
Agilent U2300A Series
USB Multifunction DAQ
Devices VEE Application
Program
Quick Reference Guide
Agilent Technologies

Safety Symbols

The following symbols indicate the precautions taken to maintain safe operation
of the instrument.

Regulatory Markings

Direct current

Warning

The CE mark shows that the product complies with all the
relevant European Legal Directives (if accompanied by a
year, it
signifies when the design was proven).

The CSA mark is a registered trademark of the Canadian
Standards Association. A CSA mark with the indicators "C"
and "US" means that the product is certified for both the
U.S. and Canadian markets, to the applicable American and
Canadian standards.

The UL Mark is a registered trademark of Underwriters Lab-
oratories Inc. UL listing mark with the indicators "C" and
"US” indicates the product compliance with both Canadian
and U.S. requirements.

The C-tick mark is a registered trademark of the Spectrum
Management Agency of Australia. This signifies compli-
ance with the Australian EMC Framework regulations
under the terms of the Radio Communications Act of 1992.
II U2300A Quick Reference Guide

General Safety Information

WARNING • Do not use the device if it is damaged. Before you use the device,
inspect the case. Look for cracks or missing plastic. Do not operate
the device around explosive gas, vapor, or dust.

• Do not apply more than the rated voltage (as marked on the device)
between terminals, or between terminal and external ground.

• Always use the device with the cables provided.

• Observe all markings on the device before connecting to the device.

• Turn off the device and application system power before connecting
to the I/O terminals.

• When servicing the device, use only specified replacement parts.

• Do not operate the device with the removable cover removed or
loosened.

• Do not connect any cables and terminal block prior to performing
self-test process.

• Use only the power adapter supplied by the manufacturer to avoid any
unexpected hazards.

CAUTION • Do not load the output terminals above the specified current limits.
Applying excessive voltage or overloading the device will cause
irreversible damage to the circuitry.

• Applying excessive voltage or overloading the input terminal will
damage the device permanently.

• If the device is used in a manner not specified by the manufacturer, the
protection provided by the device may be impaired.

• Always use dry cloth to clean the device. Do not use ethyl alcohol or
any other volatile liquid to clean the device.

• Do not permit any blockage of the ventilation holes of the device.
U2300A Quick Reference Guide III

Environmental Conditions
This instrument is designed for indoor use and in an area with low condensation.
The table below shows the general environmental requirements for this
instrument.

Environmental conditions Requirements

Operating temperature 0 °C to 55 °C

Operating humidity 15% to 85% at 40 °C RH (non-condensing)

Storage temperature –20 °C to 70 °C

CAUTION The U2300A complies with the following safety and EMC requirements.
• IEC 61010-1:2001/EN 61010-1:2001 (2nd Edition)
• USA: UL61010-1: 2004
• Canada: CSA C22.2 No.61010-1:2004
• IEC/EN 61326-1 1998
• CISPR 11: 1990/EN55011:1991, Class A, Group 1
• CANADA: ICES-001: 1998
• Australia/New Zealand: AS/NZS 2064.1
IV U2300A Quick Reference Guide

Contents

Introduction 2

Analog Input (U2300_AI.vee) 3

Analog Output (U2300_AO.vee) 13

Digital Input/Output (U2300_DIO.vee) 26

Counter (U2300_CNT.vee) 35

Temperature Monitoring Application (U2300_TempMonitor.vee) 43

Simple Test Application (U2300 Auto Prog Tool.vee) 49

Appendix 59
U2300A Quick Reference Guide 1

Introduction

This document will describe the functionality of each of the
application. These applications consist of the following:

1 U2300_AI.vee — Analog input application

2 U2300_AO.vee — Analog output application

3 U2300_DIO.vee — Digital input/output application

4 U2300_CNT.vee — General purpose counter application

5 U2300_TempMonitor.vee — A temperature monitoring
application that uses functions from "Simple
U2300_AI.vee" and "Simple U2300_AO.vee".

6 U2300 Auto Prog Tool.vee — A simple test application that
uses functions from "Simple U2300_AI.vee" and "Simple
U2300_DIO.vee".

7 User- Defined Functions/Libraries
2 U2300A Quick Reference Guide

Analog Input (U2300_AI.vee)

This is a standalone application that provides control over
the analog input of the U2300A Series DAQ devices. The
user can control up to a maximum of six units of DAQ
within the cardcage or via any USB port. Users can monitor
the input data on all the analog input channels. The program
will show the enabled channels and it can show up to six
graphs on the screen for the monitored data. Users can
switch to view different channels and also display either a
continuous waveform or a scatter diagram.
U2300A Quick Reference Guide 3

The main workspace is where all the main routine of the
program is located. Once the program started, it will import
the "kernel32.dll" file that will enable the program to read
and write to initialize the files. It will then automatically
detect any DAQ that is connected to the pc individually or
in a cardcage. If it detects a cardcage, it will display the
identification. It will also display all the DAQ that are either
in the cardcage or on another USB port.
4 U2300A Quick Reference Guide

The detailed view of "InstrAutoDetect" is as shown below. It
employs the "visa32.dll" to detect the DAQ that are
connected to the pc.

The program will then initialize all the program variables
and establish communication with the instrument. It will
obtain the serial and model number. It also checks for the
maximum sampling rate and also how many analog input
channels the attached unit has.
U2300A Quick Reference Guide 5

Once it has established the connection, the "Analog Input
Channel Settings" screen will appear. This will enable the
user to select the type of monitoring they want to perform,
whether it is continuous mode, single shot mode or polling
mode. The program will ask for the sampling rate they want
to read the data. The user can set the triggering method and
settings. Click the "Channel Editor" to configure which
channel to run, otherwise the program cannot proceed.
6 U2300A Quick Reference Guide

The channel editor will show the channels available
depending on the attached model. Users can select each
channel and set the mode, signal type, polarity, range and
also the polynomial factor to be used for that channel. The
settings can be saved to a Windows configuration settings
file or "ini" files.
U2300A Quick Reference Guide 7

The monitoring screen will display the channel status,
whether it is set to differential, RSE or NRSE. The user may
select to view the graph for the enabled channels. A
maximum of six graphs can be shown on the screen at any
one time. The user may switch to look at the data at other
channels by clicking the drop- down list next to each graph.
By default, the program will display a waveform unless the
user specify it to display an X-Y scatter diagram. Data can
be saved to a "csv" (comma separated value) file

.

8 U2300A Quick Reference Guide

Channel status will show in bright red for the selected
channels, dark red for the corresponding low- differential
input and gray for disabled channels.
U2300A Quick Reference Guide 9

A list of all the userfunctions in the "U2300_AI.vee"
application is as given;

No Userfunction Description

1 A_InitErrorRecord () Initializes the error handling variable record (loc_Error). Used for the functions
that only sets the DAQ.

2 A_InitOutputRecord () Initializes the error handling variable of 6 records (loc_Output). Used for the
functions that queries the DAQ.

3 A_InitSngOutputRecord() Initializes the error handling variable of 1 record (loc_Output). Used for the
functions that queries the DAQ.

4 Channel_Editor () Used as an internal function to allow users to select channels, set the
monitoring mode, reference ground, etc. Uses the .NET datagrid function.
Allows user to save and load the settings.

5 Channel_Popup (row) Called by Channel_Editor()

6 Channel_Setting () Internal function to let user sets the sampling rate, monitoring mode, trigger
settings, etc.

7 datagridView_MouseUp () Used by .NET datagrid

8 Disp_OneGraph () -->
Disp_SixGraphs ()

Internal function to display the analog input data in graphical form. Able to
display from one channel to six channels. User able to choose different
channels to observe.

9 Disp_OneSChart () -->
Disp_SixSCharts ()

Display the data in a strip chart format.

10 Disp_OneScatter () -->
Disp_FourScatters ()

Display the data in a scatter diagram.

11 EnumerateVisaAddresses () Function that uses "visa32.dll" to detect all instruments that are connected to
the pc.

12 Extract_ChanLoc (B) Internal function to extract the channel data from an array.

13 FileSaving () Function that handles data file creation.

14 Get_BitBipData (Data, Bit, Rng) Function that converts the bipolar data (byte) to decimal format for 12/16 bits.

15 Get_BitUniData (Data, Bit, Rng) Function that converts the unipolar data (byte) to decimal format for 12/16
bits.

16 HandleVisaReturnCode () Function that handles error codes generated by "visa32.dll" while searching
for instruments.

17 INI_Read (File, Section, Keyword) Function that reads from "INI" file. Makes use of kernel32.dll.
10 U2300A Quick Reference Guide

18 INI_Write (File, Section, Keyword,
IniString)

Function that writes to "INI" file. Makes use of kernel32.dll

19 InstrAutoDetect () Function that automatically detects any instrument that is connected to the pc
via GPIB, USB or LAN interface.

