
X-Series
Programmers’
Guide

Keysight X-Series Signal Analyzers
This manual provides documentation for the following analyzers:

PXA Signal Analyzer N9030A MXA Signal Analyzer N9020A

EXA Signal Analyzer N9010A CXA Signal Analyzer N9000A

MXE EMI Receiver N9038A

Notice: This document contains references to Agilent.
Please note that Agilent’s Test and Measurement business
has become Keysight Technologies. For more information,
go to www.keysight.com

Notices

© Keysight Technologies 2008-2014

No part of this manual may be
reproduced in any form or by any
means (including electronic storage
and retrieval or translation into a
foreign language) without prior
agreement and written consent from
Keysight Technologies, Inc. as
governed by United States and
international copyright laws.

Manual Part Number

N9020-90112

Print Date

August 2014

Supersedes: February 2013

Printed in USA

Keysight Technologies Inc.
1400 Fountaingrove Parkway
Santa Rosa, CA 95403

Warranty

The material contained in this
document is provided “as is,” and is
subject to being changed, without
notice, in future ed itions. Further, to
the maximum extent permitted by
applicable law, Keysight d isclaims
all warranties, either express or
implied, with regard to this manual
and any information contained
herein, includ ing but not l imited to
the implied warranties of
merchantabil ity and fitness for a
particular purpose. Keysight shall not
be l iable for errors or for incidental or
consequential damages in
connection with the furnishing, use,
or performance of this document or
of any information contained herein.
Should Keysight and the user have a
separate written agreement with
warranty terms covering the material
in this document that confl ict with
these terms, the warranty terms in
the separate agreement shall control.

Technology Licenses

The hardware and/or software
described in this document are
furnished under a license and may be
used or copied only in accordance
with the terms of such license.

Restricted Rights Legend

If software is for use in the
performance of a US Government
prime contract or subcontract,
Software is delivered and licensed as
“Commercial computer software” as
defined in DFAR 252.227-7014 (June
1995), or as a “commercial item” as
defined in FAR 2.101(a) or as

“Restricted computer software” as
defined in FAR 52.227-19 (June 1987)
or any equivalent agency regulation or
contract clause. Use, duplication or
disclosure of Software is subject to
Keysight Technologies’ standard
commercial license terms, and
non-DOD Departments and Agencies
of the US Government will receive no
greater than Restricted Rights as
defined in FAR 52.227-19(c)(1-2)
(June 1987). U.S. Government users
will receive no greater than Limited
Rights as defined in FAR 52.227-14
(June 1987) or DFAR 252.227-7015
(b)(2) (November 1995), as applicable
in any technical data.

Safety Notices

CAUTION

A CAUTION notice denotes a hazard. It
calls attention to an operating
procedure, practice, or the like that, if
not correctly performed or adhered to,
could result in damage to the product
or loss of important data. Do not
proceed beyond a CAUTION notice
until the indicated conditions are fully
understood and met.

WARNING

A WARNING notice denotes a hazard.
It calls attention to an operating
procedure, practice, or the like that, if
not correctly performed or adhered to,
could result in personal injury or
death. Do not proceed beyond a
WARNING notice until the indicated
conditions are fully understood and
met.

 3

Where to Find the Latest Information

Documentation is updated periodically. For the latest information about these products, including instrument software
upgrades, application information, and product information, browse to one of the following URLs, according to the name of
your product:

http://www.keysight.com/find/pxa

http://www.keysight.com/find/mxa

http://www.keysight.com/find/exa

http://www.keysight.com/find/cxa

http://www.keysight.com/find/mxe

To receive the latest updates by email, subscribe to Keysight Email Updates at the following URL:

http://www.keysight.com/find/emailupdates

Information on preventing instrument damage can be found at:

http://www.keysight.com/find/tips

Is your product software up-to-date?

Periodically, Keysight releases software updates to fix known defects and incorporate product enhancements. To search for
software updates for your product, go to the Keysight Technical Support website at:

http://www.keysight.com/find/techsupport

http://www.keysight.com/find/mxa
http://www.keysight.com/find/exa
http://www.keysight.com/find/tips
http://www.keysight.com/find/emailupdates
http://www.keysight.com/find/pxa
http://www.keysight.com/find/cxa
http://www.keysight.com/find/mxe

 4

X-Series Programmers Guide

Contents

Table of Contents

1 Introduction to Programming X-Series Applications

How to Use this Manual 9

X-Series Programming Options 10

Hardware Connection Formats 11

Interchangeable Virtual Instruments (IVI-COM, IVI-C) Drivers 11

VISA Driver Options 12

Keysight VEE Pro 13

Programming Documentation Roadmap 14

2 SCPI Programming Fundamentals

SCPI Language Basics 16

Command Keywords, Separators and Syntax 16

Creating Valid Commands 17

Special Characters in Commands 17

Parameters in Commands 19

Variable Parameters 19

Block Program Data 21

Writing Multiple Commands on the Same Line 21

SCPI Termination and Separator Syntax Examples 21

Where to find X-Series SCPI Command Definitions 23

Help System Features for SCPI Programmers 23

Help System Contents Pane 23

Help Topic Content 24

List of SCPI Commands 25

Simple SCPI Communication Methods 26

Communicating SCPI Using Telnet 26

Determining Instrument IP Address 27

Enabling Telnet in Windows 28

Communicating SCPI using Keysight Connection Expert 28

Techniques for Improving Measurement Performance 31

Turn off Display Updates 31

Use Binary Data Format instead of ASCII 31

Minimize the Number of Bus Transactions 31

Use USB or LAN Connection instead of GPIB 32

Minimize DUT/instrument Setup changes 32

Avoid Unnecessary Use of *RST 32

Avoid Automatic Attenuator Setting 32

Avoid using RFBurst trigger for Single Burst Signals 32

Making a Single Burst Measurement 33
 5

Contents
Optimize GSM Output RF Spectrum Switching Measurement (N9071A Measurement Application) 33

To make Power Measurements on Multiple Bursts or Slots use CALCulate:DATA<n>:COMPress? 33

More Hints & Tips 34

3 Developing and Deploying VISA Projects

Programming in Visual Basic 6 with VISA 35

Location of Header Files 35

Programming in C or C++ with VISA 35

Location of Header Files & Libraries 35

Programming with Microsoft .NET and VISA 36

Location of Header Files 36

Requirements for Deploying a VISA Project 37

Multiple VISA DLL Versions 37

4 Program Samples

Where to find Sample Programs 39

N9060A Spectrum Analyzer Mode Programing Samples 40

Matrix of Program Sample Functionality and Programming Language 40

Visual Basic 6 41

Retrieve Screen Images 42

Read Binary Trace Data 42

C, C++ 42

Poll Method for Operation Complete 43

SRQ Method for Operation Complete 43

Set and Query Relative Band Power Markers 43

Set Traces and Couple Markers 43

Phase Noise Trace Math 44

C#.NET & Visual Studio 2010 44

Retrieve Screen Images 45

Poll Method for Operation Complete 45

SRQ Method for Operation Complete 45

Phase Noise Trace Math 46

Keysight VEE Pro 46

Retrieve Screen Images 47

Retrieve Trace Data 47

LabVIEW 47

Screen Capture 47

MATLAB 47

Upload a File 48

IVI-COM Personality (Mode) Select 48

N9064A VXA Vector Signal Analyzer Programming Samples 49

Vector Analysis Measurement 49

Digital Demod Measurement 49
6

X-Series Programmers Guide

Contents

Appendix A References

Documents & Web Sites 51

Developer Resources 52

Developer Network 52

Technical Support 52
 7

Contents
8

X-Series Programmers Guide
Introduction to Programming X-Series Applications
1 Introduction to Programming X-Series Applications

How to Use this Manual

This chapter provides overall information regarding remote programming of X-Series instruments, and how to use the
programming documentation provided with the product.

This chapter includes the following topics:

• “X-Series Programming Options” on page 10

• “Hardware Connection Formats” on page 11

• “Interchangeable Virtual Instruments (IVI-COM, IVI-C) Drivers” on page 11

• “VISA Driver Options” on page 12

• “Keysight VEE Pro” on page 13

• “Programming Documentation Roadmap” on page 14

The second chapter, “SCPI Programming Fundamentals” on page 15, provides an introduction to Standard Commands for
Programmable Instruments (SCPI), which is the most popular and versatile protocol for programming X-Series
instruments.

The chapter “Developing and Deploying VISA Projects” on page 35 provides basic information about X-Series
programming with the Virtual Instrument Software Architecture (VISA), using various popular programming languages.

The chapter “Program Samples” on page 39 describes all program samples that are included in the \progexamples
folder of the X-Series Documentation DVD, and provides information about how to find other X-Series program samples.
9

Introduction to Programming X-Series Applications
X-Series Programming Options
X-Series Programming Options

You can program X-Series instruments using a variety of programming tools, languages and Application Development
Environments (ADEs).

There are also several software driver technologies that you can use to program X-Series instruments, which offer various
tradeoffs between programming tool, ADE and driver technology. Table 1-1 explains the relative advantages of each
programming method and driver technology. Figure 1-1 on page 11 shows a conceptual overview of the hierarchy of
drivers that are available for X-Series programming.

