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The analysis of electrical signals is  

a fundamental prob lem for many 

engineers and sci en tists. Even if the 

immediate problem is not electrical, 

the basic pa ram e ters of interest are 

often changed into electrical sig nals 

by means of transducers. Com mon 

transducers include ac cel er om e ters 

and load cells in mechanical work, 

EEG electrodes and blood pressure 

probes in biology and medicine, and 

pH and con duc tiv i ty probes in chem-

is try. The rewards for trans form ing 

physical pa ram e ters to electrical sig-

nals are great, as many instruments 

are available for the analysis of elec-

tri cal sig nals in the time, frequency 

and modal domains. The powerful 

mea sure ment and analysis ca pa bil i-

ties of these instruments can lead to 

rapid understanding of the system 

under study. 

This note is a primer for those who 

are unfamiliar with the advantages of 

analysis in the frequency and modal 

domains and with the class of analyz-

ers we call Dynamic Signal Analyzers. 

In Chap ter 2 we develop the con cepts 

of the time, frequency and modal 

domains and show why these differ-

ent ways of looking at a problem 

often lend their own unique insights. 

We then in tro duce classes of instru-

mentation available for analysis in 

these domains. 

In Chapter 3 we develop the proper-

ties of one of these classes of analyz-

ers, Dynamic Signal Analyzers. These 

instruments are par tic u lar ly appropri-

ate for the anal y sis of signals in the 

range of a few millihertz to about a  

hundred kilohertz. 

Chapter 4 shows the benefits of 

Dynamic Signal Analysis in a wide 

range of measurement situations. The 

pow er ful analysis tools of Dy nam ic 

Signal Analysis are introduced as 

needed in each mea sure ment situation. 

This note avoids the use of rig or ous 

math e mat ics and instead depends on 

heuristic arguments. We have found 

in over a decade of teaching this 

material that such arguments lead to 

a better un der stand ing of the basic 

processes involved in the various 

domains and in Dynamic Signal 

Analysis. Equally important, this  

heuristic instruction leads to better 

in stru ment operators who can in tel li-

gent ly use these analyzers to solve 

complicated measurement problems 

with accuracy and ease*. 

Because of the tutorial nature of this 

note, we will not attempt to show 

detailed solutions for the multitude of 

measurement prob lems which can be 

solved by Dynamic Signal Analysis. 

Instead, we will concentrate on the 

fea tures of Dynamic Signal Analysis, 

how these features are used in a wide 

range of ap pli ca tions and the benefits 

to be gained from using Dynamic 

Signal Analysis. 

Those who desire more details  

on specific applications should look 

to Appendix B. It contains ab stracts 

of Keysight Technologies, Inc. 

Application Notes on a wide range  

of related subjects. These can be 

obtained free of charge from your 

local Keysight field engineer  

or rep re sen ta tive. 

Chapter 1  
Introduction

* A more rigorous mathematical jus ti fi ca tion for the  

arguments developed in the main text can be found  

in Appendix A.
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A Matter of Perspective

In this chapter we introduce the  

concepts of the time, frequency and 

modal domains. These three ways of 

looking at a problem are interchange-

able; that is, no in for ma tion is lost  

in changing from one domain to 

another. The advantage in introducing 

these three domains is that of a 

change of perspective. By changing 

per spec tive from the time do main,  

the solution to difficult problems  

can often become quite clear in  

the frequency or modal domains. 

After developing the concepts of each 

domain, we will introduce the types 

of instrumentation avail able. The 

merits of each generic instrument 

type are discussed to give the reader 

an appreciation of the advantages and 

disadvantages of each ap proach. 

Section 1:  
The Time Domain 

The traditional way of observing  

signals is to view them in the time 

domain. The time domain is a record 

of what happened to a parameter of 

the system versus time. For instance, 

Figure 2.1 shows a simple spring-

mass system where we have attached  

a pen to the mass and pulled a piece 

of paper past the pen at a constant 

rate. The resulting graph is a record 

of the displacement of the mass  

versus time, a time do main view  

of displacement. 

Such direct recording schemes are 

sometimes used, but it usually is 

much more practical to convert  

the parameter of interest to an  

electrical signal using a trans duc er. 

Transducers are commonly available 

to change a wide variety of parame-

ters to electrical sig nals. Micro-

phones, ac cel er om e ters, load cells, 

conductivity and pressure probes are 

just a few examples. 

This electrical signal, which rep-

resents a parameter of the system, 

can be recorded on a strip chart 

recorder as in Figure 2.2. We can 

adjust the gain of the sys tem to cali-

brate our mea sure ment. Then we can 

reproduce ex act ly the results of our 

simple di rect recording system in 

Figure 2.1. 

Why should we use this indirect 

approach? One reason is that we are 

not always measuring dis place ment. 

We then must convert the desired 

parameter to the displacement of the 

recorder pen. Usually, the easiest way 

to do this is through the in ter me di ary 

of elec tron ics. However, even when 

measuring displacement we would 

normally use an indirect approach. 

Why? Primarily be cause the system in 

Figure 2.1 is hopelessly ideal. The 

mass must be large enough and the 

spring stiff enough so that the pen’s 

mass and drag on the paper will not 

Chapter 2  
The Time, Frequency and Modal Domains: 

Fig ure 2.2 

In di rect  

re cord ing of  

dis place ment.

Fig ure 2.1 

Di rect  

re cord ing of  

dis place ment -  

a time domain  

view.
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affect the results appreciably. Also, 

the deflection of the mass must be 

large enough to give a usable result, 

otherwise a me chan i cal lever system 

to amplify the motion would have to 

be add ed with its attendant mass  

and friction. 

With the indirect system a trans duc er 

can usually be selected which will not 

significantly affect the measurement. 