20 InstrInterfaceType (str) Function that distinguish between a GPIB or USB interface.

21 InstSearch_MsgBox () Function that displays a message "Please wait… Searching for instrument"

22 LED_Display (BK1, BK2, BK3, BK4) Internal function to display selected channels. Maximum channels = 64
Selected channel = Color "Warning Red"
Unselected channel = Color "Dark Red"
Disabled channel = Color "Dark Grey"

23 PopUpMesgBox (mesg) Multipurpose display message box.

24 Select_Display (BK1, BK2, BK3,
BK4)

Panel to allow user to display the channels they want to view while monitoring
takes place. Maximum channels = 64. Separated into 4 inputs of 16 channels
each.

25 String_IndexChar (string,char) Finds the all the indices of the char in the string. Returns array of indices. If
char doesn't exist in the string, this function returns -1. Limited to 100 indices.

26 U2300_AI_Init () This function must be called first to establish communication with the U2300
unit(s). It obtains the model and serial number and detects the numbers of
channels and the maximum sampling rate.

27 U2300_AI_InitVar () This is called by U2300_AI_Init() function. It initializes all the variables used in
this application.

28 U2300_AI_Manual () This function holds the main controls to the analog input application.

29 U2300_ConvertData (Select, Data,
ChanPos)

Converts the data to the scaling that is input via the "Xth_Poly()" function.

30 U2300_Delay (X) Common function for setting delay in seconds.

31 U2300_DigitizeUSB1~6 () Activate the U2300 "Digitize" function for each individual USB devices.

32 U2300_GetModel () Get the model of the attached U2300.

33 U2300_GetSerial () Get the serial number of the attached U2300.

34 U2300_GetWavCompUSB1~6 () Get the status of the availability of the waveform data for "digitize" mode.

35 U2300_GetWavDataUSB1~6 () Get the analog input data from the attached U2300 (Binary format).

36 U2300_Init () Perform a "Reset" and "Clear" the event registry and error queues of the
U2300. Dynamically sets the interface address for the USB devices.
U2300A Quick Reference Guide 11

37 U2300_RunUSB1~6 () Activate the U2300 "Run" function.

38 U2300_ScanChan (Select, Chan) Sets the channels for scanning on selected DAQ.

39 U2300_SetAnTrgCond (Select, Inp) Sets the analog trigger condition on selected DAQ.

40 U2300_SetAnTrgHTrh (Select, Inp) Sets the analog trigger high threshold value on selected DAQ.

41 U2300_SetAnTrgLTrh (Select, Inp) Sets the analog trigger low threshold value on selected DAQ.

42 U2300_SetAnTrgSour (Select, Inp) Sets the analog trigger source selection on selected DAQ.

43 U2300_SetChPolarity (Select, Pol,
Chan)

Sets the channel polarity to bipolar or unipolar on selected DAQ.

44 U2300_SetChRange (Select,
Range, Chan)

Sets the channel range on selected DAQ.

45 U2300_SetChType (Select, Stype,
Chan)

Sets the reference ground for the channel on selected DAQ.

46 U2300_SetDigPol (Select, Inp) Sets the polarity of the external digital trigger on selected DAQ.

47 U2300_SetSampRate (Select,
MaxSamp, Chs, Inp)

Sets the sampling rate for the unit on selected DAQ.

48 U2300_SetTrgDCount (Select, Inp) Sets the counter value for delay trigger mode on selected DAQ.

49 U2300_SetTrgSour (Select, Inp) Sets the A/D trigger control source on selected DAQ.

50 U2300_SetTrgType (Select, Inp) Sets the U2300 trigger mode on selected DAQ.

51 U2300_SetWavePoint (Select, Inp) Sets the number of points for the waveform on selected DAQ.

52 U2300_StopUSB1~6 () Activate the U2300 "Stop" function.

53 U2300_TranslateData (Select,
NoOfChans, ChanPos, data)

Converts the data from binary to decimal. Splits any interleave data from
multiple channels.

54 Xth_Poly () Internal function that allows user to change the scaling factor.
12 U2300A Quick Reference Guide

Analog Output (U2300_AO.vee)

This is a standalone application that provides control over
the analog output of the U2300A Series DAQ devices. The
user can control up to a maximum of six units of DAQ
within the cardcage or via any USB ports. Users can output
dc voltages, standard waveforms and user- defined waveforms
for analog output channel 201 and 202. The application will
automatically detect the DAQ when it is connected to the pc
via USB port.

The program will initialize all the program variables and
establish communication with the instrument. It will obtain
the serial and model number. It also checks if the attached
U2300A Series DAQ devices support analog output. The
following sequence is that it waits for the user to select DC
voltage generation, standard waveform generation or DC step
generation.
U2300A Quick Reference Guide 13

The main workspace is where all the main routine of the
program is located. Once the program starts, it will import
the "kernel32.dll" file that will enable the program to read
and write to initialize the files. It then proceeds to
automatically detect for any DAQ that is connected to the pc
individually or in a cardcage.

Once the DAQ selection is made, the program will initialize
all the DAQ and get its model and serial number.
14 U2300A Quick Reference Guide

If no error is detected in the process, it will prompt the
U2300_AO_Select dialog box for the user to select their
choice of operation.

“DC Voltage" selection allows the user to simultaneously
output voltage at channel 201 and 202 of any DAQ unit
connected to the pc.
U2300A Quick Reference Guide 15

The "Analog DC Manual" control is made up from multiple
user objects running in their own thread.
16 U2300A Quick Reference Guide

If we take a closer look at one of the channel control, we
can observe that it will automatically update the voltage
setting to a variable once the user turns the knob.
U2300A Quick Reference Guide 17

Once the variable is set, it will translate the data over to the
DAQ in the "Set Channel Voltages" user- object.
18 U2300A Quick Reference Guide

"Waveform Generation" has an array of waveforms such as
sine, square, sawtooth, triangle and noise. User can
simultaneously output different waveforms with varying
amplitude and offset level for both channels. However, the
frequency is fixed for both channels for each DAQ.
U2300A Quick Reference Guide 19

The "DC Step Generation" is a user- defined step voltage
output. The user determines which channel to output the
signal, the number of points and the step sequence. The
application comes with a "Step Editor" that allows the user
to configure the dc steps. There is a "Load Step" button to
retrieve stored dc steps. Once the dc steps are loaded,
clicking the "Run Step" button to initiate the pattern and
"Stop" to halt the sequence.
20 U2300A Quick Reference Guide

The "Step Editor" can cater up to 100 steps. User can define
the voltage level, the duration of each step and whether to
set the voltage to 0 V once it finishes that step. A "–9999"
on the voltage level represents a non- operational step, hence
that step will be ignored. Users can save the configured
steps into Windows configuration settings file or "ini" files.
U2300A Quick Reference Guide 21

The "Configure Wave" button lets the user create an
arbitrary waveform. Users can combine waveforms from two
virtual waveform generators through a series of predefined
formulas. Users also have to determine the time span and
the number of points before running it.
22 U2300A Quick Reference Guide

A list of all the userfunctions in the "U2300_AO.vee"
application is as given;

No Userfunction Description

1 A_InitErrorRecord () Initializes the error handling variable record (loc_Error). Used for the
functions that only sets the DAQ.

2 A_InitOutputRecord () Initializes the error handling variable of 6 records (loc_Output). Used for the
functions that queries the DAQ.

3 A_InitSngOutputRecord() Initializes the error handling variable of 1 record (loc_Output). Used for the
functions that queries the DAQ.

4 AppendBackslash (path) Appends a "\\" to the path name if it is not present in string.

5 Button_OnClick (Mode, Wildcard) Internal function that allows the user to select a file (Reading or Writing
mode will have to be given and also the wildcard extension). It will read from
the current directory of this installed VEE file. It will output the selected file
name and the path name.

6 Edit_Pattern () Internal function that allows user to visually set the step voltage for analog
output. User can set the voltage, duration, reset to zero after each cycle and
up to 100 steps. The settings can then be saved or retrieved from a
configuration (*.ini) file.

7 EnumerateVisaAddresses () Function that uses "visa32.dll" to detect all instruments that are connected
to the pc.

8 Editor_ArElemDelete (array, position) Internal function that deletes a step in the analog output step editor.

9 Editor_ArElemInsert (array, position,
newElem)

Internal function that inserts a step in the analog output step editor.

10 File_CheckExist (fname) Function to check if the input file exists in the pc.

11 HandleVisaReturnCode () Function that handles error codes generated by "visa32.dll" while searching
for instruments.

12 INI_Read (File, Section, Keyword) Function that reads from "INI" file. Makes use of kernel32.dll.

13 INI_Write (File, Section, Keyword,
IniString)

Function that writes to "INI" file. Makes use of kernel32.dll

14 InstrAutoDetect () Function that automatically detects any instrument that is connected to the
pc via GPIB, USB or LAN interface.

15 InstrInterfaceType (str) Function that distinguish between a GPIB or USB interface.
U2300A Quick Reference Guide 23

16 InstSearch_MsgBox () Function that displays a message "Please wait… Searching for instrument"

17 Int_ExtractStepRec (iniFile) Internal function to extract the analog output steps from a given "ini" file. It
formats the data to be displayed on the step editor.