Table 1-1 Programming Options & Driver Technologies for X-Series Instruments

Method Description

Instrument Drivers Features As shown in Figure 1-1, Instrument Drivers are built upon, and offer a higher
level of abstraction than, VISA Drivers. Instrument drivers offer a shorter learning
curve than VISA Drivers, at the expense of reduced operational flexibility.

For more details, see “Interchangeable Virtual Instruments (IVI-COM, IVI-C)
Drivers” on page 11.

Acquisition & Licensing Free download from Keysight and IVI Foundation web sites.

Requires separate ADE? Yes, but depending on your program development requirements, you may be able
to use a free download such as one of the Microsoft Visual Studio Express
editions.

Driver Support IVI Class Driver and Instrument-Specific IVI Drivers, as shown in Figure 1-1
below. These are enhanced developments of the older VXIplug&play Drivers.

Also referred to as "IVI-C" and "IVI-COM" Drivers.

VISA Drivers Features As shown in Figure 1-1, VISA is a driver technology that operates at a lower level
of abstraction than Instrument Drivers. As such, it offers greater flexibility, at the
expense of a longer learning curve.

VISA is a generic, industry-wide standard, unlike Instrument Drivers, which are
instrument-specific.

For more details, see “VISA Driver Options” on page 12.

Acquisition & Licensing Free download from Keysight web site.

Requires separate ADE? Yes, but depending on your program development requirements, you may be able
to use a free download such as one of the Microsoft Visual Studio Express
editions.

Driver Support VISA, as shown in "VISA Library Layer" in Figure 1-1 below.

Keysight VEE Features An integrated, graphically-oriented, standalone ADE, which supports
instruments from Keysight and other manufacturers.

For more details, see “Keysight VEE Pro” on page 13.

Acquisition & Licensing License must be purchased from Keysight.

Requires separate ADE? No

Driver Support Supports both Instrument Drivers and VISA.
10

Introduction to Programming X-Series Applications
Hardware Connection Formats
Figure 1-1 X-Series Software Driver Hierarchy

Hard ware Connection Formats

X-Series instruments support the following hardware connection standards (represented by the "Network Layer" in Figure
1-1 above):

In general, modern driver technology hides the details of the hardware connection from the programmer, so your
instrument’s actual hardware connection is unlikely to have any significant effect on the optimal choice of programming
tool, language or ADE.

Interchangeable Virtual Instruments (IVI-COM, IVI-C) Drivers

IVI Drivers are defined by the IVI Foundation, as an enhanced development of the earlier VXIplug&play Instrument Drivers.

Standard Instrument Connection Type

GPIB GPIB devices and interfaces

TCPIP LAN and HiSLIP instruments

USB USB instruments
11

Introduction to Programming X-Series Applications
VISA Driver Options
With IVI drivers you do not need to have in-depth test instrument knowledge to develop sophisticated measurement
software.

Keysight supports IVI Drivers for the following architectures:

• IVI-COM Drivers are based on the Microsoft Component Object Model (COM) technology, offering the seamless
integration in all environments that is generally associated with COM.

• IVI-C Drivers are based on C-language shared libraries, and are intended to cater to National Instruments
LabWindows/CVI.

IVI driver download packages for X-Series instruments can be found at the URL:

http://www.keysight.com/find/sa-ivi

Note that the Keysight I/O Libraries Suite must be installed and the hardware interface must be configured, before
installing the IVI Drivers.

IVI Shared Components are required by all IVI-COM and IVI-C drivers. IVI Shared Components are automatically installed
when you install the Keysight IO Libraries Suite.

VISA Driver Options

Keysight I/O Libraries Suite is a collection of libraries, Application Programming Interfaces (APIs) and utility programs. The
I/O libraries (SICL, VISA, and VISA COM) enable instrument communication for a variety of development environments
(Keysight VEE Pro, Microsoft Visual Studio, etc.) that are compatible with GPIB, USB, LAN, RS-232, PXI, AXIe, and VXI test
instruments from a variety of manufacturers.

The suite’s utility programs help you quickly and easily connect instruments to a computer.

The Keysight IO Libraries Suite includes the following libraries:

Item Library Name Documentation Location & Notes

1 Keysight Virtual Instrument Software Architecture (VISA)1 The VISA API is a programming interface originally developed and
standardized by the VXIplug&play Alliance (now the IVI Foundation) as an
industry-wide standard for communicating with instruments over various
hardware interfaces. The definition includes the standard visa.h header
file for use with C and C++, which provides declarations for the
visa32.dll library.

Additionally, Keysight has developed the header files visa32.cs and
visa32.bas, to permit the VISA DLL to be used with C#.NET and Visual
Basic.NET respectively.

For more information, see the VISA Documentation Help in the Keysight I/O
Libraries Suite.

2 VISA for the Common Object Model (VISA COM)1 The VISA COM I/O API is a programming interface standardized by the IVI
Foundation for communicating with instruments over various hardware
interfaces.

Keysight Technologies offers an implementation of the VISA COM I/O
standard that is compatible with Keysight hardware as well as computer
standard I/O interfaces. VISA COM I/O is an update of the older VISA C API
to work in and with Microsoft’s COM technology.

For more information, see the VISA COM Help in the Keysight I/O Libraries
Suite.
12

Introduction to Programming X-Series Applications
Keysight VEE Pro
Keysight VEE Pro

Keysight VEE (Visual Engineering Environment) Pro provides a graphical language and integrated development
environment that permits efficient development of measurement and analysis solutions, while requiring minimal custom
programming.

You can select and edit objects from pull-down menus or toolbars and connect them to each other by virtual wires to
specify the program's data flow, mimicking the order of tasks you want to perform.

Keysight VEE Pro can communicate with any instrument from any vendor, using GPIB, LAN, USB, RS-232, VXI or LXI.

For further details, see the web page for Keysight VEE Pro.

For information about using IVI Instrument Drivers with Keysight VEE, see Keysight Application Note 1595.

3 Keysight Standard Instrument Control Library (SICL)1 SICL is compatible only with Keysight interfaces, whereas VISA is an
industry-wide standard.

This library is not described further in this document. For more information,
see the SICL Documentation Help in the Keysight I/O Libraries Suite.

Note that SICL is supported only for the C and VB6 languages; there is no
SICL support for .NET languages.

4 Keysight 488 Compatible with the NI-488.2 Application Programming Interface (API) from
National Instruments, and used for GPIB programming only.

This library is not described further in this document. For more information,
see the Keysight 488 Help in the Keysight I/O Libraries Suite.

1. Note that using VISA functions and SICL functions in the same I/O application is not supported.

Item Library Name Documentation Location & Notes
13

Introduction to Programming X-Series Applications
Programming Documentation Roadmap
Programming Documentation Roadmap

Most X-Series manuals and publications can be accessed via the Additional Documentation page in the instrument Help
system, and are also included on the Documentation DVD shipped with the instrument. Exceptions are noted in Table 1-2
below.

All documents can also be found online at the Keysight X-Series Document Library.

Table 1-2 X-Series Documentation Resources

Resource Description

X-Series Programmer’s
Guide

(This document)

Provides general programming information on the following topics:

• Introduction to Programming X-Series Applications

• SCPI Programming Fundamentals

• Program Samples

Note that SCPI command descriptions for measurement applications are not in this document, but are in the User’s and
Programmer’s Reference manuals for each measurement application (mode).

User’s and
Programmer’s
Reference manuals

Describes all SCPI commands for a measurement application (mode). Note that:

• Each measurement application has its own User’s and Programmer’s Reference.

• The content of this manual is duplicated in the instrument’s Help file. That is, the context-sensitive help content for
a key is identical to that in User’s and Programmer’s Reference manual for the same mode.

Embedded Help in the
instrument

Describes all SCPI commands for a measurement application (mode), organized according to the front-panel key and
softkey hierarchy.

Note that the content that you see in Help when you press a key is identical to that in the User’s and Programmer’s
Reference for the same topic.

Keysight X-Series Signal
Analyzers: Getting Started
Guide

Provides valuable sections related to programming including:

• Licensing New Measurement Application Software - After Initial Purchase

• Configuring instrument LAN Hostname, IP Address, and Gateway Address

• Using the Windows Remote Desktop to connect to the instrument remotely

• Using the Embedded Web Server Telnet connection to communicate SCPI

This manual is shipped with the instrument as a printed document.

Keysight Application
Notes

Printable PDF versions of pertinent application notes.

Keysight I/O Libraries Suite The download package includes documentation describing the Keysight Virtual Instrument Software Architecture (VISA)
library, and showing how to use it to develop I/O applications and instrument drivers on Windows PCs.

Not included on X-Series Documentation DVD.