This can go to the extreme of com-

mercially avail able displacement 

trans duc ers which do not even  

contact the mass. The pen deflection 

can be easily set to any desired value 

by controlling the gain of the elec-

tronic amplifiers. 

This indirect system works well  

until our measured parameter be gins 

to change rapidly. Because of the 

mass of the pen and re cord er mecha-

nism and the power lim i ta tions of  

its drive, the pen can only move  

at finite velocity. If the mea sured  

pa ram e ter changes faster, the output 

of the recorder will be in error. A 

common way to re duce this problem 

is to elim i nate the pen and record on 

a pho to sen si tive paper by deflecting  

a light beam. Such a device is  

called an os cil lo graph. Since it is  

only nec es sary to move a small,  

light-weight mirror through a very 

small angle, the oscillograph can 

respond much faster than a strip 

chart recorder. 

Another common device for dis play-

ing signals in the time domain is the 

oscilloscope. Here an electron beam  

is moved using elec tric fields. The 

electron beam is made visible by a 

screen of phos pho res cent material.  

It is capable of ac cu rate ly displaying 

sig nals that vary even more rap id ly 

than the oscillograph can han dle.  

This is because it is only nec es sary to 

move an electron beam, not a mir ror. 

The strip chart, oscillograph and 

oscilloscope all show dis place ment 

versus time. We say that changes  

in this displacement rep re sent the 

variation of some pa ram e ter versus 

time. We will now look at another 

way of rep re sent ing the variation  

of a pa ram e ter. 

Figure 2.3 

Simplified  

oscillograph  

operation.

Fig ure 2.4 

Sim pli fied  

oscilloscope  

operation  

(Horizontal  

deflection  

circuits  

omitted for  

clarity).
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Section 2:  
The Frequency Domain 

It was shown over one hundred years 

ago by Baron Jean Baptiste Fourier 

that any waveform that exists in the 

real world can be generated by add-

ing up sine waves. We have illustrated 

this in Figure 2.5 for a simple wave-

form composed of two sine waves.  

By picking the amplitudes, fre quen-

cies and phases of these sine waves 

correctly, we can generate a wave-

form identical to our desired signal. 

Conversely, we can break down our 

real world signal into these same sine 

waves. It can be shown that this com-

bination of sine waves is unique; any 

real world signal can be represented by 

only one combination of sine waves. 

Figure 2.6a is a three dimensional 

graph of this addition of sine waves. 

Two of the axes are time and ampli-

tude, familiar from the time domain. 

The third axis is frequency which 

allows us to visually separate the  

sine waves which add to give us our 

complex waveform. If we view this 

three-dimensional graph along the  

frequency axis we get the view in 

Figure 2.6b. This is the time do main 

view of the sine waves. Adding them 

together at each instant of time gives 

the original wave form. However, if we view our graph along 

the time axis as in Figure 2.6c, we  

get a totally different picture. Here 

we have axes of amplitude versus  

frequency, what is commonly called 

the frequency domain. Every sine 

wave we sep a rat ed from the input 

appears as a vertical line. Its height 

rep re sents its amplitude and its po si-

tion rep re sents its frequency. Since 

we know that each line represents 

a sine wave, we have unique ly  

char ac ter ized our input signal in the 

frequency domain*. This fre quen cy 

domain rep re sen ta tion of our sig nal  

is called the spectrum of the signal. 

Each sine wave line of the spectrum 

is called a com po nent of the  

total signal. 

Figure 2.6 

The relationship  

between the time  

and frequency  

domains. 

a) Three-  

dimensional  

coordinates  

showing time,  

frequency  

and amplitude 

b) Time  

domain view 

c) Frequency  

domain view.

Fig ure 2.5 

Any real  

waveform  

can be  

produced  

by add ing  

sine waves  

together.

* Actually, we have lost the phase information of the sine 

waves.  How we get this will be discussed in Chapter 3.
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The Need for Decibels 

Since one of the major uses of the frequency 

domain is to resolve small signals in the  

presence of large ones, let us now address  

the problem of how we can see both large and 

small signals on our dis play simultaneously. 

Suppose we wish to measure a distortion  

component that is 0.1% of the signal. If we set 

the fun da men tal to full scale on a four inch  

(10 cm) screen, the harmonic would be only four 

thousandths of an inch (0.1 mm) tall. Obviously, 

we could barely see such a signal, much less 

measure it accurately. Yet many analyzers are 

available with the ability to measure signals 

even smaller than this. 

Since we want to be able to see all the compo-

nents easily at the same time, the only answer  

is to change our amplitude scale. A logarithmic 

scale would compress our large signal amplitude 

and expand the small ones, allowing all compo-

nents to be displayed at the same time. 

Alexander Graham Bell dis cov ered that the 

human ear re spond ed logarithmically to power 

difference and invented a unit, the Bel, to help 

him measure the abil i ty of people to hear. One 

tenth of a Bel, the deciBel (dB) is the most  

common unit used in the fre quen cy domain 

today. A table of the relationship between  

volts, power and dB is given in Figure 2.8.  

From the table we can see that our 0.1%  

distortion com po nent example is 60 dB below 

the fun da men tal. If we had an 80 dB dis play  

as in Figure 2.9, the dis tor tion component  

would oc cu py 1/4 of the screen, not 1/1000  

as in a linear display.

Fig ure 2.8 

The relation- 

ship be tween  

decibels, pow er  

and volt age.

Fig ure 2.9 

Small sig nals  

can be mea sured  

with a log a rith mic  

amplitude scale.
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It is very important to understand 

that we have neither gained nor lost 

information, we are just rep re sent-

ing it differently.  We are look ing at 

the same three-dimensional graph 

from different an gles. This different 

perspective can be very useful. 

Why the Frequency Domain? 