18 Load_Pattern () Function that loads the analog output pattern from a selected "ini" file. Uses
the Button_OnClick () function.

19 PopUpMesgBox (mesg) Multipurpose display message box.

20 PopUpMesgBoxDec (mesg) Display message box with a "YES" and "NO" button.

21 String_IndexChar (string,char) Finds the all the indices of the char in the string. Returns array of indices. If
char doesn't exist in the string, this function returns -1. Limited to 100
indices

22 U2300_AO_DCStep () This is the analog output step control screen. User can edit, load, run and
stop the step patterns. User can choose from channel 201 or 202 to set the
output from any DAQ. User can also set the number of points in which the
program will calculate the sampling rate based on the total duration of the
pattern and number of points.
There is also an arbitrary waveform generator via the "Configure Wave"
button. User can set the time span, number of points and combine the
signals of two virtual function generator to output the waveform. There is
also an "XY Trace" to display the combined waveform on the screen. The
output channel can be selected from the previous screen.

23 U2300_AO_Init () This function must be called first to establish communication with the
U2300 unit. It obtains the model and serial number and detects if the
connected unit supports analog output functions.

24 U2300_AO_InitVar () This is called by U2300_AO_Init () function. It initializes all the variables
used in this application.

25 U2300_AO_ManDC () This screen enables the user to set DC output voltage a single or dual
channel (201 and 202)

26 U2300_AO_Manual() This is an extended version of the U2300_AO_ManDC () function. It includes
waveform type, offset setting and also the frequency for the fixed waveform
(Sine, Square, Sawtooth, Triangle and Noise). User can set for single or dual
channel.

27 U2300_AO_Off (Select) Switches off the analog outputs on selected DAQ.

28 U2300_AO_Select () A panel displaying the selection for different applications.

29 U2300_GetError () Retrieve error messages from the U2300 unit.
24 U2300A Quick Reference Guide

30 U2300_GetModel () Get the model of the attached U2300.

31 U2300_GetOutput () Query the U2300 for the output voltage.

32 U2300_GetSerial () Get the serial number of the attached U2300.

33 U2300_Init () Perform a "Reset" and "Clear" the event registry and error queues of the
U2300. Dynamically sets the interface address.

34 U2300_SetFixWave (Select, Type, Volt,
Offset, Channel)

Sets the waveform type (Sine, Square, Sawtooth, Triangle, Noise), output
voltage, voltage offset and the particular output channel (201 or 202) on the
selected U2300 unit.

35 U2300_SetFreq (Select, Freq) Sets the frequency for the waveform generation.

36 U2300_SetOutput (Select, Output) Sets the analog output to "ON" or "OFF" depending on the input and
selected DAQ.

37 U2300_SetUserData (Select, Ch,
Header, Pattern, SRate)

Sets the "user's" analog output. Requires user to input the channel, header
is like "#800000200, pattern is the binary format of output pattern and the
sampling rate.

38 U2300_SetVolt (Select, Volt, Ch) Sets the analog output voltage and on the selected channel and DAQ.

39 Universal_AOFormat (Pol, Bit, A) Internal function that converts the given data (A) to binary format. User will
have to provide the polarity ("BIP" [bipolar] or "UNI" [unipolar]) and also
whether it is 12 or 16 bits.
U2300A Quick Reference Guide 25

Digital Input/Output (U2300_DIO.vee)

This is a standalone application that provides control over
the digital port of the U2300A Series DAQ devices. The user
can control up to a maximum of six units of DAQ within the
cardcage or via any USB port. Users have control over four
digital ports (Channel 501, 502, 503 and 504) and they can
set it to be input or output. The application will
automatically detects the DAQ when it is connected to the
pc via USB port.

The program will initialize all the program variables and
establish communication with the instrument. It will obtain
the serial and model number. The main routine is located in
the main workspace. Once the program starts, it will import
the "kernel32.dll" file that will enable the program to read
and write to initialize the files. It then proceeds to
automatically detect for any DAQ that is connected to the pc
individually or in a cardcage.
26 U2300A Quick Reference Guide

Once the DAQ selection is made, the program will initialize
all the DAQ and get its model and serial number.

On the "DIO Channel Setting" screen, users can set the
direction of the digital ports, they can retrieve pre- saved
digital output steps and activate them via output ports.
Users can click the "Edit Pattern" button to edit the digital
output steps.
U2300A Quick Reference Guide 27

Within the pattern editor, users can define the output
pattern bitwise, the duration, number of times to repeat and
whether to reset after each step. It can cater up to 100
steps and a "–1" on the duration or repeats represents a
non- operational step, hence it will be ignored. Users can
save the configured steps into Windows configuration
settings file or "ini" files.

On the "Digital Input/Output control" screen, users have a
choice to activate each channel. Based on the previously
configured "DIO Channel Setting" screen, users can either
control the output channels or view the input channels. The
detailed view is as shown below. It has a few user- objects
running in separate threads. The user's selection will
determine what to display on the panel view.

The controls on this user- object are to update the variables
that are referred by other user- objects.
28 U2300A Quick Reference Guide

For example, the "Ch501 Display" user- object referred here is
to determine what to display based on the user's selection.
U2300A Quick Reference Guide 29

The detailed view of "U2300_Ch501DO" shows the control of
digital output for channel 501.
30 U2300A Quick Reference Guide

U2300A Quick Reference Guide 31

A list of all the userfunctions in the "U2300_DIO.vee"
application is as given;

No Userfunction Description

1 A_InitErrorRecord () Initializes the error handling variable record (loc_Error). Used for the
functions that only sets the DAQ.

2 A_InitOutputRecord () Initializes the error handling variable of 6 records (loc_Output). Used for
the functions that queries the DAQ.

3 A_InitSngOutputRecord() Initializes the error handling variable of 1 record (loc_Output). Used for the
functions that queries the DAQ.

4 AppendBackslash (path) Appends a "\\" to the path name if it is not present in string.

5 Button_OnClick (Mode, Wildcard Internal function that allows the user to select a file (Reading or Writing
mode will have to be given and also the wildcard extension). It will read
from the current directory of this installed VEE file. It will output the
selected file name and the path name.

6 DIO_Channel_Setting (Select) This screen allows the user to set the digital channel to input or output
direction. For output direction, it also allows you to select pre-configured
digital output pattern files. The user can also set the digital output
patterns via this screen by clicking on the "Pattern Editor" button. User
can select any DAQ present.

7 Edit_Pattern () Internal function that allows user to visually set the state of each bit for
each step. User can set the duration, number of repeats for each step,
reset to zero after each cycle and up to 100 steps. The settings can then be
saved or retrieved from a configuration (*.ini) file.

8 Editor_ArElemDelete (array, position) Internal function that deletes a step in the analog output step editor.

9 Editor_ArElemInsert (array, position,
newElem)

Internal function that inserts a step in the analog output step editor.

10 EnumerateVisaAddresses () Function that uses "visa32.dll" to detect all instruments that are
connected to the pc.

11 File_CheckExist (fname) Function to check if the input file exists in the pc.

12 HandleVisaReturnCode () Function that handles error codes generated by "visa32.dll" while
searching for instruments.

13 INI_Read (File, Section, Keyword) Function that reads from "INI" file. Makes use of kernel32.dll.

14 INI_Write (File, Section, Keyword,
IniString)

Function that writes to "INI" file. Makes use of kernel32.dll
32 U2300A Quick Reference Guide

15 InstrAutoDetect () Function that automatically detects any instrument that is connected to
the pc via GPIB, USB or LAN interface.

16 InstrInterfaceType (str) Function that distinguish between a GPIB or USB interface.

17 InstSearch_MsgBox () Function that displays a message "Please wait… Searching for
instrument"

18 Int_ExtractStepRec (iniFile) Internal function to extract the digital output steps from a given "ini" file.
It formats the data to be displayed on the step editor.

19 Load_Pattern () Function that loads the digital output pattern from a selected "ini" file.
Uses the Button_OnClick () function.

20 PopUpMesgBox (mesg) Multipurpose display message box.

21 PopUpMesgBoxDec (mesg) Display message box with a "YES" and "NO" button.

22 String_IndexChar (string,char) Finds the all the indices of the char in the string. Returns array of indices.
If char doesn't exist in the string, this function returns -1. Limited to 100
indices

23 U2300_Ch501_ADO (Select) -->
U2300_Ch504_ADO (Select)

This function is called when the digital output pattern generation is
executed. It will display the state (ON or OFF) of each bit for that particular
channel. Channel 501 and 502 are 8 bits whereas channel 503 and 504 are
4 bits.

24 U2300_Ch501_DI (Select) -->
U2300_Ch504_DI (Select)

This function is called when the channel is set to input direction. It will
show you the state of each bit of that particular channel.

25 U2300_Ch501_DO (Select) -->
U2300_Ch504_DO (Select)

This function is called when the channel is set to output direction. You can
manually click on each bit to enable or disable the bit of that channel.

