GHz | 40 GHz
to 50 GHz | | | Directivity (dB) | 32 | 42 | 51 | 49 | 45 | 41 | 36 | | | Source Match (dB) | 25 | 44 | 46 | 42 | 37 | 35 | 32 | | | Reflection Tracking (±dB) | 0.05 | 0.03 | 0.03 | 0.04 | 0.05 | 0.06 | 0.08 | | | Transmission Tracking (±dB) ^c | 0.12 | 0.06 | 0.04 | 0.05 | 0.07 | 0.10 | 0.14 | | | Load Match (dB) ^c | 24 | 42 | 45 | 40 | 35 | 33 | 30 | | a. When applied power exceeds -5 dBm, calibration results will be degraded from the performance indicated in this table. b. Based on typical performance. c. Values based on using the network analyzer N5224A Option 200. b. Based on typical performance. c. Values based on using the network analyzer N5225A Option 200. Table 5-17 Characteristic Performance for N4694A (1.85 mm)^a | Parameter | Frequency Range | | | | | | | | | |--|-------------------------------------|-------------------------|---------------------|------|------------------------|------------------------|------------------------|------------------------|------------------------| | | 10 MHz
to 45
MHz ^b | 45 MHz
to 200
MHz | 200 MHz
to 2 GHz | | 20 GHz
to 30
GHz | 30 GHz
to 40
GHz | 40 GHz
to 50
GHz | 50 GHz
to 60
GHz | 60 GHz
to 67
GHz | | Directivity (dB) | 33 | 41 | 46 | 47 | 46 | 44 | 42 | 41 | 38 | | Source Match (dB) | 25 | 38 | 38 | 39 | 35 | 34 | 33 | 30 | 27 | | Reflection Tracking (±dB) | 0.05 | 0.04 | 0.04 | 0.04 | 0.05 | 0.06 | 0.07 | 0.08 | 0.09 | | Transmission Tracking (±dB) ^c | 0.15 | 0.08 | 0.06 | 0.06 | 0.08 | 0.09 | 0.11 | 0.12 | 0.15 | | Load Match (dB) ^c | 24 | 36 | 36 | 37 | 33 | 32 | 31 | 28 | 26 | a. When applied power exceeds -5 dBm, calibration results will be degraded from the performance indicated in this table. Table 5-18 Characteristic Performance for N4696B (7 mm)^a | Parameter | Frequency Range | | | | | | | |------------------------------|---------------------|--------------------|----------------------|---------------------|--------------------|---------------------|--| | | 300 kHz
to 2 MHz | 2 MHz
to 10 MHz | 10 MHz
to 500 MHz | 500 MHz
to 2 GHz | 2 GHz
to 10 GHz | 10 GHz
to 18 GHz | | | Directivity (dB) | 30 | 40 | 46 | 45 | 47 | 42 | | | Source Match (dB) | 28 | 35 | 40 | 40 | 42 | 36 | | | Reflection Tracking (±dB) | 0.12 | 0.07 | 0.05 | 0.03 | 0.03 | 0.05 | | | Transmission Tracking (±dB) | 0.37 ^b | 0.07 ^a | 0.10 ^c | 0.04 ^c | 0.04 ^c | 0.08 ^c | | | Load Match w/ ECal Thru (dB) | 26 ^a | 37 ^a | 33 ^c | 39c | 41 ^c | 34 ^c | | a. When applied power exceeds -5 dBm, calibration results will be degraded from the performance indicated in this b. Based on typical performance. c. Values based on using the network analyzer N5227A Option 200. b. Values based on using the network analyzer N5231A Option 200. c. Values based on using the network analyzer N5222A Option 200. #### Mechanical Characteristics Mechanical characteristics, such as center conductor protrusion and pin depth, are not warranted performance specifications. They are, however, important supplemental characteristics related to the electrical performance of devices. Keysight Technologies verifies the mechanical characteristics of the devices with special gaging processes and electrical testing. These processes ensure that the device connectors do not exhibit any excess center conductor protrusion or improper pin depth when the module leaves the factory. "Gaging Connectors" on page 9 explains how to use pin-depth gages. Refer to "Typical Pin Depth Values" on page 15 for typical and observed pin depth limits. #### Pin Depth Pin depth is the distance the center conductor mating plane differs from being flush with the outer connector mating plane. The pin depth of a connector can be in one of two states: protrusion or recession. The pin depth for a 3.5 mm connector is shown in Figure 5-1, although the description also applies to 2.92 mm, 2.4 mm, or 1.85 mm connectors. Typical pin depths for ECal connectors are listed in "Typical Pin Depth Values" on page 15. **Protrusion** occurs when the center conductor extends beyond the outer conductor mating plane. It reads as a positive value on the connector gage. **Recession** occurs when the center conductor is set back from the outer conductor mating plane. It reads as a negative value on the gage. Figure 5-1 Pin Depth for a 3.5 mm Connectors #### Type-N Characteristics With type-N and 7-16 connectors, the shoulder position of the male contact pin (not the position of the tip) defines the position of the center conductor. The male contact pin slides into the female contact fingers; the inside surfaces of the tip of the female contact fingers on the sides of the