Suppose we wish to measure the 

level of distortion in an audio os cil la-

tor. Or we might be trying to detect 

the first sounds of a bear ing failing on 

a noisy ma chine. In each case, we are 

trying to detect a small sine wave in 

the presence of large signals. Figure 

2.7a shows a time domain wave form 

which seems to be a single sine wave. 

But Figure 2.7b shows in the frequen-

cy domain that the same signal is 

composed of a large sine wave and 

significant other sine wave compo-

nents (distortion components). When 

these components are separated in 

the frequency domain, the small  

components are easy to see be cause 

they are not masked by larg er ones. 

The frequency domain’s use ful ness  

is not restricted to elec tron ics or 

mechanics. All fields of sci ence  

and engineering have mea sure ments 

like these where large signals mask 

others in the time domain. The fre-

quency domain provides a useful 

tool in an a lyz ing these small but 

important effects. 

The Frequency Domain:  
A Natural Domain 

At first the frequency domain may 

seem strange and un fa mil iar, yet it  

is an important part of everyday life. 

Your ear-brain combination is an 

excellent frequency do main analyzer. 

The ear-brain splits the audio spec-

trum into many narrow bands and  

de ter mines the power present in  

each band. It can easily pick small 

sounds out of loud back ground  

noise thanks in part to its fre quen cy 

domain ca pa bil i ty. A doc tor listens  

to your heart and breath ing for any 

unusual sounds. He is listening for 

frequencies which will tell him  

some thing is wrong. An ex pe ri enced 

mechanic can do the same thing with 

a machine. Using a screw driv er as a 

stethoscope, he can hear when a 

bearing is failing because of the  

frequencies it pro duc es. 

Figure 2.7 

Small signals  

are not hidden  

in the frequency  

domain.

a) Time Domain - small signal not visible

b) Frequency Domain - small signal easily resolved
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So we see that the frequency domain 

is not at all uncommon. We are just 

not used to seeing it in graphical 

form. But this graph i cal presentation 

is really not any strang er than saying 

that the temperature changed with 

time like the displacement of a line  

on a graph. 

 

Spectrum Examples 

Let us now look at a few common sig-

nals in both the time and fre quen cy 

domains. In Figure 2.10a, we see that 

the spectrum of a sine wave is just a 

single line. We expect this from the 

way we con struct ed the frequency 

do main. The square wave in Figure 

2.10b is made up of an in fi nite num-

ber of sine waves, all har mon i cal ly  

re lat ed. The lowest fre quen cy present 

is the re cip ro cal of the square wave 

pe ri od. These two ex am ples il lus trate 

a prop er ty of the frequency trans-

form: a signal which is periodic and 

ex ists for all time has a discrete fre-

quen cy spec trum. This is in con trast 

to the tran sient signal in Figure 2.10c 

which has a con tin u ous spec trum. 

This means that the sine waves that 

make up this signal are spaced  

in fin i tes i mal ly close to geth er. 

Another signal of interest is the  

im pulse shown in Figure 2.10d. The 

frequency spectrum of an impulse is 

flat, i.e., there is en er gy at all fre quen-

cies. It would, there fore, re quire  

infinite energy to generate a true 

impulse. Nev er the less, it is pos si ble 

to generate an approximation to  

an impulse which has a fairly flat 

spectrum over the desired fre quen cy 

range of interest. We will find sig nals 

with a flat spectrum useful in our 

next subject, net work analysis.

Figure 2.10 

Frequency  

spectrum  

ex am ples.
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Network Analysis 

If the frequency domain were  

restricted to the analysis of signal 

spec trums, it would certainly not be 

such a common engineering tool. 

However, the frequency domain is 

also widely used in analyzing the 

behavior of net works (network  

anal y sis) and in design work. 

Network analysis is the general  

en gi neer ing problem of de ter min ing 

how a network will respond to an 

input*.  For instance, we might wish 

to determine how a struc ture will 

behave in high winds. Or we might 

want to know how ef fec tive a sound 

absorbing wall we are plan ning on 

pur chas ing would be in re duc ing  

ma chin ery noise. Or per haps we are 

in ter est ed in the ef fects of a tube of 

saline so lu tion on the trans mis sion of 

blood pres sure wave forms from an 

artery to a mon i tor. 

All of these problems and many more 

are examples of network anal y sis. As 

you can see a “net work” can be any 

system at all. One-port network anal-

ysis is the variation of one parameter 

with respect to an oth er, both mea-

sured at the same point (port) of the 

network. The im ped ance or com pli-

ance of the elec tron ic or me chan i cal 

networks shown in Fig ure 2.11  

are typical ex am ples of one-port 

network anal y sis. 

Figure 2.11 

One-port  

network  

analysis  

examples.

* Network Analysis is sometimes called Stimulus/Response 

Testing. The input is then known as the stimulus or  

excitation and the output is called the response.
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Two-port analysis gives the re sponse 

at a second port due to an input at 

the first port. We are gen er al ly inter-

ested in the trans mis sion and rejec-

tion of signals and in in sur ing the 

integrity of signal trans mis sion. The 

concept of two-port anal y sis can be 

ex tend ed to any num ber of inputs 

and out puts. This is called N-port 

anal y sis, a subject we will use in 

mod al anal y sis later in this chap ter. 

We have deliberately defined net work 

analysis in a very general way. It 

applies to all networks with no  

limitations. If we place one con di tion 

on our network, linearity, we find  

that network analysis becomes a  

very powerful tool. 

Figure 2.12 

Two-port  

network  

analysis.

Fig ure 2.14 

Non-lin ear  

sys tem  

example.

Fig ure 2.15 

Ex am ples of 

non-linearities.

Figure 2.13 

Linear network.

θ2

θ2

θ1

θ1
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When we say a network is linear, we 

mean it behaves like the net work  

in Figure 2.13. Suppose one input 

causes an output A and a second 

input applied at the same port caus es 

an output B. If we apply both inputs 

at the same time to a linear network, 

the output will be the sum of the  

individual outputs, A + B. 