26 U2300_DIO_Control (Select) This function is the control screen for the user to view all the channels on
selected DAQ.

27 U2300_DIO_Init () This function must be called first to establish communication with the
U2300 unit. It obtains the model and serial number.

28 U2300_DIO_InitVar () This function initializes all the variables used in this program.

29 U2300_GetDI (Select, Ch) Get the state of all the bits of the given channel (Ch) and selected DAQ.

30 U2300_GetModel () Get the model of the attached U2300.

31 U2300_GetSerial () Get the serial number of the attached U2300.

32 U2300_Init () Perform a "Reset" and "Clear" the event registry and error queues of the
U2300. Dynamically sets the interface address.
U2300A Quick Reference Guide 33

33 U2300_SetDir (Select, Ch, Dir) Configures the given channel for either input ("INP") or output ("OUTP")
direction on the selected DAQ.

34 U2300_SetDO (Select, Ch, Value) Sets the given channel (Ch) to output the state based on the integer value
given on the selected DAQ.
34 U2300A Quick Reference Guide

Counter (U2300_CNT.vee)

The "U2300_CNT.vee" is a standalone application that
provides control for the counter of the U2300A Series DAQ
devices. The user can control up to a maximum of six units
of DAQ within the cardcage or via any USB port. The
application will automatically detect the DAQ when it is
connected to the pc via USB port. The main workspace is as
shown below.

Users have control over the gate source and polarity, clock
source and polarity, the ability to measure the totalizer,
frequency, period and pulse width.
U2300A Quick Reference Guide 35

36 U2300A Quick Reference Guide

The detailed view of the control is made up from several
user- objects running in separate threads. The unit selection
control allows the user to choose the DAQ unit they want to
control. This will set the "loc_select" variable. Once there is a
changed in this variable, the controls will be directed to that
particular DAQ.
U2300A Quick Reference Guide 37

38 U2300A Quick Reference Guide

Channel 301 counter settings are controlled by another
user- object called "Ch301 controls". Within this user- object,
it is running on an individual loop, it will update the
variable and update the DAQ once there is a change in the
setting.

The measurement portion is made up of another user- object
on a separate thread.
U2300A Quick Reference Guide 39

40 U2300A Quick Reference Guide

A list of all the userfunctions in the "U2300_CNT.vee"
application is as given below.

No Userfunction Description

1 A_InitErrorRecord () Initializes the error handling variable record (loc_Error). Used for the
functions that only sets the DAQ.

2 A_InitOutputRecord () Initializes the error handling variable of 6 records (loc_Output). Used for
the functions that queries the DAQ.

3 A_InitSngOutputRecord() Initializes the error handling variable of 1 record (loc_Output). Used for
the functions that queries the DAQ.

4 EnumerateVisaAddresses () Function that uses "visa32.dll" to detect all instruments that are
connected to the pc.

5 HandleVisaReturnCode () Function that handles error codes generated by "visa32.dll" while
searching for instruments

6 InstrAutoDetect () Function that automatically detects any instrument that is connected to
the pc via GPIB, USB or LAN interface.

7 InstrInterfaceType (str) Function that distinguish between a GPIB or USB interface.

8 InstSearch_MsgBox () Function that displays a message "Please wait… Searching for
instrument"

9 PopUpMesgBox (mesg) Multipurpose display message box.

10 PopUpMesgBoxDec (mesg) Display message box with a "YES" and "NO" button.

11 String_IndexChar (string,char) Finds the all the indices of the char in the string. Returns array of
indices. If char doesn't exist in the string, this function returns -1.
Limited to 100 indices

12 U2300_Cnt_ClkPol (Select, Polarity,
Channel)

Sets the counter's input clock polarity for the given channel and
selected DAQ.

13 U2300_Cnt_ClkSour (Select, Source,
Channel)

Sets the counter's input clock source for the given channel and selected
DAQ.

14 U2300_Cnt_EnabTot (Select, Channel) Enables the counter's totalizer for the given channel and selected DAQ.

15 U2300_Cnt_GatePol (Select, Polarity,
Channel)

Sets the counter's input gate polarity for the given channel and selected
DAQ.

16 U2300_Cnt_GateSour (Select, Source,
Channel)

Sets the counter's input gate source for the given channel and selected
DAQ.
U2300A Quick Reference Guide 41

17 U2300_Cnt_Init () This function must be called first to establish communication with the
U2300 unit. It obtains the model and serial number.

18 U2300_Cnt_InitVar () This function initializes all the variables used in this program.

19 U2300_Cnt_Manual () This function holds the main controls to the counter application.

20 U2300_Cnt_Off (Select) Function to abort counter measurements on selected DAQ.

21 U2300_Cnt_SetTot (Select, Channel) Start totalizer measurement for the given channel and selected DAQ.

22 U2300_Cnt_SetTotDir (Select,
Direction, Channel)

Sets the direction of the totalizer for the given channel and selected
DAQ.

23 U2300_Cnt_SetTotIVal (Select, Value,
Channel)

Sets the initial value of the totalizer for the given channel and selected
DAQ.

24 U2300_CntStopTot (Select, Ch) Stop totalizer measurement for the given channel and selected DAQ.

25 U2300_GetFreq (Select, Channel) Get the frequency measurement for the given channel and selected
DAQ.

26 U2300_GetModel () Get the model of the attached U2300.

27 U2300_GetPeriod (Select, Channel) Get the period measurement for the given channel and selected DAQ.

28 U2300_GetPWidth (Select, Channel) Get the pulse width measurement for the given channel and selected
DAQ.

29 U2300_GetSerial () Get the serial number of the attached U2300.

30 U2300_GetTot (Select, Channel) Get the totalizer value for the given channel and selected DAQ.

31 U2300_Init () Perform a "Reset" and "Clear" the event registry and error queues of the
U2300. Dynamically sets the interface address.
42 U2300A Quick Reference Guide

Temperature Monitoring Application (U2300_TempMonitor.vee)

This application continuously monitor up to six analog input
channels, mainly channel 101 to channel 106. The polarity of
these channels are fixed as bipolar and 10 V range. It can
support any U2300A Series models. The DAQ can either be
on a USB port or in a cardcage. However, the present
program can only support one DAQ at a time. The
application uses the temperature coefficients for LM19 and
LM60 temperature sensor from National Semiconductor.

The user can also set either one or both the analog output
channels (201 and 202) to output from 2.4 V to 10 V. The
application also plots the graphs of all the six channels that
can be enabled or disabled at any time. This program uses
the userfunctions imported from "Simple U2300_AI.vee" and
"Simple U2300_AO.vee". It does not use "U2300_AI.vee" and
"U2300_AO.vee" as these programs have complex variable
constants that have the same declaration.

The application starts by importing in the userfunctions
from the two VEE files. The object is located in "Main"
workspace called "Import Libraries"

Once the userfunctions are imported, it will do an
auto- detection for any instrument that is connected to the
computer. The function "InstrAutoDetect ()" will display the
identification and the addresses of the instrument(s) and
prompt the user to select it.
U2300A Quick Reference Guide 43

If no instrument is detected, it will give an error message
and then terminate the program. The following action is
used to initialize all the variables used in the program, start
communicating with the instrument and obtain its model
and serial number. It also determines the maximum sampling
rate that is settable depending on model.

The main collection of functions that controls the
temperature monitoring are contain within the object called
"TempMonitor".
44 U2300A Quick Reference Guide

When the temperature monitoring is activated, the user can
see the above screen. User is able to view the six channels,
set the analog output voltage, set the temperature coefficient
factors, select the temperature sensor that is connected to
each channel and activate the monitoring itself.

Before any monitoring can be initiated, the channels have to
be properly configured. The object "Setup for measurement"
makes use of functions from "Simple U2300_AI.vee". The
functions are "U2300_SetChRanges (Select, Range,
Channels)", "U2300_SetChPolarity (Select, Polarity,
Channels)", "U2300_SetChType (Select, Type, Channels)",
U2300A Quick Reference Guide 45

"U2300_ScanChan (Select, Channels)", "U2300_SetSampRate
(Select, Maximum Rate, Channels, Rate)" and
"U2300_SetWavPoint (Select, No of Points)".

The "Analog Output" button allows the user to set the output
voltage for channel 201 and 202. It makes use of functions
imported from "Simple U2300_AO.vee" like "U2300_SetVolt
(Select, Volt, Channel)", "U2300_AO_Off (Select)" and
"U2300_GetError (Select)". These functions are used to set
the voltage of the particular channel, switch it off and also
read any errors generated by the U2300A units.
46 U2300A Quick Reference Guide

Users can change the factor settings for the temperature
sensor via the "Factor Settings" button. Currently the sensor
factors that are programmed in are of LM19 and LM60 from
National Semiconductor. Users can also determine the
sensors that are connected to each respective channel.
U2300A Quick Reference Guide 47

Functions that are used in getting the waveform, converting
it from binary to decimal and applying the coefficient factors
are "U2300_GetWavData (Select)", "U2300_TranslateData
(Select, Chan#, Channel Position, Data)" and
"U2300_ConvertData (Select, Data, Channel Position)" from
the imported userfunctions from "Simple U2300_AI.vee".