male contact pin provide electrical contact. Type-N connectors differ from most connector types in that the outer conductor mating plane is offset from the mating plane of the center conductor (see Figure 5-2). The outer conductor in the male connector extends in front of the shoulder of the male contact pin. When you make a connection, this outer conductor fits into a recess in the female outer conductor behind the plane defined by the tip of the female contact fingers. Figure 5-2 Pin Depth for Type-N Connectors #### Critical Type-N Mechanical Characteristics #### CAUTION Never use a type-N connector if the possibility of interference between the shoulder of the male contact pin and the tip of the female contact fingers exists. Irreparable damage will occur if a male 50 Ω type-N connector is mated to a female 75 Ω type-N connector. If you use both 75 Ω and 50 Ω type-N connectors, mark the 75 Ω connectors so that they are never accidentally mated with 50 Ω connectors. The diameter of the center conductor, male contact pin, and female contact hole are smaller on 75 Ω connectors. - Minimum protrusion of the female center conductor in front of the outer conductor mating plane is 5.182 mm or 0.204 inches. - Maximum protrusion of the female center conductor in front of the outer conductor mating plane is 5.258 mm or 0.207 inches. - Minimum recession of the shoulder of the male contact pin behind the outer conductor mating plane is 5.258 mm or 0.207 inches. Specifications and Characteristics Mechanical Characteristics Maximum recession of the shoulder of the male contact pin behind the outer conductor mating plane is 5.334 mm or 0.210 inches. In the Keysight precision specification for type-N connectors, the minimum allowable recession for the male contact pin shoulder is 0.001 inches less than in the MIL-C-39012, Class II specification. Keysight Technologies type-N pin depth gages set "zero" on the gage to be equal to a nominal 5.258 mm (0.207 inches) offset. As type-N connectors wear, the protrusion of the female contact-fingers generally increases. This is due to the wear of the outer conductor mating plane inside the female connector. It is necessary to check this periodically as it decreases the total center conductor contact separation. ## Typical Pin Depth Values The pin depth value of each device is not specified, but is an important mechanical parameter. The electrical performance of the device depends, to some extent, on its pin depth. The electrical specifications for each module takes into account the effect of pin depth on the device's performance. The following tables list the typical pin depths and measurement uncertainties, and provides observed pin depth limits for the devices. If the pin depth of a device does not measure within the observed pin depth limits, it may be an indication that the device fails to meet electrical specification. Refer to Figure 5-1 and Figure 5-2 for a visual representation of proper pin depth (slightly recessed). NOTE Keysight Technologies does not supply pin depth
gages for 7-16 connectors. The 7-16 module adapter pin depth is set at 0 to -0.0381 millimeters recessed from the nominal 1.77 mm offset between inner conductor and outer conductor mating planes. Table 5-19 Type-N 50 Ω Connector Pin Depth Characteristics | Device | Typical Pin Depth ^a
in Millimeters
(10 ⁻⁴ inches) | Measurement Uncertainty ^b
in Millimeters
(10 ⁻⁴ inches) | Observed Pin Depth Limits in Millimeters (10 ⁻⁴ inches) | |---|---|---|--| | Type-N 50 Ω ECal Module (85092C, N4431B Opt. 020, N4432A Opt. 020) | -0.0254 to -0.0508 | +0.0038 to -0.0038 | -0.0216 to -0.0546 | | | (-10.0 to -20.0) | (+1.5 to -1.5) | (-8.5 to -21.5) | | Type-N 50 Ω ECal Module (N4690B/C) | -0.0051 to -0.0152 | +0.0038 to -0.0038 | -0.0013 to -0.0190 | | | (-2.0 to -6.0) | (+1.5 to -1.5) | (-0.5 to -7.5) | | Type-N 50 Ω Adapter | 0 to -0.0127 | +0.0038 to -0.0038 | +0.0038 to -0.0165 | | | (0 to -5.0) | (+1.5 to -1.5) | (+1.5 to -6.5) | a. Measured from a 5.258 mm (0.207 inches) nominal offset. b. Approximately +2 sigma to -2 sigma of gage uncertainty based on studies performed at the factory using precision digital gages according to recommended procedures. Table 5-20 3.5 mm Connector Pin Depth Characteristics | Device | Typical Pin Depth | Measurement Uncertainty ^a | Observed Pin Depth Limits | |--|--|--------------------------------------|---------------------------------------| | | in Millimeters | in Millimeters | in Millimeters | | | (10 ⁻⁴ inches) | (10 ⁻⁴ inches) | (10 ⁻⁴ inches) | | 3.5 mm ECal Module
(85093C, N4433A, N4431B Opt.