Keysight IVI (Instrument)
Drivers

The driver download packages include documentation (in Help CHM format) describing the IVI Class and
Instrument-Specific Drivers. If the drivers are installed in the default location on your computer drive, the CHM files may
be found in the folders:

C:\Program Files\IVI Foundation\IVI\Components

and:

C:\Program Files\IVI Foundation\IVI\Drivers

Not included on X-Series Documentation DVD.
14

http://www.agilent.com/find/mxa_manuals

X-Series Programmers Guide
SCPI Programming Fundamentals
2 SCPI Programming Fundamentals

This chapter provides overall information on programming X-Series instruments using Standard Commands for
Programmable Instruments (SCPI). Sections include:

• “SCPI Language Basics” on page 16

• “Where to find X-Series SCPI Command Definitions” on page 23

• “Simple SCPI Communication Methods” on page 26

• “Techniques for Improving Measurement Performance” on page 31
15

SCPI Programming Fundamentals
SCPI Language Basics
SCPI Language Basics

This section provides a basic introduction to the SCPI language. For more details about SCPI, see IEEE Standard
488.2–1992.

Topics covered in this section include:

• “Command Keywords, Separators and Syntax” on page 16

• “Creating Valid Commands” on page 17

• “Special Characters in Commands” on page 17

• “Parameters in Commands” on page 19

• “Writing Multiple Commands on the Same Line” on page 21

Command Keywords, Separators and Syntax

Keywords, Parameters & Separators: A typical SCPI command is made up of keywords separated by colons. The
keywords are followed by parameters that can be followed by optional units. The parameter list is separated from the
command by a space.

Example: :SENSe:FREQuency:STARt 1.5 MHZ

Upper- vs. Lower-Case Usage: The instrument does not distinguish between upper and lower case letters. In the
documentation, upper case letters indicate the short form of the keyword, whereas lower case letters indicate the long
form of the keyword. Either form may be used in the command.

Example:

:Sens:Freq:Star 1.5 mhz

This is the same as

:SENSE:FREQ:start 1.5 MHz

NOTE The command :SENS:FREQU:STAR would not be valid because FREQU is neither the short, nor
the long form of the command. Only the short and long forms of the keywords are allowed in
valid commands.

Multiple SCPI commands on the same line: This is permissible if the commands are separated by a semicolon. See
“Writing Multiple Commands on the Same Line” on page 21.

Initial Colon: In general, SCPI commands start with a colon, as shown above. You may choose to omit the initial colon,
but, if you do so, note that SCPI rules for the interpretation of Compound Headers will be invoked by the command
interpreter. For full discussion and examples of Compound Headers, see Appendix A of IEEE Standard 488.2–1992. For
examples, see “SCPI Termination and Separator Syntax Examples” on page 21.
16

SCPI Programming Fundamentals
SCPI Language Basics
Creating Valid Commands

Commands are not case-sensitive, and there are often many different ways of writing a particular command. These are
examples of valid commands for a given command syntax:

Special Characters in Commands

Command Syntax Sample Val id Commands

:[SENSe:]BANDwidth[:RESolution] <freq> The following sample commands are all identical. They all cause the same
result.

• :Sense:Band:Res 1700

• :BANDWIDTH:RESOLUTION 1.7e3

• :sens:band 1.7KHZ

• :SENS:band 1.7E3Hz

• :band 1.7kHz

• :bandwidth:RES 1.7e3Hz

:MEASure:SPECtrum[n]? • :MEAS:SPEC?

• :Meas:spec?

• :meas:spec3?

The number 3 in the last meas example causes it to return different results
than the commands above it. See the command description for more
information.

[:SENSe]:DETector[:FUNCtion]
NEGative|POSitive|SAMPle

• :DET:FUNC neg

• :Detector:Func Pos

:INITiate:CONTinuous ON|OFF|1|0 The sample commands below are identical.

• :INIT:CONT ON

• :init:continuous 1

Special Character Meaning Example

| A vertical stroke between parameters indicates
alternative choices. The effect of the command is
different depending on which parameter is selected.

Command: TRIGger:SOURce EXTernal|INTernal|LINE

The choices are external, internal, and line.

Ex: TRIG:SOURCE INT

is one possible command choice.

| A vertical stroke between keywords indicates
identical effects exist for both keywords. The
command functions the same for either keyword. Only
one of these keywords is used at a time.

Command: SENSe:BANDwidth|BWIDth:OFFSet

Two identical commands are:

Ex1: SENSE:BWIDTH:OFFSET

Ex2: SENSE:BAND:OFFSET

[] keywords in square brackets are optional when
composing the command. These implied keywords will
be executed even if they are omitted.

Command: [SENSe:]BANDwidth[:RESolution]:AUTO

The following commands are all valid and have identical effects:

Ex1: bandwidth:auto

Ex2: band:resolution:auto

Ex3: sense:bandwidth:auto
17

SCPI Programming Fundamentals
SCPI Language Basics
< > Angle brackets around a word, or words, indicates
they are not to be used literally in the command. They
represent the needed item.

Command: SENS:FREQ <freq>

In this command example the word <freq> should be replaced by an
actual frequency.

Ex: SENS:FREQ 9.7MHz.

{ } Parameters in braces can optionally be used in the
command either not at all, once, or several times.

Command: MEASure:BW <freq>{,level}

A valid command is:

meas:BW 6 MHz, 3dB, 60dB

Special Character Meaning Example
18

SCPI Programming Fundamentals
SCPI Language Basics
Parameters in Commands

There are four basic types of parameters: booleans, keywords, variables and arbitrary block program data.

Variable Parameters

Type Description

OFF|ON|0|1

(Boolean)

This is a two state boolean-type parameter. The numeric value 0 is equivalent to OFF. Any numeric value other than 0 is
equivalent to ON. The numeric values of 0 or 1 are commonly used in the command instead of OFF or ON. Queries of the
parameter always return a numeric value of 0 or 1.

keyword The keywords that are allowed for a particular command are defined in the command syntax description.

Units Numeric variables may include units. The valid units for a command depend on the variable type being used. See the
following variable descriptions. The indicated default units will be used if no units are sent. Units can follow the
numerical value with, or without, a space.

Variable A variable can be entered in exponential format as well as standard numeric format. The appropriate range of the
variable and its optional units are defined in the command description.

The following keywords may also be used in commands, but not all commands allow keyword variables.

• DEFault - resets the parameter to its default value.

• UP - increments the parameter.

• DOWN - decrements the parameter.

• MINimum - sets the parameter to the smallest possible value.

• MAXimum - sets the parameter to the largest possible value.

The numeric value for the function’s MINimum, MAXimum, or DEFault can be queried by adding the keyword to the
command in its query form. The keyword must be entered following the question mark.

Example query: SENSE:FREQ:CENTER? MAX

Type Description

<integer> An integer value with no units.

<real> A floating point number with no units.

<freq>

<bandwidth>

A positive rational number followed by optional units. The default unit is Hertz. Acceptable units include: Hz, kHz, MHz,
GHz.

<time>

<seconds>

A rational number followed by optional units. The default units are seconds. Acceptable units include: ks, s, ms, s, ns.

<voltage> A rational number followed by optional units. The default units are Volts. Acceptable units include: V, mV, V, nV

<current> A rational number followed by optional units. The default units are Amperes. Acceptable units include: A, mA, A, nA.

<power> A rational number followed by optional units. The default units are W. Acceptable units include: kW, W, mW, W, nW,
pW.

<ampl> A rational number followed by optional units. The default units are dBm. Acceptable units include: dBm, dBmV, dBV.

<rel_power>

<rel_ampl>

A positive rational number followed by optional units. The default units are dB. Acceptable units include: dB.

<percent> A rational number between 0 and 100. You can either use no units or use PCT.

<angle>

<degrees>

A rational number followed by optional units. The default units are degrees. Acceptable units include: DEG, RAD.
19

SCPI Programming Fundamentals
SCPI Language Basics
<string> A series of alpha numeric characters.

<bit_pattern> Specifies a series of bits rather than a numeric value. The bit series is the binary representation of a numeric value.
There are no units.

Bit patterns are most often specified as hexadecimal numbers, though octal, binary or decimal numbers may also be
used. In the SCPI language these numbers are specified as:

• Hexadecimal, #Hdddd or #hdddd where ‘d’ represents a hexadecimal digit 0 to 9 and ‘a’ to ‘f ’. So #h14 can be used
instead of the decimal number 20.

• Octal, #Odddddd or #odddddd where ‘d’ represents an octal digit 0 to 7. So #o24 can be used instead of the
decimal number 20.

• Binary, #Bdddddddddddddddd or #bdddddddddddddddd where ‘d’ represents a 1 or 0. So #b10100 can be used
instead of the decimal number 20.

Type Description
20

SCPI Programming Fundamentals
SCPI Language Basics
Block Program Data
Some parameters consist of a block of data. There are a few standard types of block data. Arbitrary blocks of program
data can also be used.

Writing Multiple Commands on the Same Line

Multiple commands can be written on the same line, reducing your code space requirement. To do this:

• Commands must be separated with a semicolon (;)

• If the commands are in different subsystems, the key word for the new subsystem must be preceded by a colon (:)

• If the commands are in the same subsystem, the full hierarchy of the command key words need not be included. The
second command can start at the same key word level as the command that was just executed.