To start and stop the monitoring, the "U2300_RunUSB1 ()"
and "U2300_StopUSB1 ()" functions are called. These are
accessible via the "OK" buttons on the userobjects called
"Start Monitoring" and "Stop Monitoring" respectively. These
functions are from the file "Simple U2300_AI.vee". The "Exit"
user- object calls the "U2300_StopUSB1 ()" function while the
application is still monitoring before it ensures that the
analog outputs are switched off using the function
"U2300_AO_Off (Select)" from "Simple U2300_AO.vee".
48 U2300A Quick Reference Guide

Simple Test Application (U2300 Auto Prog Tool.vee)

This application allows the user to test three devices via the
analog input of the U2300A Series DAQ devices. The
program also allows the user to control a SCPI- based power
supply. The DAQ can either be on a USB port or in a
cardcage. However, the present program can only support
one DAQ at a time. Digital outputs from the U2300A are
used to supposedly switch the DUTs. All the test results will
be displayed and also the user can determine the sequence
of the test, settings on the power supply and also the test
limits.

The analog input channels used are channel 101, 102 and
103. Polarity of these channels are fixed as bipolar and 10 V
ranges which is the default settings. It can support any
U2300A models. The digital output channel used is channel
501 with only three bits being utilized, mainly Bit 0,1 and 2
for each DUT. The application uses the userfunctions
imported from "Simple U2300_AI.vee" and "Simple
U2300_DIO.vee". It does not use "U2300_AI.vee" and
"U2300_DIO.vee" as these programs have complex variable
constant that have the same declaration.

The application start by importing in the userfunctions from
the two VEE files. The object is located in "Main" workspace
called "Import Libraries".

Once the userfunctions are imported, it does an
auto- detection for any instrument that is connected to the
computer. The function "InstrAutoDetect ()" will display the
identification and the address of the detected instrument
and prompt the user to select it.
U2300A Quick Reference Guide 49

After that step, if no instruments can be detected, it will
prompt the user to run in simulation mode or quit the
program.

Since the emphasis on this application is on the U2300A, the
user can still proceed to use it even a programmable power
supply is not present. Put the selection for power supply as
"NONE".
50 U2300A Quick Reference Guide

The following object is used to start communicating with the
instrument and obtain its model and serial number. It also
determines the maximum sampling rate that is settable
depending on model.

The following step will request the user to select and
configure the tests or proceed to test.

The test selection will branch out to an "If/Then/Else" object
to determine which object to call based on the users
selection.
U2300A Quick Reference Guide 51

Within the configuration screen, the user can determine the
voltage and current setting of the power supply. They can
also set the sequence of the tests and the limits.

The "AutoTest" userobject uses a sequencer to handle all the
tests and it passes the results to a userfunction called
"Logging ()". Prior to running the "AutoTest" object, the test
log is cleared. The "AutoTest" graphical user interface (GUI)
allows the user to retest and save the data to a text file. It
also shows the model and serial number of the DAQ
currently attached to the PC.
52 U2300A Quick Reference Guide

Before any test starts, the "setup" routine is called to set up
the power supply. When all the tests is completed, the "end"
sequence will ensure that the power supply is switched off.
The sequence of testing for DUT1 to DUT3 is determined by
the user.
U2300A Quick Reference Guide 53

All the test results are passed to a userfunction called
"Logging ()". The "setup" routine calls the "T_Start ()"
userfunction that prepares all the instruments for
measurement.

Within the "T_Start ()" userfunction, it calls upon the
"PS_Setup ()" userfunction that setup the power supply. It
also determines that if it is not operating in simulation
mode, it will setup the DAQ for analog input in "Setup in
measurement" object and the digital port "501" for output
mode. "U2300_SetDir (Select, Channel, Mode)" function from
"Simple U2300_DIO.vee" is use to configure channel 501 to
output mode.
54 U2300A Quick Reference Guide

In the "PS_Setup ()" userfunction, the program determines
which interface to use. In this case, only "GPIB" or "USB"
based power supply is considered. If the power supply is
other than the covered interfaces or without any interfaces,
a message box will appear instructing the user what to do
manually. The program also assumes that any programmable
power supply used will have to be SCPI- based.

Before any monitoring can be initiated, the channels have to
be properly configured. The object "Setup for measurement"
makes use of the functions from "Simple U2300_AI.vee". The
functions are "U2300_SetChRanges (Select, Range,
Channels)", "U2300_SetChPolarity (Select, Polarity,
Channels)", "U2300_SetChType (Select, Type, Channels)",
"U2300_ScanChan (Select, Channels)", "U2300_SetSampRate
(Select, Maximum Rate, Channels, Rate)" and
"U2300_SetWavPoint (Select, No of Points)”.
U2300A Quick Reference Guide 55

56 U2300A Quick Reference Guide

Test function "T_DUT1 ()" checks if it is live mode before
actually running the measurement, else it will generate a
random number for the simulation mode.

Inside the "DUT1 Test" object, it calls upon userfunctions
from "Simple U2300_AI.vee" and "Simple U2300_DIO.vee". It
will set digital channel "501" bit 0 to high to signify that a
connection is made between the device. Then it will scan
channel "101" and set it to digitize mode for a single shot
mode. This is made by the userfunctions "U2300_ScanChan
(Select, Channel)" and "U2300_DigitizeUSB1 ()". The program
will then monitor for the completion of the signal via
"U2300_GetWavCompUSB1 ()".

Once the data is available, the userfunction
"U2300_GetWavDataUSB1 ()" will read out the data in binary
format and "U2300_TranslateData (Select, No of channels,
Channel number, Data)" will convert the data to numerical
format. It will then output the average reading and
disconnect the DUT by setting bit 0 of channel 501 to low.
U2300A Quick Reference Guide 57

Test functions "T_DUT2 ()" and "T_DUT3 ()" are similar to
"T_DUT1 ()" except it controls different channels. "T_End ()"
is called to complete the tests by switching off the power
supply and resetting the digital output of the DAQ.
58 U2300A Quick Reference Guide

Appendix

User-Defined Functions/Libraries 60

About UserFunctions 61

Using a Library of Functions 64

Creating UserFunctions for a Library 65

About Compiled Functions 68

About Remote Functions 82
59Agilent Technologies

User-Defined Functions/Libraries

VEE provides 19 categories of built- in functions you can use
in programs. When one of these built- in functions is not
exactly right for your program, you can define your own
function.

This chapter describes how to create custom functions
with/using UserFunctions.

VEE Pro supports three kinds of user- defined functions:

• UserFunctions

• Compiled Functions

• Remote Functions

This chapter describes UserFunctions, Compiled Functions,
and Remote Functions, in the following sections:

• About UserFunctions

• Using a Library of Functions

• About Compiled Functions

• About Remote Functions
60 U2300A Quick Reference Guide

AppendixChapter 1
About UserFunctions

A UserFunction is specifically designed for creating a
user- defined function. You create a UserFunction by
selecting it from the Device menu or by converting existing
objects or an existing UserObject into a UserFunction. This
section describes how to create a UserFunction. The next
section describes how to convert a UserObject into a
UserFunction.

To create a UserFunction, click Device ⇒ UserFunction. An
empty UserFunction window appears in the work area.
Create your function by adding terminals and objects as
needed. Change the name to whatever you want (spaces not
allowed). See the VEE User’s Guide or How Do I in VEE Online
Help for additional details.

When the UserFunction is complete, you can iconify it or
close it to get it out of the way of the rest of your program.
You can call your UserFunction using a Call object in your
program (Device ⇒ Call) or other objects identified below. A
UserFunction can be saved in a library and imported into a
program with the Import Library object.

The advantage of creating a UserFunction over using a
UserObject is that you can call a single UserFunction several
times in your program. Thus, there is only one UserFunction
to edit and maintain, rather than several instances of a
UserObject.

When executed in VEE 4, or higher Execution Mode, a
UserFunction will time- slice when called from Call, Formula,
If/Then/Else, or Sequencer objects (only from the Function
field).

A UserFunction will not time- slice when called from a To
File, To String, or similar object or if the Formula object’s
formula is supplied via a control pin.
U2300A Quick Reference Guide 61

Converting Between UserObjects and UserFunctions

To convert a UserObject into a UserFunction, select Make
UserFunction from the UserObject's object menu. The
UserObject window is replaced by a UserFunction window
with the same input and output terminals. The UserObject
object is replaced by a UserFunction Call object.

To reconvert the UserFunction back into a UserObject, select
Make UserObject from the object menu of the UserFunction
window. Any calls to the UserFunction remain (you will have
to manually delete them), but the UserFunction is
automatically converted into a UserObject.

Calling a UserFunction from an Expression

You can call a UserFunction from an expression in a
Formula object or from any expression evaluated at run
time, such as from a ToFile object. The program in Figure 1
demonstrates several ways to call a UserFunction.
62 U2300A Quick Reference Guide

AppendixChapter 1
Figure 1 Calling a UserFunction from Expressions

In the program, the Call object calls the UserFunction noiseUF
and returns a sine wave with an added noise component.
The expression abs(noiseUF(Y)) in the first Formula object
returns the absolute value of the waveform returned by the
UserFunction. Thus, the displayed noisy sine wave is
rectified in the positive direction.