At first glance it might seem that all 

networks would behave in this fash-

ion. A counter example, a non-lin ear 

network, is shown in Figure 2.14. 

Suppose that the first input is a force 

that varies in a sinusoidal man ner. We 

pick its amplitude to ensure that the  

displacement is small enough so that 

the oscillating mass does not quite hit 

the stops. If we add a second identi-

cal input, the mass would now hit the 

stops. In stead of a sine wave with 

twice the amplitude, the output is 

clipped as shown in Figure 2.14b. 

This spring-mass system with stops 

illustrates an important prin ci pal: no 

real system is completely linear. A 

system may be approximately linear 

over a wide range of signals, but 

even tu al ly the assumption of lin ear i ty 

breaks down. Our spring-mass system 

is linear before it hits the stops.  

Like wise, a linear electronic am pli fi er 

clips when the output volt age 

approaches the internal sup ply  

voltage. A spring may com press  

lin ear ly until the coils start pressing 

against each other. 

Other forms of non-linearities are 

also often present. Hysteresis (or 

backlash) is usually present in gear 

trains, loosely riveted joints and in 

magnetic devices. Some times the 

non-linearities are less abrupt and are 

smooth, but non lin ear, curves. The 

torque versus rpm of an en gine or the 

operating curves of a transistor are 

two examples that can be considered 

linear over only small portions of 

their op er at ing regions. 

The important point is not that all 

systems are nonlinear; it is that  

most systems can be ap prox i mat ed 

as linear systems. Often a large  

en gi neer ing effort is spent in making 

the system as linear as practical. This 

is done for two reasons. First, it is  

of ten a design goal for the output of a 

network to be a scaled, linear ver sion 

of the input. A strip chart re cord er  

is a good example. The elec tron ic 

amplifier and pen motor must both be 

designed to ensure that the deflection 

across the paper is linear with the 

applied voltage. 

The second reason why systems are 

linearized is to reduce the prob lem  

of nonlinear instability. One ex am ple 

would be the po si tion ing sys tem 

shown in Figure 2.16. The ac tu al  

position is com pared to the desired 

position and the error is in te grat ed 

and applied to the motor. If the gear 

train has no backlash, it is a straight- 

for ward problem to design this  

sys tem to the desired spec i fi ca tions 

of positioning accuracy and  

re sponse time. 

However, if the gear train has ex ces-

sive backlash, the motor will “hunt,” 

causing the positioning system to 

oscillate around the desired po si tion. 

The solution is either to reduce the 

loop gain and therefore reduce the 

overall per for mance of the sys tem,  

or to re duce the backlash in the  

gear train. Often, reducing the back-

lash is the only way to meet the  

per for mance specifications. 

Figure 2.16 

A positioning  

system.

•
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Analysis of Linear Networks 

As we have seen, many systems are 

designed to be reasonably lin ear to 

meet design spec i fi ca tions. This  

has a fortuitous side benefit when  

at tempt ing to an a lyze networks*. 

Recall that a real signal can be  

con sid ered to be a sum of sine waves. 

Also, recall that the re sponse of a  

linear network is the sum of the  

re spons es to each com po nent of the 

input. There fore, if we knew the  

re sponse of the network to each of 

the sine wave com po nents of the 

input spectrum, we could predict  

the out put.

It is easy to show that the steady-

state response of a linear network  

to a sine wave input is a sine wave  

of the same frequency. As shown in 

Figure 2.17, the am pli tude of the  

output sine wave is proportional to 

the input am pli tude. Its phase is  

shift ed by an amount which depends 

only on the frequency of the sine 

wave. As we vary the frequency of  

the sine wave input, the am pli tude 

pro por tion al i ty factor (gain) changes 

as does the phase of the output.  

If we divide the output of the  

network by the input, we get a  

Figure 2.17 

Linear network  

response to a  

sine wave input.

Fig ure 2.18 

The fre quen cy  

re sponse of  

a net work.

* We will discuss the analysis of networks which  

have not been linearized in Chapter 3, Section 6.
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nor mal ized result called the fre quen-

cy response of the net work. As  

shown in Figure 2.18, the fre quen cy 

response is the gain (or loss) and 

phase shift of the net work as a  

function of fre quen cy. Because the 

network is linear, the frequency 

response is in de pen dent of the input 

am pli tude; the frequency response is 

a property of a linear network, not 

de pen dent on the stimulus. 

The frequency response of a net work 

will generally fall into one of three 

categories; low pass, high pass,  

bandpass or a com bi na tion of these. 

As the names suggest, their frequency 

re spons es have relatively high gain in 

a band of frequencies, allowing these 

fre quen cies to pass through the  

network. Other frequencies suffer a 

relatively high loss and are rejected 

by the network. To see what this 

means in terms of the response of a 

filter to an input, let us look at the 

bandpass filter case. 

Figure 2.19 

Three classes  

of frequency 

 re sponse.
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In Figure 2.20, we put a square wave 

into a bandpass filter. We recall from 

Figure 2.10 that a square wave is 

composed of harmonically related 

sine waves. The frequency response 

of our ex am ple network is shown in  

Figure 2.20b. Because the filter is  

nar row, it will pass only one com po-

nent of the square wave. There fore, 

the steady-state re sponse of this 

bandpass filter is a sine wave. 

Notice how easy it is to predict  

the output of any network from its  

frequency response. The  spectrum  

of the input signal is mul ti plied by the 

frequency re sponse of the network  

to de ter mine the com po nents that 

appear in the output spectrum.  

This fre quen cy domain output can 

then be trans formed back to the  

time do main. 

In contrast, it is very difficult to  

compute in the time domain the out-

put of any but the simplest networks. 