SCPI Termination and Separator Syntax Examples

The following are some examples of valid and invalid commands. The examples are created from a theoretical instrument
with the simple set of commands indicated below:

[:SENSe]:POWer[:RF]:ATTenuation 40dB

:TRIGger[:SEQuence]:EXTernal[1]:SLOPe POSitive

Type Description

<trace> An array of rational numbers corresponding to displayed trace data. See the description of the FORMat:DATA
command in the "Programming the Analyzer" chapter of any X-Series Users and Programmers Reference or online
Help file for information about available data formats.

A SCPI command often refers to a block of current trace data with a variable name such as: Trace1, Trace2, or trace3,
depending on which trace is being accessed.

<arbitrary block data> A block of data bytes. The first information sent in the block is an ASCII header beginning with #. The block is
terminated with a semi-colon. The header can be used to determine how many bytes are in the data block. There are
no units.

A data query returns each block of data in the following format:

#DNNN<nnn binary data bytes>;

where #DNNN is the header. To parse this data:

1. Read two characters (#D), where D tells you how many N characters follow the D character,

2. Read D characters, and convert to an integer that specifies the number of data bytes in the block,

3. Read NNN bytes into a real array.

Example: Header value = #512320

• The first numeric character/digit (5) tells you how many additional digits there are in the header.

• The 12320 means that 12,320 data bytes follow the header.

• Divide the number of data bytes by the bytes/data point of the current data format, which is 8 for REAL,64.
Thus, in this example, there are 12320/8 = 1540 data points in this block.
21

SCPI Programming Fundamentals
SCPI Language Basics
[:SENSe]:FREQuency:STARt:POWer[:RF]:MIXer:RANGe[:UPPer]

Table 2-1 Examples of Valid and Invalid SCPI Commands

 Inval id Command

 Valid Command

Problem

PWR:ATT 40dB

POW:ATT 40dB

The short form of POWER is POW, not PWR.

FREQ:STAR 30MHz;MIX:RANG -20dBm

FREQ:STAR 30MHz;POW:MIX:RANG -20dBm

The MIX:RANG command is in the same :SENSE subsystem as
FREQ, but executing the FREQ command puts you back at the SENSE
level. You must specify POW to get to the MIX:RANG command.

FREQ:STAR 30MHz;POW:MIX RANG -20dBm

FREQ:STAR 30MHz;POW:MIX:RANG -20dBm

MIX and RANG require a colon to separate them.

:POW:ATT 40dB;TRIG:FREQ:STAR 2.3GHz

:POW:ATT 40dB;:FREQ:STAR 2.3GHz

:FREQ:STAR is in the :SENSE subsystem, not the :TRIGGER
subsystem.

:POW:ATT?:FREQ:STAR?

:POW:ATT?;:FREQ:STAR?

:POW and FREQ are within the same :SENSE subsystem, but they are
two separate commands, so they should be separated with a
semicolon, not a colon.

:POW:ATT -5dB;:FREQ:STAR 10MHz

:POW:ATT 5dB;:FREQ:STAR 10MHz

Attenuation cannot be a negative value.
22

SCPI Programming Fundamentals
Where to find X-Series SCPI Command Definitions
Where to find X-Series SCPI Command Definitions

All X-Series SCPI commands are described in two locations: the Users & Programmers Reference manual for each
application (PDF format), and the Embedded Help for each application (HTML Help format).

Help System Features for SCPI Programmers

Help System Contents Pane
The features described below are shown in the Help system Contents Pane (see Figure 2-1).

Figure 2-1 Example Help System Contents Pane

Reference Type Usage & More Information

Users & Programmers
Reference Manuals

All available PDF manuals are included on the X-Series Spectrum Analyzer Documentation DVD, in the folder
\files.

You can also download all Users & Programmers Reference manuals from the Keysight web site, by using the
hyperlinks in the Additional Documentation section of the instrument’s Embedded Help.

In the Users & Programmers References, SCPI command descriptions are organized by front-panel functionality, but
you can also find a specific command by looking for it in the common or measurement-specific "List of SCPI
Commands" chapters.

Embedded Help The instrument’s Embedded Help system contains context-sensitive reference information for each installed
measurement application. To see the Help topic for any active function or key, press the green front-panel Help key
when the measurement application is open. For more details of how to use Help as a SCPI command reference, see
“Help System Features for SCPI Programmers” on page 23.

In the Help files, SCPI command descriptions are organized by front-panel functionality, but you can also find a
specific command by looking for it in the alphabetized List of SCPI Commands.

All available Compiled Help Metafiles (CHMs) are also included on the X-Series Spectrum Analyzer Documentation
DVD, in the \help subfolder. The CHM Help file for each measurement application has a name of the form
<mode_name>.en-us.chm.
23

SCPI Programming Fundamentals
Where to find X-Series SCPI Command Definitions
1. “Help Topic Content” on page 24

2. “List of SCPI Commands” on page 25

Help Topic Content
A typical Help topic is shown in Figure 2-2. Each Help topic includes:

• A description of the current active function or key,

• SCPI Command parameters, including limits, presets, variables, and queries,

• Associated Remote-Only commands (if any).

Figure 2-2 Example Help Topic - Scale/Div Topic
24

SCPI Programming Fundamentals
Where to find X-Series SCPI Command Definitions
List of SCPI Commands
The List of SCPI Commands is an alphabetically sorted list of all commands in the current measurement application. Each
item shown is a hyperlink to the specific Help Topic that contains the command or query. See Figure 2-3 for an example
of a List of SCPI Commands.

Figure 2-3 Example List of Commands

NOTE You can query the instrument for all supported SCPI commands in the current mode by sending
the “:SYST:HELP:HEAD?” query. For details on how to query the instrument see
“Communicating SCPI Using Telnet” on page 26.
25

SCPI Programming Fundamentals
Simple SCPI Communication Methods
Simple SCPI Communication Methods

This section describes some simple methods that you can use to create SCPI communication sessions between a
computer and an X-Series instrument:

• “Communicating SCPI Using Telnet” on page 26

• “Communicating SCPI using Keysight Connection Expert” on page 28

Communicating SCPI Using Telnet

You can communicate SCPI using a Telnet connection from a computer to the instrument. The following procedure
describes how to connect a computer running Microsoft Windows to the instrument.

To complete the procedure, you will need to know the IP address of the instrument, which you can obtain by “Determining
Instrument IP Address” on page 27.

TIP In newer versions of Microsoft Windows (Windows Vista and Windows 7), you may first need to
enable the Telnet client. See “Enabling Telnet in Windows” on page 28.

NOTE In addition to the procedure described below, you can open a Telnet connection with the
instrument using an internet connection to the instrument’s Embedded Web Server. This
procedure is described in the Keysight X-Series Signal Analyzers: Getting Started Guide.

To initiate a Telnet session and communicate SCPI using the LAN connection to the instrument:

Step Action Notes

1 Obtain the IP address of the instrument If necessary, you can obtain it via the procedure described in “Determining Instrument IP
Address” on page 27.

2 Ensure that the instrument Telnet
socket is On

Press System, I/O Config, SCPI LAN, and make sure SCPI Telnet (Port 5023) is toggled
to On.

3 Enable computer’s Telnet client if
required

See “Enabling Telnet in Windows” on page 28.

4 Test LAN connection 1. On a Microsoft Windows computer, in the Taskbar select Start, Run, and type “cmd” to
open a DOS session.

2. Enter the DOS command “ping”, a single space and the IP address of the instrument, and
press Enter. The results should resemble those shown in Figure 2-4. If the LAN
connection is working, you will see statistics for Packets Sent and Packets Received.

3. In the DOS window, type:

“telnet <instrument_IP_address> 5023”, then press Enter.

A Telnet window opens with a Welcome answerback from the instrument Host Name, and
the command prompt changes to “SCPI>”. You can enter any valid SCPI command at the
prompt and receive responses to queries sent.
26

SCPI Programming Fundamentals
Simple SCPI Communication Methods
Figure 2-4 Command Window and ping Command results

Determining Instrument IP Address

1. If necessary, close the Keysight Signal Analyzer application, by selecting File > Exit from the front panel and softkey
menu, then confirming that you want to close the application.

2. When you can see the Windows desktop, move the cursor to the bottom of the screen using a mouse or the keyboard,
to reveal the Windows Taskbar. In the Windows Taskbar, click Start, Run.

3. In the Window Run Dialog (shown in Figure 2-5), type “cmd” then click OK or press Enter to open a DOS command
window.

Figure 2-5 Windows Run Dialog

4. At the DOS command prompt, enter “ipconfig”, and press Enter.

The results should resemble the window shown in Figure 2-6. The IP Address is listed under Ethernet adapter Local
Area Connection.
27

SCPI Programming Fundamentals
Simple SCPI Communication Methods
Figure 2-6 Command Window and ipconfig Results

Enabling Telnet in Windows
In newer versions of Microsoft Windows (Windows Vista and Windows 7), the Telnet client is disabled by default. To
enable the Telnet client, do the following:

Communicating SCPI using Keysight Connection Expert

You can use Keysight Connection Expert to communicate with devices on any supported network type. Keysight
Connection Expert is installed as part of the Keysight I/O Libraries Suite.

Figure 2-7 below shows part of the Keysight Connection Expert main screen, with one N9020A instrument connected via
LAN.