The expression abs(noiseUF(Y))-1.5 in the second Formula
object also calls the UserFunction but adds a negative dc
offset to the waveform. The sequence pins are used to
ensure correct propagation because the UserFunction uses
the global variable.

This program is saved in the file manual43.vee in the examples
directory.
U2300A Quick Reference Guide 63

Using a Library of Functions

Methods for creating each type of user- defined function and
using it in a VEE program are similar. All these functions
are called using the Call object or from certain expressions,
such as in Sequencer or Formula objects. You can use any of
the three kinds of user- defined functions in a library. To use
a library of functions, follow these steps:

1 Import the library.

Use the Device ⇒ Import Library object. Select the Library
Type (UserFunction, Compiled Function, or Remote
Function) and fill in the appropriate fields. Specific
information about these fields is explained in the
associated section in this chapter.

2 Call one or more functions that are contained in the
library.

Use the Call, Formula, or Sequencer objects from the
Device menu. You can also use other objects that call
expressions at run time, such as If/Then/Else or To File.
If you want to have multiple values returned from the
function, you must use a Call object.

3 Delete the library.

If memory management or program execution speed is a
concern, use the Device ⇒ Delete Library object to
programmatically free the library from memory.
Otherwise, libraries are automatically deleted when VEE
exits.

Specific information about using different kinds of libraries
is listed in the following sections.

The ability to call a UserFunction from an expression is very
useful — especially when you include such an expression in
a transaction in the Sequencer object. See Chapter 14 (VEE
Pro Advanced Techniques) for more information about this
topic.
64 U2300A Quick Reference Guide

AppendixChapter 1
Creating a UserFunction Library

So far we have looked at local UserFunctions that are
created and used within the same program. You can also
create a library of multiple UserFunctions stored externally
and later imported into a program.

To create a library of UserFunctions, create the
UserFunctions in the empty VEE work area and save them
to a file. For example, to create a library of two
UserFunctions, myRand1 and myRand2 (which add random
numbers to an input value), create the two UserFunctions as
shown in Figure 2.

Figure 2 Creating UserFunctions for a Library

To create a UserFunction library, save the program with a
name that identifies it as a library. For example, use a .vlb
extension instead of .vee.
U2300A Quick Reference Guide 65

Importing and Calling a UserFunction

To import the UserFunction library into a program, use the
Import Library object. The program in Figure 3 imports the
library from the file user_func_lib and calls the
UserFunctions myRand1 and myRand2.

Figure 3 Importing a UserFunction Library

The Import Library object allows you to specify a type of
library: User Function, Compiled Function, or Remote
Function. If you select UserFunction, you also specify a
Library Name and File Name.

NOTE Normally, the program should contain only UserFunctions. If other objects
are in the program (e.g., in Main), they are ignored when the library is
imported. If you use Declare Variable objects, put them in one of the
UserFunctions, not in the Main window of the library.
66 U2300A Quick Reference Guide

AppendixChapter 1
The Library Name field specifies a local name for the library
within the program. This makes it possible for the Delete
Library object to delete the library from the program. In this
case, Import Library attaches the name myLib to the library
imported from the file user_func_lib.

The File Name field specifies the file from which to import
the library, user_func_lib in this case. If you click on the
File Name field you can select from a list of all library files.

This program is simple so it is not necessary to delete the
UserFunction library after it is used. In a large program
with calls to large libraries, deleting a library when you no
longer need it reduces the program’s memory requirements.

Merging UserFunctions

Merging a UserFunction lets you make it part of your
program. Since it is not imported, you can modify it as
needed. A merged UserFunction is saved with the VEE
program and does not change if the original library changes.

To merge a UserFunction into a program, select File ⇒ Merge
Library. A dialog box opens displaying the files in the library
directory. Select the file containing the UserFunction library
you want and click Open.

NOTE You cannot edit UserFunctions imported with Device ⇒ Import Library, but
you can view their contents and set breakpoints for debugging. To view
imported UserFunctions, use the Program Explorer.

You can merge a library of UserFunctions using File ⇒ Merge Library. Once
the library is merged into your program, you can edit the individual
UserFunctions with Edit ⇒ Edit UserFunction.
U2300A Quick Reference Guide 67

About Compiled Functions

A Compiled Function is created by dynamically linking a
library written in C, C++, FORTRAN, or Pascal, to the VEE
process. A library of compiled functions is called a dynamic
link library (DLL) in Microsoft Windows.

Creating a Compiled Function is considerably more difficult
than creating a UserFunction. Once you have written a
library of functions in C or another language, you will need
to compile the functions into a DLL or shared library. You
will also have to create a definition file that will provide
VEE with information it needs to call your function.

Using a Compiled Function

To use a Compiled Function, you:

1 Write the external program.

2 Create the DLL and a definition file.

3 Import the library and call the function from VEE.

4 Delete the library from VEE memory when you are done.

The methods for importing a Compiled Function library and
for calling the function are very similar to those for
UserFunction libraries. The Import Library object attaches
the DLL to the VEE process and parses the definition file
declarations.

The definition file defines the type of data passed between
the external library and VEE. (This file is discussed later in
this section.) The Compiled Function can then be called with
the Call object or from such objects as Formula and
If/Then/Else.

Design Considerations for Compiled Functions

Using Compiled Functions, you can develop time- sensitive
routines in another language and integrate them directly into
your VEE program. You can also use Compiled Functions to
keep proprietary routines secure.
68 U2300A Quick Reference Guide

AppendixChapter 1
Because Compiled Functions do not timeslice (i.e., they
execute until they are done without interruption) they are
only useful for specific purposes that are not otherwise
available in VEE.

You can extend the capabilities of your VEE program by
using Compiled Functions, but it adds complexity to the VEE
process. The key design goals should be:

• Keep the purpose of the external routine highly focused on a
specific task

• Use Compiled Functions only when the capability or
performance you need is not available using a VEE
UserFunction or an Execute Program escape to the
operating system.

You can use any operating system facilities available in the
program to be linked, including math routines, instrument
I/O, etc. However, you cannot access any VEE internal
functions from within the external program to be linked.

Although the use of Compiled Functions provides enhanced
VEE capabilities, some problems can occur. A few key ones
are:

• VEE cannot trap errors originating in the external routine.
Because your external routine becomes part of the VEE
process, any errors in that routine propagate back to VEE.
A failure in the external routine may cause VEE to "hang"
or otherwise fail. You need to be sure of what you want
the external routine to do and provide for error checking
in the routine. If your external routine exits so will VEE.

• Your routine must manage all memory that it needs. Be
sure to deallocate any memory that you may have
allocated when the routine was running.

• Your external routine cannot convert data types the way
VEE does. You should configure the data input terminals
of the Call object to accept only the type and shape of
data that is compatible with the external routine.
U2300A Quick Reference Guide 69

• If your external routine accepts arrays, it must have a
valid pointer for the type of data it will examine. The
routine also must check the size of the array on which it
is working. The best way to do this is to pass the size of
the array from VEE as an input to the routine, separate
from the array itself. If your routine overwrites values of
an array passed to it, use the return value of the function
to indicate how many of the array elements are valid.

• System I/O resources may become locked. Your external
routine is responsible for timeout provisions, etc.

• If your external routine performs an invalid operation,
such as overwriting memory beyond the end of an array
or dereferencing a null or bad pointer, this can cause VEE
to exit or error with a General Protection Fault.

• If your external routine has arrays or char* parameters,
the memory passed to these routines must be allocated in
VEE. You should allocate this memory by doing the
following:

• For an array input, use an Alloc Array object of the
appropriate type, and set the size appropriately.

• For a string input, use a Formula object. Delete the
data input terminal from the Formula object and enter
an expression like 256*"a". This creates a string that is
256 characters long (plus a null byte) filled with a’s.
Most VXIplug&play functions will not write more than
256 characters into a Text parameter. However, it is
best to check the Help on each function panel that
requires a Text input to be sure.

Importing and Calling a Compiled Function

You can import a DLL into your VEE program with the
Import Library object, then call the Compiled Function with the
Call object. The process is very much like importing a
library of UserFunctions and calling the functions, as
described at the beginning of this chapter.

To import a Compiled Function library, select Compiled
Function in the Library Type field.
70 U2300A Quick Reference Guide

AppendixChapter 1
Just as for a UserFunction, the Library Name field attaches
a name to identify the library within the program, and the
File Name field specifies the file from which to import the
library. For a Compiled Function, there is a fourth field,
which specifies the name of the Definition File, shown in
Figure 4.

Figure 4 Using Import Library for Compiled Functions

The definition file defines the type of data passed between
the external routine and VEE. It contains prototypes for the
functions.

After importing the library with Import Library, you can call
the Compiled Function by specifying the function name in
the Call object. For example, the Call object in Figure 5 calls
the Compiled Function named myFunction.