A complicated integral must be evalu-

ated which often can only be done 

numerically on a digital computer*.  

If we com put ed the network response 

by both eval u at ing the time domain 

in te gral and by transforming to the 

frequency domain and back, we 

would get the same results. How ev er, 

it is usually easier to com pute the 

output by trans form ing to the  

frequency domain.

Transient Response 

Up to this point we have only dis-

cussed the steady-state re sponse to a 

signal. By steady-state we mean the 

output after any tran sient responses 

caused by ap ply ing the input have 

died out. How ev er, the frequency 

response of a network also contains 

all the information necessary to  

predict the transient response of the 

net work to any signal. 

Figure 2.20 

Bandpass filter  

response to a  

square wave  

input.

Figure 2.21 

Time response  

of bandpass  

filters.

*  This operation is called convolution.



15

Let us look qualitatively at the tran-

sient response of a bandpass filter. If 

a resonance is narrow compared to 

its frequency, then it is said to be a 

high “Q” res o nance*.  Figure 2.21a 

shows a high Q filter frequency 

response. It has a tran sient response 

which dies out very slowly. A time  

re sponse which decays slowly is said 

to be lightly damped. Figure 2.21b 

shows a low Q resonance. It has a 

transient response which dies out 

quickly. This illustrates a general  

principle: signals which are broad in 

one domain are nar row in the other. 

Narrow, selective filters have very 

long re sponse times, a fact we will 

find important in the next section. 

 
Section 3:  
Instrumentation for  
the Frequency Domain 

Just as the time domain can be  

measured with strip chart recorders, 

oscillographs or oscilloscopes,  

the frequency domain is usually  

measured with spectrum and  

network analyzers. 

Spectrum analyzers are in stru ments 

which are optimized to char ac ter ize 

signals. They in tro duce very little  

distortion and few spurious signals. 

This insures that the signals on the 

display are tru ly part of the input  

signal spectrum, not signals  

introduced by the an a lyz er. 

Network analyzers are optimized to 

give accurate amplitude and phase 

measurements over a wide range of 

network gains and loss es. This design 

difference means that these two  

traditional instrument families are  

not interchangeable.**  A spectrum 

an a lyz er can not be used as a net-

work analyzer because it does not 

measure amplitude accurately and 

cannot measure phase. A net work 

analyzer would make a very poor 

spectrum analyzer because spurious 

responses limit its dynamic range. 

In this section we will develop the 

properties of several types of  

analyzers in these two categories. 

The Parallel-Filter  
Spectrum An a lyz er 

As we developed in Section 2 of  

this chapter, electronic filters can be 

built which pass a narrow band of 

frequencies. If we were to add a 

meter to the output of such a band-

pass filter, we could measure the 

power in the portion of the spectrum 

passed by the filter. In Figure 2.22a 

we have done this for a bank of  

filters, each tuned to a different  

frequency. If the center frequencies  

of these filters are chosen so that  

the filters overlap properly, the  

spectrum covered by the filters can 

be completely characterized as in 

Figure 2.22b. 

Figure 2.22 

Parallel filter  

analyzer.

* Q is usually defined as:

 Q = 
Center Frequency of Resonance 

Frequency Width of  -3 dB Points 

** Dynamic Signal Analyzers are an ex cep tion to this rule,  

they can act as both network and spectrum analyzers.
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How many filters should we use to 

cover the desired spectrum? Here we 

have a trade-off. We would like to be 

able to see close ly spaced spectral 

lines, so we should have a large  

number of filters. However, each  

filter is ex pen sive and becomes more 

ex pen sive as it becomes nar row er,  

so the cost of the analyzer goes up  

as we improve its res o lu tion. Typical 

audio parallel-filter an a lyz ers balance 

these demands with 32 filters, each 

covering 1/3 of an octave. 

Swept Spectrum Analyzer 

One way to avoid the need for such  

a large number of expensive filters is 

to use only one filter and sweep it 

slowly through the fre quen cy range  

of interest. If, as in Figure 2.23, we 

display the output of the filter versus 

the frequency to which it is tuned,  

we have the spectrum of the input 

signal. This swept analysis technique 

is com mon ly used in rf and micro-

wave spectrum anal y sis. 

We have, however, assumed the input 

signal hasn’t changed in the time it 

takes to complete a sweep of our  

analyzer. If energy appears at some 

frequency at a moment when our  

filter is not tuned to that frequency, 

then we will not measure it. 

One way to reduce this problem 

would be to speed up the sweep  

time of our analyzer. We could still 

miss an event, but the time in which 

this could happen would be shorter. 

Unfortunately though, we cannot 

make the sweep arbitrarily fast 

because of the response time of  

our filter.

To understand this problem,  

recall from Section 2 that a filter 

takes a finite time to respond to 

changes in its input. The narrower the 

filter, the longer it takes to respond.  

If we sweep the filter past a signal  

too quickly, the filter output will not 

have a chance to respond fully to the 

signal. As we show in Figure 2.24,  

the spectrum display will then be in 

error; our estimate of the signal level 

will be too low. 

In a parallel-filter spectrum an a lyz er 

we do not have this prob lem. All the 

filters are connected to the input  

signal all the time. Once we have 

waited the initial settling time of a 

single filter, all the fil ters will be  

settled and the spec trum will be valid 

and not miss any transient events. 

So there is a basic trade-off between 

parallel-filter and swept spectrum 

analyzers. The parallel-filter analyzer 

is fast, but has limited resolution and 

is ex pen sive. The swept analyzer  

can be cheap er and have higher  

res o lu tion but the measurement  

takes longer (especially at high  

res o lu tion) and it can not analyze 

transient events*. 