Step Actions

1. Open Windows Control Panel From the Windows Start menu, select Control Panel.

2. Select Programs

3. Display Windows Features dialog In the Programs and Features group, click Turn Windows features on or off.

The Windows Features dialog appears.

4. Enable Telnet client In the listbox, locate Telnet client and check its checkbox.

Click OK.
28

SCPI Programming Fundamentals
Simple SCPI Communication Methods
Figure 2-7 Keysight Connection Expert Main Screen

When you click on the N9020A instrument icon in this example, the content of the Task Guide panel on the left changes to
"Tasks for This Instrument", which includes the selection "Send commands to this instrument", as shown in Figure 2-8
below.

Figure 2-8 Tasks for This Instrument

If you click the item "Send commands to this instrument", the Keysight Interactive IO dialog appears as shown in Figure
2-9 below, which allows you to send SCPI commands to the instrument and read the responses.
29

SCPI Programming Fundamentals
Simple SCPI Communication Methods
Figure 2-9 Keysight Interactive IO

For full details of how to use these features, open the Keysight Connection Expert main screen (as shown in Figure 2-7)
and select Help > Connection Expert Help from the menu.
30

SCPI Programming Fundamentals
Techniques for Improving Measurement Performance
Techniques for Improving Measurement Performance

This section describes several programming techniques that can improve speed and efficiency. Most, but not all, of these
techniques relate to SCPI program design.

• “Turn off Display Updates” on page 31

• “Use Binary Data Format instead of ASCII” on page 31

• “Minimize the Number of Bus Transactions” on page 31

• “Use USB or LAN Connection instead of GPIB” on page 32

• “Minimize DUT/instrument Setup changes” on page 32

• “Avoid Automatic Attenuator Setting” on page 32

• “Avoid using RFBurst trigger for Single Burst Signals” on page 32

• “Optimize GSM Output RF Spectrum Switching Measurement (N9071A Measurement Application)” on page 33

• “To make Power Measurements on Multiple Bursts or Slots use CALCulate:DATA<n>:COMPress?” on page 33

Turn off Display Updates

When the instrument is being operated remotely, there is no need to display data on the instrument screen. Display
updates slow down the measurement, so measurement speed may be increased by switching off updates.

Send :DISPlay:ENABle OFF to turn off the display. In this case, data remains visible, but will no longer be updated.

Use Binary Data Format instead of ASCII

The ASCII data format is the instrument default, since it is easier for humans to read and is required by SCPI for *RST.
However, data input/output is faster using the binary formats.

:FORMat:DATA REAL,64 selects the 64-bit binary data format for all numerical data queries. (The REAL,32 format,
which is smaller and somewhat faster, should only be used if you do not require full data resolution. Some frequency data
may require full 64 bit resolution.)

If you are using a PC rather than UNIX, you may need to change the byte order to little-endian, by sending
:FORMat:BORDer SWAP. For details, see the "Programming the Analyzer" chapter of any X-Series Help file or Users &
Programmers Reference PDF.

When using the binary format, data is sent in a block of bytes prefixed by an ASCII header. For details of the block format,
see “Block Program Data” on page 21.

Minimize the Number of Bus Transactions

When you are using the GPIB bus for control of your instrument, each transaction requires driver overhead and bus
handshaking, so minimizing these transactions reduces the time used.

• You can reduce bus transactions by sending multiple SCPI commands per transaction. See “Writing Multiple
Commands on the Same Line” on page 21.

• When making the same measurement multiple times with small changes in the measurement setup, use the READ
command, which is faster than using INITiate and FETCh.

• When changing the frequency and making a measurement repeatedly, you can reduce transactions by sending the
optional frequency parameter with the READ query (for example, READ:<meas>? {<freq>}). These optional
parameters are not available in certain modes, such as Spectrum Analyzer or Phase Noise.

The CONFigure/MEASure/READ commands for some measurements allow you to send center frequency setup
information along with the command (for example, MEAS:PVT? 935.2MHz). This sets the Power vs. Time
measurement to its defaults, then changes the center frequency to 935.2 MHz, initiates a measurement, waits until it
is complete and returns the measurement data.
31

SCPI Programming Fundamentals
Techniques for Improving Measurement Performance
• When doing bottom/middle/top measurements on Base Stations, you can reduce transactions by making a time slot
active at each of the B,M,T frequencies. Then, issue three measurements at once in the programming code and
retrieve three data sets with just one bus transaction pair (write, read).

For example, send READ:PFER? <Freq_bottom>; PFER? <Freq_middle>; PFER? <Freq_top>. This single
transaction initiates three different phase and frequency error measurements at each of the three different frequencies
provided and returns three sets of data.

Use USB or LAN Connection instead of GPIB

USB and LAN networks allow faster data input and output, relative to GPIB. This is especially important if you are moving
large blocks of data.

Note that LAN transfer speeds are affected by the volume of LAN traffic, and may be degraded if, for example, the
instrument is connected to a busy enterprise LAN. Thus you may want to use a private LAN that is dedicated for the test
system.

Minimize DUT/instrument Setup changes

• Some instrument setup parameters are common to multiple measurements, making it possible to organize the test
process in such a way as to minimize setup changes. If the process involves nested loops, make sure that the
innermost loop is the fastest. Also, check whether the loops could be nested in a different order to reduce the number
of parameter changes as you step through the test.

• If you must switch between measurements, remember that if you have already set your Meas Setup parameters for a
measurement, and you want to make another one of these measurements later, you should use the query
READ:<meas>?.

The MEASure:<meas>?. command resets all the settings to the defaults, while READ changes back to that
measurement without changing the setup parameters from the previous use.

• If you must switch between measurements, remember that Mode Setup parameters remain constant across all the
measurements in a given mode (for example, Center/Channel Frequency, Amplitude, Radio Standard, Input Selection,
Trigger Setup). You do not need to re-initialize these parameters each time you change to a different measurement.

Avoid Unnecessary Use of *RST

Remember that while *RST does not change the current Mode, it presets all the measurements and settings to their
factory defaults. This forces you to reset the instrument’s measurement settings even if they use similar mode setup or
measurement settings. See “Minimize DUT/instrument Setup changes” on page 32.

Note also that *RST may put the instrument in Single measurement/sweep for some modes.

Avoid Automatic Attenuator Setting

Many of the one-button measurements use an internal process for automatically setting the value of the attenuator. It
requires measuring an initial burst to identify the proper attenuator setting before the next burst can be measured
properly. If you know the amount of attenuation or the signal level needed for your measurement, just set it.

Note that spurious types of measurements must be done with the attenuator set to automatic (for measurements such as:
Output RF Spectrum, Transmit Spurs, Adjacent Channel Power, Spectrum Emission Mask). These types of measurements
start by tuning to the signal, then they tune away from it and must be able to reset the attenuation value as needed.

Avoid using RFBurst trigger for Single Burst Signals

RFBurst triggering works best when measuring signals with repetitive bursts. For a non-repetitive or single burst signals,
use the IF (video) trigger or external trigger, depending on what you have available.
32

SCPI Programming Fundamentals
Techniques for Improving Measurement Performance
RFBurst triggering depends on its establishment of a valid triggering reference level, based on previous bursts. If you only
have a single burst, the peak detection nature of this triggering function, may result in the trigger being done at the
wrong level/point generating incorrect data, or it may not trigger at all.

Making a Single Burst Measurement
To achieve consistent triggering and valid data for this type of measurement application, you must synchronize the
triggering of the DUT with the instrument. You should use the instrument’s internal status system for this.

The first step in this process is to initialize the status register mask to look for the “waiting for trigger” condition (bit 5).
Use :STATus:OPERation:ENABle 32

Then, in the measurement loop:

1. Send query :STATus:OPERation:EVENt? to clear the current contents of the Operation Event Register.

2. Send query :READ:PVT? to initiate a measurement (in this example, for GSM Power versus Time) using the previous
setup. The measurement then waits for the trigger.

Make sure attenuation is set manually. Do not use automatic attenuation, as this requires an additional burst to
determine the proper attenuation level before the measurement can be made.

3. Create a small loop that polls the instrument for a status byte value of 128. Then wait 1 msec (or 100 ms if the display
is enabled) before checking again, to minimize bus traffic. Repeat these two commands until the condition is set, to
ensure that the trigger is armed and ready.

4. Trigger the DUT to send the burst.

5. Retrieve the measurement data.

Optimize GSM Output RF Spectrum Switching Measurement (N9071A Measurement
Application)

For ORFS (switching), setting the break frequency to zero (0) puts the instrument into a measurement setup where it can
use a direct time measurement algorithm, instead of an FFT-based algorithm. The non-FFT approach is faster.

However, remember that the break frequency for ORFS (modulation) measurements must be >400 kHz for valid
measurements, so, if you are making both types of measurements, you will need to change the break frequency.

To make Power Measurements on Multiple Bursts or Slots use
CALCulate:DATA<n>:COMPress?