010) | -0.0254 to -0.0508
(-10.0 to -20.0) | +0.0041 to -0.0041
(+1.6 to -1.6) | -0.0213 to -0.0549
(-8.4 to -21.6) | | 3.5 mm ECal Module | -0.0025 to -0.0152 | +0.0041 to -0.0041 | +0.0016 to -0.0193 | | (N4691B) | (-1.0 to -6.0) | (+1.6 to -1.6) | (+0.6 to -7.6) | | 3.5 mm Adapter | 0 to -0.0254 | +0.0041 to -0.0041 | +0.0041 to -0.0295 | | | (0 to -10) | (+1.6 to -1.6) | (+1.6 to -11.6) | a. Approximately +2 sigma to -2 sigma of gage uncertainty based on studies performed at the factory using precision digital gages according to recommended procedures. Table 5-21 7 mm Connector Pin Depth Characteristics | Device | Typical Pin Depth | Measurement Uncertainty ^a | Observed Pin Depth Limits | |------------------|---------------------------|--------------------------------------|---------------------------| | | in Millimeters | in Millimeters | in Millimeters | | | (10 ⁻⁴ inches) | (10 ⁻⁴ inches) | (10 ⁻⁴ inches) | | 7 mm ECal Module | -0.0254 to -0.0508 | +0.0038 to -0.0038 | -0.0216 to -0.0546 | | (85091C, N4432A) | (-10.0 to -20.0) | (+1.5 to -1.5) | (-8.5 to -21.5) | | 7 mm ECal Module | -0.0025 to -0.0152 | +0.0038 to -0.0038 | +0.0013 to -0.0190 | | (N4696B) | (-1.0 to -6.0) | (+1.5 to -1.5) | (+0.5 to -7.5) | a. Approximately +2 sigma to -2 sigma of gage uncertainty based on studies performed at the factory using precision digital gages according to recommended procedures. Table 5-22 2.92 mm Connector Pin Depth Characteristics | Device | Typical Pin Depth | Measurement Uncertainty ^a | Observed Pin Depth Limits | |---------------------|---------------------------|--------------------------------------|---------------------------| | | in Millimeters | in Millimeters | in Millimeters | | | (10 ⁻⁴ inches) | (10 ⁻⁴ inches) | (10 ⁻⁴ inches) | | 2.92 mm ECal Module | -0.0025 to -0.0152 | +0.0030 to -0.0030 | +0.0005 to -0.0182 | | | (-1.0 to -6.0) | (+1.2 to -1.2) | (+0.2 to -7.2) | | 2.92 mm Adapter | 0 to -0.0381 | +0.0030 to -0.0030 | +0.0030 to -0.0411 | | | (0 to -15) | (+1.2 to -1.2) | (+1.2 to -16.2) | a. Approximately +2 sigma to -2 sigma of gage uncertainty based on studies performed at the factory using precision digital gages according to recommended procedures. Table 5-23 2.4 mm Connector Pin Depth Characteristics | Device | Typical Pin Depth | Measurement Uncertainty ^a | Observed Pin Depth Limits | |--------------------|---------------------------|--------------------------------------|---------------------------| | | in Millimeters | in Millimeters | in Millimeters | | | (10 ⁻⁴ inches) | (10 ⁻⁴ inches) | (10 ⁻⁴ inches) | | 2.4 mm ECal Module | -0.0025 to -0.0152 | +0.0030 to -0.0030 | +0.0005 to -0.0182 | | | (-1.0 to -6.0) | (+1.2 to -1.2) | (+0.2 to -7.2) | | 2.4 mm Adapter | 0 to -0.0381 | +0.0030 to -0.0030 | +0.0030 to -0.0411 | | | (0 to -15) | (+1.2 to -1.2) | (+1.2 to -16.2) | a. Approximately +2 sigma to -2 sigma of gage uncertainty based on studies performed at the factory using precision digital gages according to recommended procedures. Table 5-24 1.85 mm Connector Pin Depth Characteristics | Device | Typical Pin Depth
in Millimeters
(10 ⁻⁴ inches) | Measurement Uncertainty ^a
in Millimeters
(10 ⁻⁴ inches) | Observed Pin Depth Limits in Millimeters (10 ⁻⁴ inches) | |---------------------|--|---|--| | 1.85 mm ECal Module | -0.0025 to -0.0152 | +0.0030 to -0.0030 | +0.0005 to -0.0182 | | | (-1.0 to -6.0) | (+1.2 to -1.2) | (+0.2 to -7.2) | | 1.85 mm Adapter | 0 to -0.0381 | +0.0030 to -0.0030 | +0.0030 to -0.0411 | | | (0 to -15) | (+1.2 to -1.2) | (+1.2 to -16.2) | a. Approximately +2 sigma to -2 sigma of gage uncertainty based on studies performed at the factory using precision digital gages according to recommended procedures. # Supplemental Mechanical Characteristics Table 5-25 8509x Series Mechanical Characteristics | Characteristic | Limits | |--|---| | Net weight with case
Standard | 2.7 kilograms (5.9 lbs) | | Shipping weight
Standard | 4.3 kilograms (9.5 lbs) | | Shipping dimensions
Length
Width
Height | 45.7 cm (17.82 inches)
26.2 cm (10.22 inches)
13.3 cm (5.19 inches) | Table 5-26 N4431B Series Mechanical Characteristics | Characteristic | Limits | |--|--| | Net weight with case
Standard | 2.9 kilograms (6.3 lbs) | | Shipping weight
Standard | 4.5 kilograms (9.9 lbs) | | Shipping dimensions
Length
Width
Height | 45.7cm (17.82 inches)
26.2 cm (10.22 inches)
13.3 cm (5.19 inches) | Table 5-27 N469xA/B/C Series Mechanical Characteristics | Characteristic | Limits | |--|---| | Net weight with case
Standard | 2.7 kilograms (5.9 lbs) | | Shipping weight
Standard | 4.3 kilograms (9.5 lbs) | | Shipping dimensions
Length
Width
Height | 45.7 cm (17.82 inches)
26.2 cm (10.22 inches)
13.3 cm (5.19 inches) | Table 5-28 N443xA Series Mechanical Characteristics | Characteristic | Limits | |--|---| | Net weight with case