Dynamic Signal Analyzer 

In recent years another kind of  

analyzer has been developed  

which offers the best features of the 

parallel-filter and swept spec trum 

analyzers. Dynamic Sig nal Analyzers 

are based on a high speed calculation 

routine which acts like a parallel  

filter analyzer with hundreds of  

filters and yet are cost-competitive 

with swept spectrum analyzers. In 

* More information on the performance of swept  

spectrum analyzers can be found in Keysight  

Application Note Series 150.

Figure 2.24 

Amplitude  

error form  

sweeping  

too fast.

Figure 2.23 

Simplified  

swept spectrum  

analyzer.
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addition, two channel Dynamic Signal  

Analyzers are in many ways bet ter 

network analyzers than the ones we 

will introduce next. 

Network Analyzers 

Since in network analysis it is  

required to measure both the in put 

and output, network an a lyz ers are 

generally two channel devices with 

the capability of measuring the ampli-

tude ratio (gain or loss) and phase 

dif fer ence between the channels.  

All of the analyzers dis cussed here 

measure frequency response by using 

a sinusoidal input to the network  

and slowly changing its frequency. 

Dynamic Signal Analyzers use a  

different, much faster technique for 

net work analysis which we discuss  

in the next chapter. 

Gain-phase meters are broadband 

devices which measure the am pli tude 

and phase of the input and output 

sine waves of the network. A sinu- 

soidal source must be supplied to 

stimulate the network when using a 

gain-phase meter as in Figure 2.25. 

The source can be tuned manually 

and the gain-phase plots done by 

hand or a sweep ing source, and an  

x-y plot ter can be used for automatic 

fre quen cy response plots. 

The primary attraction of gain-phase 

meters is their low price. If a  

sinusoidal source and a plotter are 

already available, frequency response 

measurements can be made for a very 

low investment. However, because 

gain-phase meters are broadband, 

they mea sure all the noise of the  

network as well as the desired sine 

wave. As the network attenuates the 

input, this noise eventually becomes a 

floor below which the meter cannot 

measure. This typ i cal ly becomes a 

problem with attenuations of about  

60 dB (1,000:1). 

Tuned network analyzers min i mize 

the noise floor problems of gain-

phase meters by including a bandpass 

filter which tracks the source fre-

quency. Figure 2.26 shows how this 

tracking filter virtually eliminates the 

noise and any harmonics to allow  

measurements of attenuation to  

100 dB (100,000:1). 

By minimizing the noise, it is also 

possible for tuned network an a lyz ers 

to make more accurate mea sure-

ments of amplitude and phase. These 

improvements do not come without 

their price, how ev er, as tracking  

filters and a dedicated source must 

be added to the simpler and less  

costly gain-phase meter. 

Figure 2.26 

Tuned net- 

work analyzer 

op er a tion.

Figure 2.25 

Gain-phase  

meter  

operation.
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Tuned analyzers are available in the 

frequency range of a few Hertz to 

many Gigahertz (109 Hertz). If lower 

frequency anal y sis is desired, a  

frequency re sponse analyzer is often 

used. To the operator, it behaves  

exactly like a tuned network analyzer. 

However, it is quite different in side.  

It integrates the sig nals in the time 

domain to effectively filter the signals 

at very low fre quen cies where it is 

not prac ti cal to make filters by more 

con ven tion al techniques. Fre quen cy 

re sponse analyzers are generally lim-

ited to from 1 mHz to about 10 kHz. 

Section 4:  
The Modal Domain 

In the preceding sections we have 

developed the properties of the time 

and frequency domains and the 

instrumentation used in these 

domains. In this section we will 

develop the properties of another 

domain, the modal domain. This 

change in perspective to a new 

domain is particularly useful if we  

are interested in analyzing the  

behavior of mechanical structures. 

To understand the modal domain  

let us begin by analyzing a simple 

mechanical structure, a tuning fork.  

If we strike a tuning fork, we easily 

conclude from its tone that it is pri-

marily vibrating at a single frequency. 

We see that we have excited a  

network (tuning fork) with a force 

impulse (hitting the fork). The time 

domain view of the sound caused  

by the de for ma tion of the fork is a  

lightly damped sine wave shown  

in Fig ure 2.27b. 

In Figure 2.27c, we see in the  

fre quen cy domain that the fre quen cy 

response of the tuning fork has a 

major peak that is very lightly 

damped, which is the tone we hear. 

There are also several small er peaks. 

Figure 2.27 

The vibration  

of a tuning fork.

Figure 2.28 

Example  

vibration modes  

of a tuning fork.
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Each of these peaks, large and small, 

corresponds to a “vibration mode”  

of the tuning fork. For in stance, we 

might expect for this simple example 

that the major tone is caused by the 

vibration mode shown in Figure 

2.28a. The second harmonic might  

be caused by a vibration like  

Figure 2.28b

We can express the vibration of any 

structure as a sum of its vi bra tion 

modes. Just as we can represent a 

real waveform as a sum of much sim-

pler sine waves, we can represent any 

vibration as a sum of much simpler 

vibration modes. The task of “modal” 

anal y sis is to determine the shape 

and the magnitude of the struc tur al 

deformation in each vi bra tion mode. 

Once these are known, it usually 

becomes apparent how to change  

the overall vibration. 

For instance, let us look again at our 

tuning fork example. Suppose that we 

decided that the second harmonic 

tone was too loud. How should we 

change our tuning fork to reduce the 

harmonic? If we had measured the 

vibration of the fork and determined 

that the modes of vibration were 

those shown in Figure 2.28, the 

answer becomes clear. We might 

apply damping material at the center 

of the tines of the fork. This would 

greatly affect the second mode which  

has maximum deflection at the center 

while only slightly af fect ing the 

desired vibration of the first mode. 

Other solutions are pos si ble, but all 

depend on know ing the geometry of 

each mode. 