The Calculate/Compress Trace Data Query is the fastest way to measure power data for multiple bursts/slots. (For details
of the command, see the Programming the Analyzer chapter of any X-Series Help file or Users & Programmers Reference
PDF.) There are two reasons for this:

1. It can be used to measure data across multiple, consecutive slots/frames with just one measurement, instead of a
separate measurement on each slot,

2. It can pre-process and/or decimate the data so that you only return the information that you need, which minimizes
data transfer to the computer.

Example: you want to do a power measurement for a GSM base station where you generate a repeating frame with 8
different power levels. Using the Waveform measurement, you can gather all the data with a single CALC:DATA:COMP?
acquisition.
33

SCPI Programming Fundamentals
Techniques for Improving Measurement Performance
By sending :CALC:DATA2:COMP? MEAN,25us,526us,579.6us,8 you can measure the mean power in those bursts.
This single command measures the data across all 8 frames, locates the first slot/burst in each of the frames, calculates
the mean power of those bursts, then returns the resulting 8 values. The sequence of commands is as follows:

More Hints & Tips

For more information about optimizing measurement speed using X-Series instruments, see Keysight Application Note
1583.

Step Command Action

1 :CONF:WAV Switch to Waveform measurement

2 :WAV:BAND 300khz Set resolution bandwidth to 300 kHz

3 :WAV:SWE:TIME 5ms Set sweep time to 5 milliseconds

4 :WAV:BAND:TYPE FLAT Select flat fil ter type

5 :WAV:DEC 4;DEC:STAT ON Select a decimation of 4, and turn on decimation.

This reduces the amount of data that must be transferred.

6 :INIT Initiate measurement and acquire data

7 :CALC:DATA2:COMP?
MEAN,25us,526us,579.6us,8

Retrieve the desired data
34

X-Series Programmers Guide
Developing and Deploying VISA Projects
3 Developing and Deploying VISA Projects

This chapter provides a brief overview of the requirements for development and deployment of Virtual Instrument
Software Architecture (VISA) programming projects using various languages. Sections include:

• “Programming in Visual Basic 6 with VISA” on page 35

• “Programming in C or C++ with VISA” on page 35

• “Programming with Microsoft .NET and VISA” on page 36

• “Requirements for Deploying a VISA Project” on page 37

For an overview of the relationship between VISA and other programming tools and drivers, see “X-Series Programming
Options” on page 10.

Programming in Visual Basic 6 with VISA

See the VISA online Help section "Using the VISA C API in Microsoft Visual Basic 6", in the Keysight VISA Help.

Location of Header Files

The required header files visa32.bas and agvisa32.bas can be found in:

C:\Program Files (x86)\IVI Foundation\VISA\WinNT\agvisa\include

or

C:\Program Files (x86)\IVI Foundation\VISA\WinNT\include

Programming in C or C++ with VISA

Full details of X-Series programming in C and C++ are provided in the Keysight I/O Libraries Suite.

Location of Header Files & Libraries

The header file visa.h can be found in:

C:\Program Files (x86)\IVI Foundation\VISA\WinNT\include

Programs must link to the VISA libraries visa32.lib or agvisa32.lib, located in subfolders of:

C:\Program Files (x86)\IVI Foundation\VISA\WinNT\lib
35

Developing and Deploying VISA Projects
Programming with Microsoft .NET and VISA
or

C:\Program Files (x86)\IVI Foundation\VISA\WinNT\Lib_x64

For more details, see the VISA online Help section "VISA Directories", in the Keysight VISA Help.

Programming with Microsoft .NET and VISA

The IVI Foundation defines the standard visa.h header file for use in C and C++, which provides declarations for the
visa32.dll C DLL. This header file is distributed by Keysight Technologies, among others. The Foundation also defines
header file visa32.bas for Microsoft Visual Basic 6. However, there are at present no officially defined header files for
programming with the VISA C API in the Microsoft .NET technology languages, such as C# and Visual Basic.NET.

Therefore, Keysight has defined and developed the redistributable .NET header files visa32.cs (for C#) and visa32.vb
(for Visual Basic.NET), to allow programmatic access to the VISA C API from the two most popular .NET languages. To use
the VISA C API in a .NET project, include the appropriate file in your project. The compiled .NET assembly will then have
all the information it needs to use the VISA C Library (visa32.dll or visa64.dll).

For programmers accustomed to the VISA-C API, or those not familiar with COM, use of Keysight’s .NET header files may
offer a preferable approach, because it avoids the overhead of the VISA COM implementation and exposes VISA
functionality in a more familiar style.

VISA has specifications for API versions in C and COM, so there are two ways to work with VISA in your .NET applications:
via the wrapper already written by Keysight around the C library, or via the Visa COM Interop.

Location of Header Files

The header files visa32.cs and visa32.vb can be found in:

C:\Program Files (x86)\IVI Foundation\VISA\WinNT\agvisa\include

or

C:\Program Files (x86)\IVI Foundation\VISA\WinNT\include

For more details, see the VISA online Help section "Using the VISA C API in Microsoft .NET", in the Keysight VISA Help.
36

Developing and Deploying VISA Projects
Requirements for Deploying a VISA Project
Requirements for Deploying a VISA Project

The only VISA-specific system requirements for deploying your compiled programs on other machines are:

• A valid visa32.DLL must be in the system's PATH environment variable.

• The resource address you are trying to open must exist on the system and be configured for the visa32.DLL that is
found first during the Windows DLL search.

Additionally, you must satisfy the normal .NET requirements, such as having an appropriate version of the .NET framework
installed on the deployed systems. Obviously, any other software libraries your program uses at runtime must also be
installed.

Multiple VISA DLL Versions

Because each VISA vendor installs its version of the VISA DLL, the VISA DLL on your deployed system may differ from the
one with which you developed your application. When multiple vendors' VISA implementations are present, the DLL used
is the one that is found first using Microsoft Windows' DLL search rules.

If you developed your program using Keysight VISA, and you wish to ensure that your program uses Keysight VISA even if
other VISA implementations are on your deployed systems, you can change the DLL name in all of the method
declarations in visa32.cs or visa32.vb from "visa32.DLL" to "agvisa32.DLL". This will prevent your program from
working with any other vendor’s VISA implementation, and will ensure that, if multiple VISA DLLs are installed on the
system, your program will use the Keysight DLL implementation.
37

Developing and Deploying VISA Projects
Requirements for Deploying a VISA Project
38

X-Series Programmers Guide
Program Samples
4 Program Samples

The program samples described here were written for use on a PC running Microsoft Windows.

The description of each sample includes its function, operational details, programming language and driver usage, and
the sample file name or root directory.

This chapter is divided into the following sections:

• “Where to find Sample Programs” on page 39

• “N9060A Spectrum Analyzer Mode Programing Samples” on page 40

• “N9064A VXA Vector Signal Analyzer Programming Samples” on page 49

Where to find Sample Programs

• Unless otherwise stated, all the sample programs described in this chapter are available in the \progexamples
directory on the X-Series Spectrum Analyzer Documentation DVD.

• Most of the X-Series samples can also be found on the Keysight Technologies, Inc. web site at URL:

http://www.keysight.com/find/sa_programming

• Program samples installed by the Keysight I/O Libraries Suite may be found (after installation) in the directory:

C:\Documents and Settings\All Users\Agilent\Agilent IO Libraries Programming Samples

You can browse to this directory by opening the Keysight Connection Expert and selecting Help > Programming
Samples from the menu,

(The Keysight I/O Libraries Suite samples are not described in this document, and are in general not specific to
X-Series instruments.)
39

Program Samples
N9060A Spectrum Analyzer Mode Programing Samples
N9060A Spectrum Analyzer Mode Programing Samples

Samples are available for the following programming languages and development environments:

• Visual Basic 6

• C, C++

• C#.NET & Visual Studio 2010

• Keysight VEE Pro

• LabVIEW

• MATLAB

NOTE These samples have all been tested and validated as functional in the Spectrum Analyzer mode.
They have not necessarily been tested in other modes. However, they should work in all other
modes, except where exceptions are noted.

Matrix of Program Sample Functionality and Programming Language

In the table below, availability of program samples for each function/language is indicated by page number references. If
no page number reference is provided, then there is no available sample for the given functionality in the specified
language.

Function Visual Basic
6

C, C++ C#.NET VEE LabVIEW MATLAB

Retrieve Screen Image 42 45 47 47

Read Binary Trace Data 42 46a

a. This functionality is included in the C# sample for Phase Noise Trace Math.

47

Poll Method for Operation Complete 43 45

SRQ Interrupt Method for Operation Complete
(Multi-threaded)

43 45

Set and Query Relative Band Power Markers 43

Set Traces and Couple Markers 43

Phase Noise Trace Math Calculation 44 46

Upload a State File 48

Switch Instrument Mode 42b

b. This functionality is included in the Visual Basic 6 sample for Reading Binary Trace Data.

45c

c. This functionality is included in the C# sample for the SRQ Interrupt Method.

48
40

Program Samples
N9060A Spectrum Analyzer Mode Programing Samples
Visual Basic 6

NOTE In some cases, Visual Basic 6 files with the extension .bas have been renamed with the
extension .bas.txt, to avoid possible instrument security warnings generated by the .bas
extension. To use these files in Visual Basic 6, rename them by removing the .txt portion of the
extension.