Standard | 2.8 kilograms (6.2 lbs) | | Shipping weight
Standard | 4.4 kilograms (9.7 lbs) | | Shipping container dimensions
Length
Width
Height | 45.7 cm (17.82 inches)
26.2 cm (10.22 inches)
13.3 cm (5.19 inches) | ### Mechanical Dimensions of the Modules Figure 5-3 8509x Modules (RF 2-Port) Figure 5-4 N4431B Module (RF 4-Port) Figure 5-5 N469xA/B/C Modules (Microwave 2-Port) Figure 5-6 N4432A and N4433A Modules (Microwave 4-Port) Specifications and Characteristics Measurement Uncertainty Calculator ## Measurement Uncertainty Calculator This section provides information about determining the uncertainty of the measurements on your network analyzer. ### Download the Vector Network Analyzer Uncertainty Calculator You can download a program from Keysight that provides the measurement uncertainty associated with your vector network analyzer measurement and ECal module. Go to www.keysight.com/find/na_calculator and follow the instructions on the Web site to download the program. The program uses your Keysight network analyzer model number, your ECal module model number, and electrical limits to calculate specific uncertainty charts for your network analyzer. The program is Microsoft Windows based and uses a Microsoft Excel spreadsheet to calculate, graph, and display uncertainty curves. Keysight Electronic Calibration Modules RF/Microwave Two Port and Four Port Reference Guide # 6 Replaceable Parts # Description of This Chapter The following tables contain the replaceable part numbers for ECal options and accessories. Refer to "Inspecting the ECal Kit" on page 1 for the contents of each kit. To order a part, note the description, Keysight part number, and the quantity desired. Telephone or send your order to Keysight Technologies. See "Contacting Keysight" on page 14. # 7 mm Modules and Accessories Table 6-1 | Description ^a | Qty | Part Number | |--|---|---| | Wrenches | | | | 3/4 in, 135 N-cm (12 in-lb) torque wrench (supplied with 7 mm kits) 1/2 in to 9/16 in open-ended wrench (supplied with N4696B) | 1 | 8710-1766
8710-1770 | | Protective End Caps | , | | | DB25 multi-pin connector cap
7 mm connector cap
36-pin connector
cap, ESD protected | as required
as required
as required | 1252-1935
1401-0249
N4693-40002 | | Gages and Accessories | | | | 7 mm pin depth gage and master | 1 | 85050-80012 | | Other | | | | Electronic calibration module reference manual USB cable, 1.8 meter Storage box for the ECal module and accessories | 1
1
1 | N4693-90001
8121-0506
N4693-60042 | a. See "Clarifying the Terminology of a Connector Interface" on page 1. # Type-N (50 ohm) Modules and Accessories #### Table 6-2 | Description ^a | Qty | Part Number | |--|--|--| | Adapters (added with Option 00A) | | | | Type-N (50 Ω) -f- to -f- adapter Type-N (50 Ω) -m- to -m- adapter | 1 | 85054-60037
85054-60038 | | Wrenches | | | | 3/4 in, 135 N-cm (12 in-lb) torque wrench (supplied with type-N kits) 1/2 in to 9/16 in open-ended wrench (supplied with N4690B/C) | 1 | 8710-1766
8710-1770 | | Protective End Caps | | | | DB-25 multi-pin connector cap
Type-N -f- connector cap
Type-N -m- connector cap
36-pin connector cap, ESD protected | as required
as required
as required
as required | 1252-1935
1401-0225
1401-0214
N4693-40002 | | Gages and Accessories | | | | Type-N pin depth gages (-m- and -f- gages and masters) | 1 set | 85054-60049 | | Other | | | | Electronic calibration module reference manual Connector care quick reference card (part of reference manual) USB cable A to B 1.8 meter Storage box for the ECal module and accessories | 1
1
1 | N4693-90001
08510-90360
8121-0506
N4693-60042 | a. See "Clarifying the Terminology of a Connector Interface" on page 1. ## 3.5 mm Modules and Accessories #### Table 6-3 | Description ^a | Qty | Part Number | |--|---|---| | Adapters (added with Option 00A) | | | | 3.5 mm -f- to -f- adapter
3.5 mm -m- to -m- adapter | 1 | 85052-60012
85052-60014 | | Wrenches | | | | 20 mm, 90 N-cm (8 in-lb) torque wrench (supplied with all 3.5 mm kits) 5/16 in, 90 N-cm (8 in-lb) torque wrench (supplied with N4691B, N443xA/B, 85093C kits) Spanner wrench (supplied with N4691B) 1/2 in to 9/16 in open-ended wrench (supplied with N4691B) | 1
1
1 | 8710-1764
8710-1765
08513-20014
8710-1770 | | Protective End Caps | | | | DB-25 multi-pin connector cap 3.5 mm connector cap (for module) 3.5 mm -f- connector cap (for adapter) 3.5 mm -m- connector cap (for adapter) 36-pin connector cap, ESD protected | as required
as required
as required
as required
as required | 1252-1935
1401-0214
1401-0202
1401-0208
N4693-40002 | | Gages and Accessories | | | | |--|-------------|--|--| | 3.5 mm -f- pin-depth gage ^b 3.5 mm -m- pin-depth gage ^b | 1 1 | 11752-60105