The Relationship Between 
the Time, Frequency and 
Modal Do main 

To determine the total vibration  

of our tuning fork or any other  

structure, we have to measure the 

vibration at several points on the 

structure. Figure 2.30a shows some 

points we might pick. If we trans- 

formed this time domain data to the 

frequency domain, we would get 

results like Figure 2.30b. We measure 

frequency response because we want 

to mea sure the properties of the 

struc ture independent of the  

stim u lus*. 

Figure 2.29 

Reducing the  

second harmonic  

by damping the  

second vibration  

mode.

Figure 2.30 

Modal analysis  

of a tuning fork.

* Those who are more familiar with electronics might  

note that we have measured the frequency response  

of a network (structure) at N points and thus have 

 performed an N-port Analysis.
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We see that the sharp peaks  

(res o nanc es) all occur at the same  

fre quen cies independent of where 

they are measured on the struc ture. 

Likewise we would find by measuring 

the width of each res o nance that the 

damping (or Q) of each resonance  

is in de pen dent of position. The  

only parameter that varies as we 

move from point to point along the 

struc ture is the relative height of  

resonances.*   By connecting the 

peaks of the resonances of a given 

mode, we trace out the mode shape 

of that mode.

Experimentally we have to mea sure 

only a few points on the struc ture to 

determine the mode shape. However, 

to clearly show the mode shape in 

our figure, we have drawn in the  

frequency re sponse at many more 

points in Figure 2.31a. If we view this 

three-dimensional graph along the 

distance axis, as in Figure 2.31b, we 

get a combined frequency re sponse. 

Each resonance has a peak value cor-

responding to the peak displacement 

in that mode. If we view the graph 

along the frequency axis, as in Figure 

2.31c, we can see the mode shapes of 

the structure. 

We have not lost any information by 

this change of perspective. Each 

vibration mode is char ac ter ized by its 

mode shape, frequency and damping 

from which we can reconstruct the 

frequency domain view. 

However, the equivalence between 

the modal, time and frequency 

domains is not quite as strong as  

that between the time and frequency 

domains. Because the modal domain 

portrays the properties of the net-

work in de pen dent of the stimulus, 

trans form ing back to the time domain 

gives the impulse response of the 

structure, no matter what the stim u-

lus. A more important lim i ta tion of 

this equivalence is that curve fitting  

is used in trans form ing from our  

frequency re sponse measurements to 

the mod al do main to minimize the 

effects of noise and small ex per i men-

tal er rors. No information is lost in 

this curve fitting, so all three domains 

contain the same information, but not 

the same noise. Therefore, transform-

ing from the frequency domain to the 

modal domain and back again will 

give results like those in Figure 2.32. 

The results are not exactly the same, 

yet in all the important features, the 

fre quen cy responses are the same. 

This is also true of time domain data 

derived from the modal do main. 

Figure 2.31 

The relationship  

between the  

fre quen cy and  

the modal  

domains.

* The phase of each resonance is not shown for clarity of  

the figures but it too is important in the mode shape. The 

magnitude of the frequency response gives the magnitude  

of the mode shape while the phase gives the direction of  

the deflection.
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Section 5:  
Instrumentation for  
the Modal Do main 

There are many ways that the modes 

of vibration can be de ter mined. In our 

simple tuning fork example we could 

guess what the modes were. In simple 

struc tures like drums and plates it is 

pos si ble to write an equation for the 

modes of vibration. However, in 

almost any real problem, the solution 

can neither be guessed nor solved 

analytically because the structure is 

too complicated. In these cases it is 

necessary to mea sure the response  

of the struc ture and determine  

the modes. 

There are two basic techniques for 

determining the modes of vibration  

in complicated struc tures: 1) exciting 

only one mode at a time, and 2)  

computing the modes of vibration 

from the total vi bra tion.

Single Mode Excitation  
Modal Analysis 

To illustrate single mode ex ci ta tion, 

let us look once again at our simple 

tuning fork example. To excite just 

the first mode we need two shakers, 

driven by a sine wave and attached  

to the ends of the tines as in Figure 

2.33a. Varying the frequency of the 

gen er a tor near the first mode res o-

nance fre quen cy would then give  

us its fre quen cy, damping and  

mode shape. 

In the second mode, the ends of the 

tines do not move, so to ex cite the 

second mode we must move the 

shakers to the center of the tines.  

If we anchor the ends of the tines,  

we will constrain the vibration to the  

second mode alone. 

Figure 2.32 

Curve fitting  

removes  

measurement  

noise.

Figure 2.33 

Single mode  

excitation  

modal analysis.
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In more realistic, three di men sion al 

problems, it is necessary to add many 

more shakers to ensure that only one 

mode is excited. The difficulties and 

expense of testing with many shakers 

has limited the application of this  

tra di tion al modal analysis tech nique. 

Modal Analysis From  
Total Vi bra tion 

To determine the modes of vi bra tion 

from the total vibration of the  

structure, we use the techniques 

developed in the previous section. 

Basically, we determine the fre quen cy 

response of the structure at several 

points and compute at each reso-

nance the frequency, damping and 

what is called the residue (which  

represents the height of the reso-

nance). This is done by a curve-fitting 

routine to smooth out any noise or 

small ex per i men tal errors. From 

these mea sure ments and the geome-

try of the structure, the mode shapes 

are computed and drawn on a CRT 

display or a plotter. If drawn on a 

CRT, these displays may be animated 

to help the user un der stand the  

vibration mode. 

From the above description, it is 

apparent that a modal analyzer 

requires some type of network  

analyzer to measure the frequency  

re sponse of the structure and a  

computer to convert the fre quen cy 

response to mode shapes. This can  

be accomplished by connecting a 

Dynamic Signal Analyzer through  

a digital in ter face* to a computer  

furnished with the appropriate soft-

ware. This ca pa bil i ty is also avail able  

in a single instrument called a Struc-

tur al Dy nam ics Analyzer. In gen er al, 

com put er systems offer more versa-

tile performance since they can be 

programmed to solve other prob lems. 