1. Retrieve Screen Images

2. Read Binary Trace Data

All the samples use the VISA driver.
41

Program Samples
N9060A Spectrum Analyzer Mode Programing Samples
Retrieve Screen Images

Read Binary Trace Data

C, C++

The samples provided are console applications written in C, but these should also be compilable by most C++ compilers.

1. Poll Method for Operation Complete

2. SRQ Method for Operation Complete

3. Set and Query Relative Band Power Markers

4. Set Traces and Couple Markers

5. Phase Noise Trace Math

All the samples use the VISA driver.

Function Transfer Screen Images from the instrument

Description This example demonstrates how to:

1. Store the current screen image in instrument memory as “D:\PICTURE.PNG”

2. Transfer the memory image file via GPIB or LAN

3. Store the transferred image in the computer’s current directory as “C:\PICTURE.PNG”

4. Delete the instrument memory file "D:\PICTURE.PNG"

Language Visual Basic 6

File name mxa_screen.bas

Function Read Binary Block Trace data from the instrument

Description This example demonstrates how to:

1. Open a VISA session via GPIB or LAN

2. Modify the timeout value

3. Send the *IDN? query to the instrument, then display the result

4. Change the instrument mode to Spectrum Analyzer

5. Set the Trace data format to REAL,32 or REAL,64

6. Set the instrument to Single Sweep

7. Initiate a sweep

8. Read the trace data and display it

9. Store the trace data to the file “bintrace.txt”

The binary data transfer method is faster than the default ASCII transfer mode, because less data is sent over the bus. For more
information about data formats, see the section "Remote Measurement Functions" in any X-Series Help file or Users &
Programmers Reference PDF.

Language Visual Basic 6

File name bintrace.bas
42

Program Samples
N9060A Spectrum Analyzer Mode Programing Samples
Poll Method for Operation Complete

SRQ Method for Operation Complete

Set and Query Relative Band Power Markers

Set Traces and Couple Markers

Function Serial Poll for Sweep Complete

Description This example demonstrates how to:

1. Modify the timeout value

2. Initiate a sweep

3. Poll the instrument to determine when the operation is complete

4. Query and report the sweep result

Language C

File name mxa_sweep.c

Function Service Request Method (SRQ) determines when a measurement is done by waiting for SRQ, then reading the Status
Register.

Description This example demonstrates how to:

1. Define an SRQ interrupt handler

2. Set up mode and measurement parameters

3. Set the service request mask to assert SRQ when either a measurement is uncalibrated or an error message has occurred

4. Install the interrupt handler

5. Initiate a sweep

6. Wait for an SRQ interrupt

7. When an SRQ interrupt occurs, examine its source and type and report the result

8. Uninstall the interrupt handler

The STATus subsystem of commands is used to monitor and query hardware status. For details of these commands and registers,
see the section "Measurement Group of Commands" in any X-Series Help file or Users & Programmers Reference PDF.

Language C

File name mxa_srq.c

Function Relative Band Power Markers

Description This example demonstrates how to:

1. Set up a calibration signal

2. Set Markers 1 through 5 as Band Power Markers

3. Obtain the band power of Markers 2 through 5, relative to Marker 1

Language C

File name mxa_bpm.c

Function Trace Detector/Couple Markers
43

Program Samples
N9060A Spectrum Analyzer Mode Programing Samples
Phase Noise Trace Math

C#.NET & Visual Studio 2010

The samples provided are written in C# for Visual Studio 2010 (.NET version 4.5),

1. Retrieve Screen Images

2. Poll Method for Operation Complete

3. SRQ Method for Operation Complete

4. Phase Noise Trace Math

All the samples use the VISA driver.

Description This example demonstrates how to:

1. Set various types of trace (Max Hold, Clear Write, Min Hold)

2. Relate markers to specified traces

3. Couple markers

NOTE The instrument supports multiple simultaneous detectors (for example, peak detector for max hold, sample for
clear and write, and negative peak for min hold).

Language C

File name mxa_tracecouple.c

Function Phase Noise Trace Math Calculation

Description This example demonstrates how to remove instrument noise from phase noise, by:

1. Setting up a calibration signal

2. Setting local oscillator phase noise behavior

3. Setting Trace 1 type to average and initiate a sweep

4. Turning off calibration signal

5. Setting Trace 2 type to average and initiate a sweep

6. Calculating the power difference between Trace 1 and Trace 2, saving the result as Trace 3

Language C

File name mxa_phasenoise.c
44

Program Samples
N9060A Spectrum Analyzer Mode Programing Samples
Retrieve Screen Images

Poll Method for Operation Complete

SRQ Method for Operation Complete

Function Capture and transfer Screen Images from the instrument

Description This example demonstrates how to:

1. Store the current screen image as a PNG file on the instrument’s D: drive, with a user-specified name

2. Retrieve the screen image data from the instrument as a Program Data Block

3. Analyze the header of the Program Data Block and extract the PNG bitmap from the block

4. Store the extracted bitmap as a PNG file in the computer’s current directory, with the same user-specified name

5. Delete the PNG file that was stored on the instrument’s D: drive

Language C#

Project Folder vs2010.net/x_screencapture

Function Serial Poll for Sweep Complete

Description This example demonstrates how to:

1. Modify the timeout value

2. Initiate a sweep

3. Poll the instrument to determine when the operation is complete

4. Query and report the sweep result

Language C#

Project Folder vs2010.net/x_sweep

Function Service Request Method (SRQ) determines when a measurement is done by waiting for SRQ, then reading the Status
Register.

Header/ Library visa32.cs

Description This multi-threaded example demonstrates how to:

1. Define an SRQ interrupt handler

2. Set up mode and measurement parameters

3. Set the service request mask to assert SRQ when either a measurement is uncalibrated or an error message has occurred

4. Install the interrupt handler

5. Initiate a sweep

6. Set up a wait for multiple events

7. When an SRQ interrupt occurs, examine its source and type and report the result

8. Uninstall the interrupt handler

The STATus subsystem of commands is used to monitor and query hardware status. For details of these commands and registers,
see the section "Measurement Group of Commands" in any X-Series Help file or Users & Programmers Reference PDF.

Language C#

Project Folder vs2010.net/x_srq
45

Program Samples
N9060A Spectrum Analyzer Mode Programing Samples
Phase Noise Trace Math

Keysight VEE Pro

1. Retrieve Screen Images

2. Retrieve Trace Data

Function Phase Noise Trace Math Calculation

Description This example demonstrates how to remove instrument noise from phase noise. The program does the following:

1. Set up a calibration signal

2. Set local oscillator phase noise behavior

3. Set Trace 1 type to average and initiate a sweep

4. Turn off calibration signal

5. Set Trace 2 type to average and initiate a sweep

6. Calculate the power difference between Trace 1 and Trace 2, then save the result as Trace 3

7. Retrieve Trace 3 data from the instrument as a binary data block

8. Optionally, save the retrieved trace data in an on-disk text file

Language C#

Project Folder vs2010.net/x_phasenoise
46

Program Samples
N9060A Spectrum Analyzer Mode Programing Samples
Retrieve Screen Images

Retrieve Trace Data

LabVIEW

This sample is not available on the X-Series Documentation DVD. You can download the zip file containing the sample
from http://www.keysight.com/find/sa_programming

Screen Capture

MATLAB

These samples are not available on the X-Series Documentation DVD. You can download them from
http://www.keysight.com/find/sa_programming

Function Transfer Screen Images from the instrument

Description This example demonstrates how to:

1. Store the current screen image in instrument memory as “D:\mxascr.PNG”

2. Transfer the memory image file via GPIB

3. Store the transferred image on the computer, in a user-specified directory, as “capture.gif”

4. Delete the instrument memory file "D:\mxascr.PNG"

Language Keysight VEE Pro

File name mxa_screencapture.vee

Function Transfer trace data from the instrument.

Description For each available data format (INTeger,32, REAL,32, REAL,64, and ASCii), the program does the following:

1. Sets the Trace data format

2. Sets the instrument to Single Sweep

3. Initiates a sweep

4. Reads the trace data and plots it graphically (using the default value of 1001 trace points)

For more information about data formats, see :FORMat:DATA in the "Programming the Analyzer" chapter of any X-Series Help
file or Users & Programmers Reference PDF.

Language Keysight VEE Pro

File name transfertrace.vee

Function Transfer Screen Images from the instrument

Description The program retrieves screen capture data from the instrument via GPIB, then writes the contents of the binary block to a file,
removing the header information before writing it. It uses the VISA protocol to communicate with the instrument.

Language /
Driver

LabVIEW/ VISA

File name MXA Screen Capture via GPIB.llb
47

Program Samples
N9060A Spectrum Analyzer Mode Programing Samples
Upload a File

IVI-COM Personality (Mode) Select

Function Upload a state file to the instrument

Description The program opens a state file on the computer’s hard disk, transfers it to the instrument via LAN, then stores the file on the
instrument’s D: drive.

Language /
Driver

MATLAB / IVI Instrument Drivers

File name Upload_File_to_SA.m

Function Check instrument identification fields and change mode to SA.