11752-60106 | | | 3.5 mm Connector Repair kit ^c | | | | | The 3.5 mm connector repair kit contains the following: | | | | | – 3.5 mm Inner contact tool (x1) 5022-9143 | 1 | | | | - 3.5 mm Inner contacts (x4) 5021-6558 | | | | | Other | | | | | Electronic calibration module reference guide
Connector care quick reference card (part of reference manual)
USB cable, 1.8 meter
Storage box for the ECal module and accessories | 1
1
1 | N4693-90001
08510-90360
8121-0506
N4693-60042 | | - a. See "Clarifying the Terminology of a Connector Interface" on page 1. - b. A 3.5 mm gage is capable of measuring 3.5 mm and 2.92 mm connectors. - c. Only available for Option 010 and mixed options with 3.5 mm -f- connectors. See also https://www.keysight.com/us/en/assets/9018-40566/service-manuals/9018-40566.pdf (85052-90070). # 7-16 Modules and Accessories Table 6-4 | Description ^a | Qty | Part Number | |--|---|--| | Adapters (added with Option 00A) | | | | 7-16 -f- to -f- adapter
7-16 -m- to -m- adapter | 1 | 11906-80016
11906-80015 | | Wrenches | | | | 1-1/16 in, 226 N-cm (20 in-lb) torque wrench (supplied with kit) 15/16 in open-ended wrench (supplied with kit) | 1 | 8710-2175
8710-2174 | | Protective End Caps | | | | DB-25 multi-pin connector cap 7-16 -m- connector cap 7-16 -f- connector cap | as required
as required
as required | 1252-1935
1401-0417
1401-0418 | | Other | | | | Electronic calibration module reference manual Connector care quick reference card (part of reference manual) USB Cable, 1.8 meter Storage box for the ECal module and accessories | 1
1
1 | N4693-90001
08510-90360
8121-0506
N4693-60042 | a. See "Clarifying the Terminology of a Connector Interface" on page 1. ## 2.92 mm Modules and Accessories Table 6-5 | Description ^a | Qty | Part Number | |--|--|--| | Adapters (added with Option 00A) | | | | 2.92 mm female to female adapter 2.92 mm male to male adapter | 1 | N4692-60022
N4692-60021 | | Wrenches | · | • | | 20 mm, 90 N-cm (8 in-lb) torque wrench (supplied with kit) 5/16 in, 90 N-cm (8 in-lb) torque wrench (supplied with kit) Spanner wrench (supplied with kit) 1/2 in to 9/16 in open-ended wrench (supplied with kit) | 1
1
1 | 8710-1764
8710-1765
08513-20014
8710-1770 | | Protective End Caps | | | | 2.92 mm connector cap (for module) 2.92 mm female connector cap (for adapter) 2.92 mm male connector cap (for adapter) 36-pin connector cap, ESD protected | as required
as required
as required
as required | 1401-0214
1401-0202
1401-0208
N4693-40002 | | Gages | · | • | | 3.5 mm female pin-depth gage ^b 3.5 mm male pin-depth gage ^b | 1 | 11752-60105
11752-60106 | | Other | • | • | | Electronic calibration module reference manual
Connector care quick reference card (part of reference manual)
USB cable, 1.8 meters
Storage box for the ECal module and accessories | 1
1
1 | N4693-90001
08510-90360
8121-0506
N4693-60042 | a. See "Clarifying the Terminology of a Connector Interface" on page 1. b. A 3.5 mm gage is capable of measuring 3.5 mm and 2.92 mm connectors. ## 2.4 mm Modules and Accessories #### Table 6-6 | Description ^a | Qty | Part Number | | |--|--|--|--| | Adapters (added with Option 00A) | | | | | 2.4 mm female to female adapter 2.4 mm male to male adapter | 1 | 85056-60006
85056-60005 | | | Wrenches | · | | | | 20 mm, 90 N-cm (8 in-lb) torque wrench (supplied with kit) 5/16 in, 90 N-cm (8 in-lb) torque wrench (supplied with kit) 1/2 in to 9/16 in open-ended wrench (supplied with kit) Spanner wrench (supplied with kit) | 1
1
1 | 8710-1764
8710-1765
8710-1770
08513-20014 | | | Protective End Caps | | | | | 2.4 mm connector cap (for module) 2.4 mm female connector cap (for adapter) 2.4 mm male connector cap (for adapter) 36-pin connector cap, ESD protected | as required
as required
as required
as required | 1401-0214
1401-0095
1401-0208
N4693-40002 | | | Gages | | | | | 2.4 mm female pin-depth gage ^b 2.4 mm male pin-depth gage ^b | 1 | 11752-60107
11752-60108 | | | Other | | | | | Electronic calibration module reference manual Connector care quick reference card (part of reference manual) USB cable, 1.8 meters Storage box for the ECal module and accessories | 1
1
1
1 | N4693-90001
08510-90360
8121-0506
N4693-60042 | | a. See "Clarifying the Terminology of a Connector Interface" on page 1. b. A 2.4 mm gage is capable of measuring 2.4 mm and 1.85 mm connectors. ## 1.85 mm Modules and Accessories Table 6-7 | Description ^a | Qty | Part Number | | |--|--|--|--| | Adapters (added with Option 00A) | | | | | 1.85 mm female to female adapter 1.85 mm male to male adapter | 1 1 | 85058-60114
85058-60113 | | | Wrenches | | | | | 20 mm, 90 N-cm (8 in-lb) torque wrench (supplied with kit) 5/16 in, 90 N-cm (8 in-lb) torque wrench (supplied with kit) Spanner wrench (supplied with kit) 1/2 in to 9/16 in open-ended wrench (supplied with kit) | 1
1
1
1 | 8710-1764
8710-1765
08513-20014