Figure 5 Using Call for Compiled Functions
U2300A Quick Reference Guide 71

Select the desired function using Select Function from the
Call object menu or from the Function & Object Browser
(under Device ⇒ Function & Object Browser), or type the name in
the Call object.

If VEE recognizes the function, the input and output
terminals of the Call object are configured automatically for
the function. (The necessary information is supplied by the
definition file.) You can reconfigure the Call input and
output terminals by selecting Configure Pinout in the object
menu.

VEE configures the Call object with the input terminals
required by the function and with a Ret Value output
terminal for the return value of the function. There also will
be an output terminal corresponding to each input that is
passed by reference.

You can also call the Compiled Function by name from an
expression in a Formula object or from other expressions
evaluated at run time. For example, you could call a
Compiled Function by including its name in an expression in
a Sequencer or ToFile transaction.

However, only the Compiled Function's return value (Ret
Value in the Call object) can be obtained from within an
expression. If you want to obtain other parameters from the
function, you have to use the Call object.

The Definition File

The Call object or Formula expression determines the type
of data it should pass to the function based on the contents
of the definition file. The definition file defines the type of
data the function returns, the function name, and the
arguments the function accepts. The data has the following
form:
<return type> <function name> (<type>
<paramname>, <type> <paramname>, ...) ;

Where:

• <return type> can be: int, short, long, float, double,
char*, or void.
72 U2300A Quick Reference Guide

AppendixChapter 1
• <function name> can be a string consisting of an alpha
character followed by alphanumeric characters, up to a
total of 512 characters.

• <type> can be: int, short, long, float, double, int*, char*,
short*, long*, float*, double*, char**, or void.

• <paramname> can be a string consisting of an alpha
character followed by alphanumeric characters, up to a
total of 512 characters. The parameter names are
optional, but recommended. If a parameter is to be passed
by reference, the parameter name must be preceded by
the indirection symbol (*).

The valid return types are:

• character strings (char*, corresponding to the VEE Text
data type)

• integers (short, int, long, corresponding to the VEE Int16
and Int32 data types)

• single and double precision floating point real numbers
(float and double corresponding to the VEE Real32 and
Real64 data types).

If you specify "pass by reference" for a parameter by
preceding the parameter name with *, VEE will pass the
address of the information to your function. If you specify
"pass by value" for a parameter by leaving out the *, VEE
will copy the value (rather than the address of the value) to
your function. You will want to pass the data by reference if
your external routine changes that data for propagation back
to VEE. All arrays must be passed by reference.

Any parameter passed to a Compiled Function by reference
is available as an output terminal on the Call object. The
output terminals will be Ret Value for the function's return
value, plus an output for each input parameter that was
passed by reference.

VEE pushes 144 bytes on the stack. This allows up to 36
parameters to be passed by reference to a Compiled
Function. Up to 36 long integer parameters or 18
double- precision floating- point parameters may be passed by
value.
U2300A Quick Reference Guide 73

VEE allows both "enclosed" comments and "to- end- of- line"
comments in the definition file.

"Enclosed" comments use the delimiter sequence
/*comments*/, where /* and */ mark the beginning and end
of the comment, respectively.

"To- end- of- line" comments use the delimiting characters //
to indicate the beginning of a comment that runs to the end
of the current line.

Building a C Function

The following C function accepts a real array and adds 1 to
each element in the array. The modified array is returned to
VEE on the Array terminal, while the size of the array is
returned on the Ret Value terminal. This function, once
linked into VEE, becomes the Compiled Function called in
the VEE program shown in Figure 6.

/*
C code from manual49.c file

*/

#include <stdlib.h>

#ifdef WIN32
define DLLEXPORT __declspec(dllexport)
#else
define DLLEXPORT
#endif

/* The description will show up on the Program Explorer when you select
"Show Description" from the object menu and the Function Selection
dialog box in the small window on the bottom of the box.
*/
DLLEXPORT char myFunc_desc[] = "This function adds 1.0 to the array
74 U2300A Quick Reference Guide

AppendixChapter 1
passed in";

DLLEXPORT long myFunc(long arraySize, double *array) {
 long i;

for (i = 0; i < arraySize; i++, array++) { *array += 1.0; }

return(arraySize);
}

The definition file for this function is as follows:
/*
definition file for manual49.c
*/

long myFunc(long arraySize, double *array);

(This definition is the same as the ANSI C prototype
definition in the C file.)

You must include any header files on which the routine
depends. The library should link against any other system
libraries needed to resolve the system functions it calls.

The example program uses the ANSI C function prototype.
The function prototype declares the data types that VEE
should pass into the function.

The array has been declared as a pointer variable. VEE will
put the addresses of the information appearing on the Call
data in terminals into this variable. The array size has been
declared as a long integer. VEE will put the value (not the
address) of the size of the array into this variable. The
positions of both the data input terminals and the variable
declarations are important. The addresses of the data items
(or their values) supplied to the data input pins (from top to
bottom) are placed in the variables in the function prototype
from left to right.
U2300A Quick Reference Guide 75

One variable in the C function (and correspondingly, one
data input terminal in the Call object) is used to indicate
the size of the array. The arraySize variable is used to
prevent data from being written beyond the end of the
array. If you overwrite the bounds of an array, the result
depends on the language you are using. In Pascal, which
performs bounds checking, a run- time error will result,
stopping VEE. In languages like C, where there is no bounds
checking, the result will be unpredictable, but intermittent
data corruption is probable.

This example has passed a pointer to the array so it is
necessary to dereference the data before the information can
be used.

The arraySize variable has been passed by value so it will
not show up as a data output terminal. However, here we
have used the function's return value to return the size of
the output array to VEE. This technique is useful when you
need to return an array that has fewer elements than the
input array.

The program in Figure 6 calls the Compiled Function
created from the example C program:
76 U2300A Quick Reference Guide

AppendixChapter 1
Figure 6 Program Calling a Compiled Function

The example in Figure 6 is saved in the file manual49.vee in
the examples directory. The C file is saved as manual49.c, the
definition file as manual49.h and the shared library as
manual49.sl.

Creating a Dynamic Link Library

VEE provides access to DLLs through the Call object and
through formula objects.

NOTE This section describes how to call a DLL, not how to write a DLL. VEE
Version 3.2 and greater only calls 32-bit DLLs, not 16-bit DLLs.
U2300A Quick Reference Guide 77

Creating the DLL

Create the DLL before writing the VEE program. Create the
DLL as you would any other DLL, except that only a subset
of C types are allowed. (See “Creating the Definition File” on
page 78.)

Declaring DLL Functions If you are using Microsoft Visual C++
Version 2.0 or greater, the function definition should be:

__declspec(dllexport) long myFunc (...);

This definition eliminates the need for a .DEF file to export
the function from the DLL. Use the following command line
to compile and link the DLL:

cl /DWIN32 $file.c /LD

/LD creates a DLL. Use /Zi to generate debug information.

The MS linker links to the C multi- threaded Runtime Library
by default. If you use functions like GetComputerName(),
you need to link against Kernel32.lib. The compile/link line
would look like:

cl /DWIN32 file.c /LD /link Kernel32.lib

Declaring DLL Functions To work with VEE, DLL functions
can be declared as __declspec(dllexport) using
Microsoft C++ version 2.0 or greater. This eliminates the
need for a .DEF file. For example, a generic function could
be created as follows:
__declspec(dllexport) long genericFunc(long a) {return
(a*2); }

If you are not using Microsoft Visual C++, the .DEF file
contains:

EXPORTS genericFunc

And the function definition looks like:
long genericFunc(long a);

Creating the Definition File The definition file contains a list
of prototypes of the imported functions. VEE uses this file
to configure the Call objects and to determine how to pass
parameters to the DLL function. The format for these
prototypes is:
78 U2300A Quick Reference Guide

AppendixChapter 1
<return type> <modifier> <function name> (<type> <paramname>, <type>
<paramname>, ...) ;

where:

• <return type> can be: int, short, long, float, double,
char*, or void.

• <function name> can be a string consisting of an alpha
character followed by alphanumeric characters, up to a
total of 512 characters.

• <modifier> can be _cdecl, _pascal, or _stdcall.

• <type> can be: int, short, long, float double, int*, char*,
short*, long*, float*, double*, char**, or void.

• <paramname> can be a string consisting of an alpha
character followed by alphanumeric characters, up to a
total of 512 characters. The parameter names are
optional, but recommended. If a parameter is to be passed
by reference, the parameter name must be preceded by
the indirection symbol (*).

For example:

Pass in four parameters, return a long:
long aFunc(double *,long param2,long *param3,

char *);

No input parameters, return a double:
double aFunc();

Pass in a string, return a long:
long aFunc(char *aString);

Pass in an array of strings, return a long:
long aFunc(char **aString);

Parameter Limitations

A DLL function called from VEE pushes a maximum of 144
bytes on the stack. This limits the number of parameters
used by the function. Any combination of parameters may be
used as long as the 144- byte limit is not exceeded. A long
U2300A Quick Reference Guide 79

uses four bytes, a double uses eight bytes and a pointer uses
four bytes. For example, a function could have 36 longs, or
18 doubles, or 20 pointers and 8 doubles.