Description This example does the following:

1. Checks Instrument Model, Firmware Revision and Serial Number

2. Selects SA Mode

3. Sets a Center Frequency

4. Reads the Instrument Error Queue

Language /
Driver

MATLAB / IVI-COM Instrument Drivers

File name IVI_Personality_Select.m
48

Program Samples
N9064A VXA Vector Signal Analyzer Programming Samples
N9064A VXA Vector Signal Analyzer Programming Samples

Two program samples are available for N9064A VXA Vector Signal Analyzer Mode:

• “Vector Analysis Measurement” on page 49

• “Digital Demod Measurement” on page 49

Each sample is implemented for three development environments, programming languages and driver technologies:

• Keysight VEE Pro,

• Visual Basic 6 with VISA COM,

• Visual Studio 2003 / VB.NET with VISA COM

The VEE samples consist of a single file each, whereas the Visual Basic 6 and Visual Studio 2003 samples consist of
project file sets in specified subfolders.

NOTE These samples have all been tested and validated as functional in N9064A VXA Vector Signal
Analyzer Mode.

Vector Analysis Measurement

Digital Demod Measurement

Function Set up a Vector Analysis Measurement, then read trace data.

Description This example program:

1. Creates a ResourceManager object (except in VEE example)

2. Creates a FormattedIO488 interface object (except in VEE example)

3. Sets VXA Mode

4. Sets Vector Analysis Measurement

5. Configures the measurement

6. Initiates the measurement

7. Reads Trace 1 data in REAL,64 format (also in ASCii and REAL,32 formats for VEE example)

8. Outputs the trace data to the computer screen

9. Closes the FormattedIO488 interface (except in VEE example)

File or Project
Folder name

VEE: vxa-measdemo.vee

Visual Basic 6 / VISA COM: vb6-visacom/vxa-measdemo

Visual Studio 2003 (VB.NET) / VISA COM: vs2003.net/vxa-measdemo

Function Set up a Digital Demod Measurement, then read Demodulated Bits, Error Vector Time and EVM value.
49

Program Samples
N9064A VXA Vector Signal Analyzer Programming Samples
Description This example program:

1. Creates a ResourceManager object (except in VEE example)

2. Creates a FormattedIO488 interface object (except in VEE example)

3. Sets VXA Mode

4. Sets Digital Demod Measurement

5. Configures the measurement

6. Initiates the measurement

7. Sets REAL,32 format, then reads Demodulated Bits

8. Reads Error Vector Time (VEE example only)

9. Sets ASCii format, then reads EVM value

10. Outputs all data to the computer screen

11. Closes the FormattedIO488 interface (except in VEE example)

File or Project
Folder name

VEE: vxa-digdemoddemo.vee

Visual Basic 6 / VISA COM: vb6-visacom/vxa-digdemoddemo

Visual Studio 2003 (VB.NET) / VISA COM: vs2003.net/vxa-digdemoddemo
50

X-Series Programmers Guide
References
A: References

Documents & Web Sites

1. IEEE Standard 488.2–1992

IEEE Standard Codes, Formats, Protocols, and Common Commands for Use With IEEE Std 488.1-1987, IEEE Standard Digital Interface for
Programmable Instrumentation

May be downloaded in Acrobat (PDF) format from:

ieeexplore.ieee.org/iel1/2839/5581/00213762.pdf?arnumber=213762

2. IVI Foundation

(Interchangeable Virtual Instrument Foundation)

http://www.ivifoundation.org/default.aspx

3. Keysight X-Series Document Library

Select one of the following hyperlinks, depending on the product name of your instrument:

http://www.keysight.com/find/pxa_manuals

http://www.keysight.com/find/mxa_manuals

http://www.keysight.com/find/exa_manuals

http://www.keysight.com/find/cxa_manuals

http://www.keysight.com/find/mxe_manuals

4. Keysight X-Series Signal Analyzers: Getting Started Guide

Keysight Technologies 2008-2014. Part Number: subject to change as document is revised.

A printed copy of this document is supplied with each Keysight X-Series Analyzer.

It is also available in Acrobat (PDF) form:

• on the Documentation DVD supplied with each instrument,

• on the instrument’s disk drive at the following location:

C:\Program Files\Agilent\SignalAnalysis\Infrastructure\Help\bookfiles\getstart.pdf

• via download from:

www.keysight.com/find/xseries_getting_started_guide

5. Keysight I/O Libraries Suite

Keysight Technologies Inc.

All Keysight VISA, VISA COM, SICL and 488 documentation is included in HTML Help (CHM) format in the Keysight I/O Libraries Suite
installer, which may be downloaded from:

www.keysight.com/find/iosuite

After installing the libraries suite, you can access the help by clicking the IO taskbar icon, then selecting Documentation > API
Documentation > VISA Documentation from the popup menus.
51

ieeexplore.ieee.org/iel1/2839/5581/00213762.pdf?arnumber=213762
http://www.ivifoundation.org/default.aspx

References
Developer Resources
Developer Resources

Developer Network

This website offers a one-stop shop, with links to Instrument Drivers, Example Programs, Product Downloads,
Evaluations, Demos, and resources for contacting Keysight regarding development issues:

http://www.keysight.com/find/adn

Technical Support

Navigate to one of the web pages below, according to the name of your product, then select the Technical Support tab for
links to all available documentation for the product:

http://www.keysight.com/find/pxa

http://www.keysight.com/find/mxa

http://www.keysight.com/find/exa

http://www.keysight.com/find/cxa

http://www.keysight.com/find/mxe

6. Keysight VISA Help

After installing the Keysight I/O Libraries Suite, you can access the VISA Help CHM by clicking the IO taskbar icon, then selecting
Documentation > API Documentation > VISA Documentation from the popup menus.

Alternatively, you can find the CHM at the following disk location:

C:\Program Files\Agilent\IO Libraries Suite\Visa.chm

7. Keysight IVI (Instrument) Drivers

Installation packages for the Signal Analyzer class driver ("Base Driver"), and instrument-specific drivers, may be downloaded from the
"Signal Analyzer Instrument Drivers" page at:

http://www.keysight.com/find/sa-ivi

8. Keysight Application Note 1583

"Maximizing Measurement Speed with Keysight’s X-Series Signal Analyzers"

May be downloaded in Acrobat (PDF) format from:

http://literature.cdn.keysight.com/litweb/pdf/5989-4947EN.pdf

9. Keysight Application Note 1595

"How to Use IVI-COM Drivers in Keysight VEE Pro 8.0"

May be downloaded in Acrobat (PDF) format from:

http://literature.cdn.keysight.com/litweb/pdf/5989-6914EN.pdf

10. Keysight VEE Pro

For links to all available information, see:

www.keysight.com/find/vee
52

www.keysight.com/find/vee

	X-Series Programmers’ Guide
	Table of Contents
	1 Introduction to Programming X-Series Applications
	How to Use this Manual
	X-Series Programming Options
	Hardware Connection Formats
	Interchangeable Virtual Instruments (IVI-COM, IVI-C) Drivers
	VISA Driver Options
	Keysight VEE Pro
	Programming Documentation Roadmap

	2 SCPI Programming Fundamentals
	SCPI Language Basics
	Command Keywords, Separators and Syntax
	Creating Valid Commands
	Special Characters in Commands
	Parameters in Commands
	Writing Multiple Commands on the Same Line
	SCPI Termination and Separator Syntax Examples

	Where to find X-Series SCPI Command Definitions
	Help System Features for SCPI Programmers

	Simple SCPI Communication Methods
	Communicating SCPI Using Telnet
	Communicating SCPI using Keysight Connection Expert

	Techniques for Improving Measurement Performance
	Turn off Display Updates
	Use Binary Data Format instead of ASCII
	Minimize the Number of Bus Transactions
	Use USB or LAN Connection instead of GPIB
	Minimize DUT/instrument Setup changes
	Avoid Unnecessary Use of *RST
	Avoid Automatic Attenuator Setting
	Avoid using RFBurst trigger for Single Burst Signals
	Optimize GSM Output RF Spectrum Switching Measurement (N9071A Measurement Application)
	To make Power Measurements on Multiple Bursts or Slots use CALCulate:DATA<n>:COMPress?
	More Hints & Tips

	3 Developing and Deploying VISA Projects
	Programming in Visual Basic 6 with VISA
	Location of Header Files

	Programming in C or C++ with VISA
	Location of Header Files & Libraries

	Programming with Microsoft .NET and VISA
	Location of Header Files

	Requirements for Deploying a VISA Project
	Multiple VISA DLL Versions

	4 Program Samples
	Where to find Sample Programs
	N9060A Spectrum Analyzer Mode Programing Samples
	Matrix of Program Sample Functionality and Programming Language
	Visual Basic 6
	C, C++
	C#.NET & Visual Studio 2010
	Keysight VEE Pro
	LabVIEW
	MATLAB

	N9064A VXA Vector Signal Analyzer Programming Samples
	Vector Analysis Measurement
	Digital Demod Measurement

	A: References
	Documents & Web Sites
	Developer Resources
	Developer Network
	Technical Support