8710-1770 | | | Protective End Caps | | | | | 1.85 mm connector cap (for
module) 1.85 mm female connector cap (for adapter) 1.85 mm male connector cap (for adapter) 36-pin connector cap, ESD protected | as required
as required
as required
as required | 1401-0214
1401-0202
1401-0208
N4693-40002 | | | Gages | | | | | 2.4 mm female pin-depth gage ^b 2.4 mm male pin-depth gage ^b | 1 1 | 11752-60107
11752-60108 | | | Other | | | | | Electronic calibration module reference manual Connector care quick reference card (part of reference manual) USB cable, 1.8 meters Storage box for the ECal module and accessories | 1
1
1
1 | N4693-90001
08510-90360
8121-0506
N4693-60042 | | a. See "Clarifying the Terminology of a Connector Interface" on page 1. b. A 2.4 mm gage is capable of measuring 2.4 mm and 1.85 mm connectors. # Type-N (75 ohm) Modules and Accessories Table 6-8 | Description ^a | Qty | Part Number | | | | |---|---|--|--|--|--| | Adapters (added with Option 00A) | Adapters (added with Option 00A) | | | | | | Type-N (75 Ω) female to female adapter Type-N (75 Ω) male to male adapter | 1 | 85036-60014
85036-60013 | | | | | Wrenches | | | | | | | 3/4 in, 135 N-cm (12 in-lb) torque wrench 1/2 in to 9/16 in open-ended wrench | 1 | 8710-1766
8710-1770 | | | | | Protective End Caps | | | | | | | DB-25 multi-pin connector cap
Type-N male connector cap
Type-N female connector cap | as required
as required
as required | 1252-1935
1401-0248
1401-0247 | | | | | Gages | | | | | | | Type-N (75 ohm) mm pin depth gages (male and female gages and masters) | 1 set | 85036B
Option K01 | | | | | Other | | | | | | | Electronic calibration module reference manual Connector care quick reference card (part of reference manual) USB cable, 1.8 meters Storage box for the ECal module and accessories | 1
1
1 | N4693-90001
08510-90360
8121-0506
N4693-60042 | | | | a. See "Clarifying the Terminology of a Connector Interface" on page 1. # Type-F Modules and Accessories ### Table 6-9 | Description ^a | Qty | Part Number | |---|---|--| | Adapters (added with Option 00A) | | | | Type-F female to female adapter Type-F male to male adapter | 1 | 85039-60002
85039-60006 | | Wrenches | | | | Type-F wrench (supplied with kit) | 1 | 8710-1841 | | Protective End Caps | | | | DB-25 multi-pin connector cap
Type-F male connector cap
Type-F female connector cap | as required
as required
as required | 1252-1935
1401-0297
1401-0296 | | Other | | | | Electronic calibration module reference manual Connector care quick reference card (part of reference manual) USB cable, 1.8 meters Storage box for the ECal module and accessories | 1
1
1 | N4693-90001
08510-90360
8121-0506
N4693-60042 | a. See "Clarifying the Terminology of a Connector Interface" on page 1. ## Other ECal Accessories Table 6-10 | Description | Qty | Part Number | | |--|-----|-------------|--| | Cleaning Supplies | | | | | Compressed air (235 ml) | 1 | 8500-6659 | | | Anhydrous isopropyl alcohol (>92% pure) ^a | | | | | Cleaning swabs | 100 | 9301-1243 | | | Lint-free cleaning cloth | 150 | 9310-4242 | | | ESD Supplies | | | | | Grounding wrist strap | 1 | 9300-1367 | | | 5 ft Wrist-strap to table-mat grounding cord | 1 | 9300-0980 | | | 2 x 4 ft conductive table mat with 15 ft ground wire | 1 | 9300-0797 | | | ESD heel strap | 1 | 9300-1308 | | | USB Accessories | | | | | USB 4-port hub | 1 | N4689A | | | Module Accessories | | | | | Rubber foot | 1 | 85060-40001 | | | Storage box for the ECal module and accessories | 1 | N4693-60042 | | a. Keysight can no longer safely ship isopropyl alcohol, so customers should purchase it locally. Replaceable Parts Other ECal Accessories #### Index | Numerics | connector type, 4 | В | |-------------------------------|---------------------------------|---------------------------------| | | frequency range, 4 | | | 85060A (discontinued) | replaceable parts, 4 | barometric pressure, 2 | | connector type, 10 | 85096A (discontinued) | box, ECal storage, 22 | | frequency range, 10 | | box, roat storage, rr | | | connector type, 10 | | | 85060B (discontinued) | frequency range, 10 | С | | connector type, 10 | 85096B (discontinued) | | | frequency range, 10 | connector type, 10 | calibration | | 85062A (discontinued) | frequency range, 10 | adapter removal, 4 | | connector type, 10 | 85096C | adjustments, 1 | | frequency range, 10 | | | | | characteristic performance, 3 | advanced settings, 2 | | 85062B (discontinued) | connector type, 4 | frequency, 3 | | connector type, 10 | frequency range, 4 | isolation, 2 | | frequency range, 10 | replaceable parts, 9 | non-insertable device, 4 | | 85064A (discontinued) | 85098A (discontinued) | perform a calibration, 6 | | connector type, 10 | connector type, 10 | setting up, 1 | | frequency range, 10 | frequency range, 10 | types available, 