The Import Library Object

Before you can use a Call object or Formula box to execute
a DLL function you must import the function into the VEE
environment via the Import Library object. On the Import
Library object, select Compiled Function under Library Type.
Enter the correct definition file name using the Definition
File button. Finally, select the correct file using the File
Name button. The Library Name button assigns a logical
name to a set of functions and does not need to be changed.

The Call Object

Before using a DLL function with the Call object you must
configure the Call object. The easiest way to do this is to
select Load Lib on the Import Library object menu to load
the DLL file into the VEE environment. Then, select Select
Function on the Call object menu.

VEE will bring up a dialog box with a list of all the
functions listed in the definitions file. When you select a
function, VEE automatically configures the Call object with
the correct input and output terminals and function name.

You can also configure the Call object manually by modifying
the function name and adding the appropriate input and
output terminals:

1 Configure the same number of input terminals as there
are parameters passed to the function. The top input
terminal is the first parameter passed to the function. The
next terminal down from the top is the second parameter,
etc.

2 Configure the output terminals so the parameters passed
by reference appear as output terminals on the Call
object. Parameters passed by value cannot be assigned as
output terminals. The top output terminal is the value
returned by the function. The next terminal down is the
first parameter passed by reference, etc.
80 U2300A Quick Reference Guide

AppendixChapter 1
3 Enter the correct DLL function name in the Function
Name field.

For example, for a DLL function defined as
long foo(double *x, double y, long *z);

you need three input terminals for x, y, and z and three
output terminals, one for the return value and two for x and
z. The Function Name field would contain foo. If the number
of input and output terminals does not exactly match the
number of parameters in the function, VEE generates an
error.

If the DLL library has already been loaded and you enter
the function name in the Function Name field, you can also
use the Configure Pinout selection on the Call object menu
to configure the terminals.

The Delete Library Object

If you have very large programs you may want to delete
libraries after you use them. The Delete Library object
deletes libraries from memory just as the Delete Lib
selection on the Import Library object menu does.

Using DLL Functions in Formula Objects

You can also use DLL functions in formula objects. With
formula objects, only the return value is used in the formula.
The parameters passed by reference cannot be accessed. For
example, the DLL function defined above is a formula:

4.5 + foo(a, b, c) * 10

where a is the top input terminal on the formula object, b is
next, and c is last. The call to foo must have the correct
number of parameters or VEE generates an error.
U2300A Quick Reference Guide 81

About Remote Functions

A Remote Function is a UserFunction that runs in another
VEE process on a remote host computer. Remote Functions
are a special case of UserFunction. See “About
UserFunctions” on page 61 for general information that
applies to UserFunctions.

Using Remote Functions

The Remote Function is called from the local VEE process
over the LAN. Just as for UserFunctions and Compiled
Functions, import a library of Remote Functions with the
Import Library object.

When one or more Remote Functions have been imported,
they are called by using the Call object or by including
function names in expressions. You include Remote Function
calls in your program just as you would UserFunctions.
However, some differences and some networking
technicalities are described in this section.

Create a library of Remote Functions just as you would a
library of UserFunctions, but save it on the intended remote
host computer. The intended remote host computer must
also have VEE Pro or VEE Pro Run Time installed on it.

The library of Remote Functions is imported not into the
local VEE process but in a special invocation of VEE called a
"service" that runs on the remote host. The local VEE
process is called the "client."

The client VEE process imports the Remote Function library
using the Import Library object. When you select Remote
Function for the Library Type field, some new fields appear
as shown in Figure 7.
82 U2300A Quick Reference Guide

AppendixChapter 1

Figure 7 Import Library for Remote Functions

The Library Type and Library Name fields function the same
as for UserFunctions and Compiled Functions. The other
fields are as follows:

• Remote Host Name - The name of the host on which the
"service" VEE process is to run (the "remote host"). This
name can be the common or symbolic name of the host
(for example myhost) or the IP address of the host in
this field (for example 14.13.29.99).

• Remote File Name - The name of the Remote Function
library file. The Remote File Name is analogous to the
File Name field for a UserFunction library. However, you
must specify the absolute path to the file. Hence the path
and file name can be rather long. You may want to have
all users place remote function library files in a common
place, such as:
C:\USERS\REMFUNC.
U2300A Quick Reference Guide 83

• Remote Timeout - A timeout period in seconds for
communication with the VEE service. If the VEE service
has not returned the expected results of a Remote
Function within this time period, an error occurs.

• Remote Debug - When this check box is selected, all
UserFunctions within the library execute in debug mode
(i.e., you will be able to perform debugging on them, such
as setting breakpoints and doing line probes). This setting
works with UserFunctions whether or not they have panel
views.

When the Import Library object is executed (either by
selecting Load Lib from the object menu or during normal
program execution), a VEE server process is started on the
remote host specified in the Host Name field. The client
process and the server process are connected over the
network and are able to communicate.

When a Call object in the client VEE calls a Remote
Function, the arguments (the data input pins on the Call
object) are sent over the network to the remote service, the
Remote Function is executed, and the results are sent back
to the Call object and output on its data output pins.

If your program deletes the library of Remote Functions
with the Delete Library object, the Remote Functions
associated with the library are removed. You can load
multiple libraries in a VEE server process, then delete each
one as needed without canceling the service connection. The
VEE server exists while the VEE client process continues to
run.

NOTE The remote VEE service invoked by the client is dependent on the Host
Name specified in the Import Library object. If you have two Import Library
objects using the same Host Name, only one service process is invoked.
Even if two different Library Names and Remote File Names are used, each
communicates with the same service. On the other hand, if each Import
Library uses a different Host Name, two separate services are invoked.
84 U2300A Quick Reference Guide

AppendixChapter 1
The service VEE process can exist on the same computer or
"host" as the client or on another host as long as there is a
network connection between them. The most common
connection is between two hosts on a LAN. However, if a
network path exists, the two hosts could be a continent
apart.

The VEE service process has some attributes that are
different from a normal VEE process:

1 The VEE service process executes only Remote Functions
that are contained in the Remote Function library named
by Import Library.

2 Remote Functions have views associated with them. When
you call a remote function, you can have a VEE window
appear on the remote host if the UserFunction displays a
panel view.

3 Global variables (declared and undeclared) are not shared
between the processes.

4 Remote Functions do not time- slice when called.

5 Parameters of type object cannot be passed to or from a
Remote Function (includes ActiveX Automation objects or
pointers to ActiveX controls).

6 The Execution Mode used by the service VEE process is
that of the user’s .veerc file, not that saved in the file that
is imported.

7 Embedded .veeio file configurations in the file imported
by the service VEE process are ignored. Only the global
I/O configuration file is used.

You have to start the VEE Service Manager manually, as
follows:

1 Go to the VEE installation directory

2 Execute veesm.exe

3 When the console window appears, you can minimize it to
get it out of the way

4 To stop the VEE Service Manager process, open the
console window and press Ctrl+C.
U2300A Quick Reference Guide 85

To automate the VEE Service Manager startup:

1 Create a shortcut to veesm.exe

2 Select Start ⇒ Programs

3 Move the shortcut to the Startup folder.
86 U2300A Quick Reference Guide

© Agilent Technologies, Inc. 2007, 2008

Printed in Malaysia
July 21, 2008

U2351-90701

www.agilent.com

Agilent Technologies

Contact us
To obtain service, warranty or technical

assistance, contact us at the following
phone or fax numbers:

United States:
(tel) 800 829 4444 (fax) 800 829 4433
Canada:
(tel) 877 894 4414 (fax) 800 746 4866
China:
(tel) 800 810 0189 (fax) 800 820 2816
Europe:
(tel) 31 20 547 2111
Japan:
(tel) (81) 426 56 7832 (fax) (81) 426 56
7840
Korea:
(tel) (080) 769 0800 (fax) (080) 769 0900
Latin America:
(tel) (305) 269 7500
Taiwan:
(tel) 0800 047 866 (fax) 0800 286 331
Other Asia Pacific Countries:
(tel) (65) 6375 8100 (fax) (65) 6755 0042

Or visit Agilent worlwide web at:
www.agilent.com/find/assist

Product specifications and descriptions in
this document are subject to change without
notice. Always refer to Agilent Web site for the
latest revision.

	Agilent U2300A Series USB Multifunction DAQ Devices VEE Application Program
	Introduction
	Contents

	Analog Input (U2300_AI.vee)
	Analog Output (U2300_AO.vee)
	Digital Input/Output (U2300_DIO.vee)
	Counter (U2300_CNT.vee)
	Temperature Monitoring Application (U2300_TempMonitor.vee)
	Simple Test Application (U2300 Auto Prog Tool.vee)
	Appendix
	User-Defined Functions/Libraries
	About UserFunctions
	Using a Library of Functions
	Creating a UserFunction Library
	About Compiled Functions
	About Remote Functions