2 | | 85064B (discontinued) | 85098B (discontinued) | unknown thru, 4 | | connector type, 10 | | user-characterization, 4 | | | connector type, 10 | | | frequency range, 10 | frequency range, 10 | when to perform, 3 | | 85091A (discontinued) | 85098C | why validate accuracy, 7 | | connector type, 10 | characteristic performance, 4 | center conductor | | frequency range, 10 | connector type, 4 | pin depth, 12 | | 85091B (discontinued) | frequency range, 4 | characteristic performance | | connector type, 10 | replaceable parts, 5 | 85091C, <mark>3</mark> | | frequency range, 10 | 85099A (discontinued) | 85092C, 3 | | 85091C | connector type, 10 | 85093C, <mark>3</mark> | | characteristic performance, 3 | | 85096C, 3 | | | frequency range, 10 | | | connector type, 4 | 85099B (discontinued) | 85098C, 4 | | frequency range, 4 | connector type, 10 | 85099C, <mark>5</mark> | | replaceable parts, 2 | frequency range, 10 | N4431B, 6, 7 | | 85092A (discontinued) | 85099C | N4432A, <mark>8</mark> | | connector type, 10 | characteristic performance, 5 | N4433A, <mark>8</mark> | | frequency range, 10 | connector type, 4 | N4690B/C, 9 | | 85092B (discontinued) | frequency range, 4 | N4691B, 9 | | connector type, 10 | replaceable parts, 10 | N4692A, 10 | | frequency range, 10 | replaceable parts, 10 | N4693A, 10 | | 85092C | | | | | A | N4694A, 11 | | characteristic performance, 3 | | N4696B, 11 | | connector type, 4 | accuracy of ECal vs. | characteristics | | frequency range, 4 | mechanical cal, 2 | connector, type-N, 13 | | replaceable parts, 3 | adapter cable | mechanical, 12 | | 85093A (discontinued) | connection to module, 16 | cleaning | | connector type, 10 | part number, 11 | connectors, 6 | | frequency range, 10 | adapter removal calibration, 4 | cleaning supplies, 11 | | 85093B (discontinued) | | collet, 8 | | | alcohol, cleaning connectors, 6 | | | connector type, 10 | | compatible network | | frequency range, 10 | | analyzers, 13 | | 85093C | | compressed air or nitrogen, 6 | | characteristic performance, 3 | | confidence check, 7 | | connecting ECal module, 14
connection
ENA analyzer, 14 | traceability, 15 visual inspection, 3 dimensions, modules, 20 | connectors, 9, 10 procedure, 14 | |---|--|---| | to interface, 16 to USB port, 14 | discontinued models, 10 | Н | | VNA analyzer, 16 connections, 16, 17, 20 | E | handling of devices, 21 | | 1.85 mm, 16
2.4 mm, 16 | ECal adapter removal, 4 | how often to calibrate, 3 humidity, 2 | | 2.92 mm, 16
3.5 mm, 16 | confidence check, 4 connecting and | I | | 7 mm, 16
type-F, 16 | disconnecting, 14
ENA compatibility, 13 | input power limits, 13 | | type-N, 16
connector
cleaning, 6 | ENA connections, 14 factory characterization, 4 | inspecting ECal on arrival, 1 inspection | | fixed connectors, 8 | inspecting kit, 1
network analyzer | damage, 3 defects, 3 female connectors, 5 | | precision 7 mm, 8
gaging, 9, 10, 15 | compatibility, 13
network analyzer
connections, 14 | female connectors, 5
mating plane, 3
visual, 3 | | pin depth
1.85 mm, 17 | perform a calibration, 6
PNA compatibility, 13 | instrument markings, 18 interface kit, 11 | | 2.4 mm, 17
2.92 mm, 16 | PNA connections, 14 setting up, 14 | isopropyl alcohol, cleaning, 6 | | 3.5 mm, 16
7 mm, 15, 16 | storage box, <mark>21</mark>
unknown thru, <mark>4</mark> | К | | slotted, 5
visual inspection, 3 | user-characterization, 4
VNA compatibility, 13 | Keysight Technologies contacting, 14 | | wear, 3 connector gage | VNA connections, 14 ECal kit serial number, 1 | returning an ECal, 14 Keysight, contacting, 14 | | accuracy, 9
handling, 15
master, 15 | ECal kit storage box, 22 ECal module overview, 1 | kit contents
85091C, 4
85092C, 4 | | zeroing, 14
connector wear | ECal serial number, 1
ECal vs. mechanical cal, 2 | 85093C, 4
85096C, 4 | | causes, 3
Contacting Keysight, 4 | electrostatic discharge
(ESD), 1 | 85098C, 4
85099C, 4 | | contacting Keysight, 14 container for storage, 21 | ENA analyzer connection to module, 14 | microwave four-port, 10 microwave two-port, 8 | | D | environmental specifications, 2
ESD protection, 1
ESD supplies, 11 | N4431B Opt. 010, 6
N4431B Opt. 020, 6
N4432A Opt. 020, 10 | | damaged connectors, 3 declaration of
conformity, 20 defective connectors, 3 | F | N4433A Opt. 010, 10
N4691B, 8
N4692A, 8 | | definitions specifications, 1 | female connectors inspection of, 5 | N4693A, 8
N4694A, 8 | | depth gage 7mm part number, 2 | frequency of calibration, 3 | N4696B, 8
RF four-port, 6 | | Type-N part number, 3 device | G | RF two-port, 4
kit serial number, 1 | | connecting, 16
disconnecting, 20 | gage
handling, 15 | kit storage box, 22 | | gaging, 15
handling and storage, 21 | zeroing, 14
gage master, using, 9 | | | specifications | gaging | line drawings of modules, 20 | | M | N4690B/C | accuracy enhancement, 2 | |---|---------------------------------|-----------------------------| | | characteristic performance, 9 | option 150, <mark>22</mark> | | maintenance, 1 | connector type, 8 | overview | | making connections, 16 | frequency range, 8 | ECal module, 1 | | manual overview, 1 | replaceable parts, 3 | , | | markings, instrument, 18 | N4691A (discontinued) | Р | | mating plane surfaces | connector type, 10 | 1 | | inspection, 3 | frequency range, 10 | physical dimensions of | | measurements, modules, 20 | N4691B | | | mechanical cal vs. ECal, 2 | characteristic performance, 9 | modules, 20 | | mechanical characteristics, 12, | | pin depth characteristics | | 18 | connector type, 7 | 1.85 mm, 17 | | center conductor | frequency range, 7 | 2.4 mm, 17 | | | replaceable parts, 4 | 2.92 mm, 16 | | protrusion, 12 | N4692A | 3.5 mm, 16 | | microwave, 18 | characteristic | 7 mm, 16_ | | RF, 18 | performance, 10 | type-N, 15 | | type-N, critical, 13 | connector type, 7_ | pin depth information, 12 | | mechanical dimensions | frequency range, 7 | PNA analyzer | | 8509x modules, 20 | replaceable parts, 6 | connection to module, 14 | | N4431B module, 21 | N4693A | prerequisite knowledge, 12 | | N4432A & N4433A | characteristic | procedure, gaging, 14 | | modules, 23 | performance, 10 | protrusion definition, 12 | | N469xA/B modules, 22 | connector type, 7 | , | | models | frequency range, 7 | R | | discontinued, 10 | replaceable parts, 7 | K | | module serial number, 1 | N4694A | reading connector gage, 10 | | modules | characteristic | recertification | | mechanical dimensions, 20 | performance, 11 | how often, 15 | | microwave 2-port, 7 | connector type, 7 | how to order, 15 | | microwave 4-port, 9 | frequency range, 7 | verification, 14 | | performance | replaceable parts, 8 | | | verification, 14 | N4696B, 9 | where to send, 15 | | | characteristic | recession definition, 12 | | RF 2-port, 4 | performance, 11 | recording serial numbers, 1 | | RF 4-port, 6 | | relative humidity, 2 | | modules, dimensions, 20 | connector type, 7 | replaceable parts | | | frequency range, 7 | 1.85 mm, 8 | | N | replaceable parts, 2 | 2.4 mm, 7 | | | National Institute of Standards | 2.92 mm, 6 | | N4431A (discontinued) | and Technology (NIST), 15 | 3.5 mm, 4 | | connector type, 10 | nitrogen, cleaning | 7 mm, 2 | | frequency range, 10 | connectors, 6 | 7 mm depth gage, 2 | | N4431B | non-insertable calibration, 4 | 7-16, <mark>5</mark> | | characteristic | | 85091C, 2 | | performance, 6, 7 | 0 | 85092C, 3 | | connector type, 6 | | 85093C, 4 | | frequency range, 6 | on arrival | 85096C, 9 | | mixed connector options, 6 | inspecting, 1 | 85098C, <mark>5</mark> | | replaceable parts, 3,4 | recording serial numbers, 1 | 85099C, 10 | | N4432A/3A | operating | N4431B, 3,4 | | characteristic performance, 8 | connector care, 12 | N4690B/C, 3 | | connector type, 9 | ESD precautions, 12 | N4691B, 4 | | frequency range, 9 | handling, 13 | N4692A, 6 | | mixed connector options, 9 | input level, 13 | N4693A, 7 | | N4690A (discontinued) | operating temperature, 13 | N4694A, 8 | | | precautions, 12 | N4696B, 2 | | connector type, 10
frequency range, 10 | operating temperature | Type-F, 10 | | HEQUELICY FALIGE, IV | operating temperature | IYDCTI, IU | | Type-N 50 ohm, 3 Type-N 75 ohm, 9 Type-N depth gage, 3 returning an ECal to Keysight, 14 rubber foot, 11 | torque wrench connections
microwave, 17
RF, 17
traceability
of device specifications, 15
type-N depth gage
part number, 3 | |--|--| | safety and regulatory information, 17 separating connections, 20 serial numbers, 1 service recertification, 14 setting up calibration, 1 7 mm depth gage part number, 2 specifications download descriptions, 24 environmental, 2 terminology and definitions, 1 torque wrench, 17 traceability, 15 specifications and | uncertainty calculator web address to download, 24 unknown thru, calibration, 4 USB Hub, 11 user-characterization, 4 V validate accuracy, 7 verification confidence check, 7 measure known standards, 7 visual inspection, 3 VNA analyzer connection to module, 16 | | characteristics accuracy-enhanced temperature range, 2 connector pin depth values, 1 error-corrected temperature range, 1 measurement calibration, 1 operating temperature range, 1 standards National Institute of Standards and Technology (NIST), 15 static discharge, 1 storage box, 22 of devices, 21 supplemental characteristics mechanical, 18 | connection to module, 16 W web address download uncertainty calculator, 24 when to calibrate, 3 Z zeroing, connector gage, 14 | | temperature operating, 2 terminology specifications, 1 torque wrench connector types, 20 part numbers, 20 selection, 20 settings, 20 | | This information is subject to change without notice. © Keysight Technologies 2000-2024 www.keysight.com