However, Struc tur al Dy nam ics 

Analyzers gen er al ly are much easier 

to use than com put er systems. 

Section 6: Summary 

In this chapter we have developed  

the concept of looking at prob lems 

from different perspectives. These 

perspectives are the time, fre quen cy 

and modal domains. Phenomena that 

are confusing in the time domain are 

often clar i fied by changing perspec-

tive to another do main. Small signals  

are easily resolved in the pres ence of 

large ones in the fre quen cy do main. 

The frequency domain is also valu-

able for pre dict ing the output of any 

kind of linear net work. A change to 

the modal do main breaks down  

com pli cat ed structural vibration 

prob lems into simple vibration 

modes. 

No one domain is always the best 

answer, so the ability to easily change 

domains is quite valuable. Of all the 

instrumentation avail able today, only 

Dynamic Signal Analyzers can work 

in all three domains. In the next  

chapter we develop the properties  

of this important class of analyzers.

Figure 2.34 

Measured  

mode shape.

*  GPIB, Keysight’s im ple men ta tion of  

IEEE-488-1975 is ideal for this application.
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We saw in the previous chapter that 

the Dy nam ic Signal Analyzer has the 

speed advantages of par al lel-filter 

analyzers without their low res o lu tion 

limitations. In addition, it is the only 

type of analyzer that works in all 

three do mains. In this chapter we will 

de vel op a fuller un der stand ing of this 

important analyzer family, Dy nam ic 

Signal Analyzers. We begin by pre-

senting the properties of the Fast 

Fourier Transform (FFT) upon which 

Dynamic Sig nal Analyzers are based. 

No proof of these properties is given, 

but heuristic arguments as to their 

va lid i ty are used where ap pro pri ate. 

We then show how these FFT proper-

ties cause some un de sir able charac-

teristics in spectrum analysis like 

aliasing and leakage. Having dem on-

strat ed a potential difficulty with the 

FFT, we then show what so lu tions  

are used to make practical Dynamic 

Sig nal An a lyz ers. Developing this basic 

knowl edge of FFT char ac ter is tics 

makes it simple to get good results 

with a Dynamic Signal An a lyz er in a 

wide range of measurement problems. 

Section 1: FFT Properties 

The Fast Fourier Transform (FFT)  

is an al go rithm* for transforming  

data from the time do main to the fre-

quency domain. Since this is ex act ly 

what we want a spectrum analyzer to 

do, it would seem easy to implement 

a Dynamic Signal Analyzer based  

on the FFT. However, we will see  

that there are many factors which 

com pli cate this seemingly  

straightforward task. 

First, because of the many cal cu la-

tions involved in trans form ing 

domains, the transform must be 

implemented on a digital com put er if 

the results are to be  sufficiently accu-

rate. Fortunately, with the advent of 

mi cro pro ces sors, it is easy and inex-

pensive to incorporate all the needed 

com put ing power in a small in stru-

ment package. Note, however, that 

we cannot now transform to the  

fre quen cy domain in a con tin u ous 

manner, but instead must sample and 

digitize the time domain input. This 

means that our al go rithm transforms 

digitized sam ples from the time do-

main to samples in the frequency 

domain as shown in Figure 3.1.** 

Because we have sampled, we no lon-

ger have an exact rep re sen ta tion in 

either domain. How ev er, a sampled 

representation can be as close to 

ideal as we de sire by plac ing our  

samples clos er to geth er. Later in  

this chapter, we will con sid er what 

sample spac ing is necessary to  

guarantee ac cu rate results. 

Chapter 3  
Understanding Dynamic Signal Analysis

Figure 3.1 

The FFT sam ples 

in both the time  

and fre quen cy  

domains.

Figure 3.2 

A time record  

is N equal ly  

spaced sam ples  

of the input.

* An algorithm is any special mathematical method of  

solving a certain kind of problem; e.g., the technique  

you use to balance your checkbook. 

** To reduce confusion about which domain we are in,  

samples in the frequency domain are called lines.
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A time record is defined to be N  

consecutive, equally spaced sam ples 

of the input. Because it makes our 

transform algorithm sim pler and 

much faster, N is restricted to be  

a multiple of 2, for instance 1024. 

As shown in Figure 3.3, this time 

record is trans formed as a com plete 

block into a complete block of  

frequency lines. All the sam ples of  

the time record are need ed to  

compute each and every line in the 

frequency do main. This is in con trast 

to what one might expect, namely 

that a single time domain sample 

trans forms to ex act ly one fre quen cy 

domain line. Un der stand ing this block 

pro cess ing property of the FFT is  

cru cial to un der stand ing many of  

the prop er ties of the Dynamic  

Sig nal Analyzer. 

For instance, because the FFT  

transforms the entire time record 

block as a to tal, there cannot be  

valid frequency domain results until  

a com plete time record has been 

gathered. However, once completed, 

the oldest sample could be dis card ed, 

all the sam ples shifted in the time 

record, and a new sample added to 

the end of the time record as in 

Figure 3.4. Thus, once the time record 

is ini tial ly filled, we have a new time 

record at every time domain sample 

and there fore could have new valid 

results in the fre quen cy domain at 

every time domain sample. 

This is very similar to the be hav ior of 

the par al lel-filter analyzers described 

in the previous chap ter. When a signal 

is first applied to a par al lel-filter ana-

lyzer, we must wait for the filters to 

respond, then we can see very rapid 

chang es in the frequency domain. 

With a Dynamic Signal Analyzer we 

do not get a valid result until a full 

time record has been gath ered. Then 

rapid chang es in the spec tra can  

be seen. 

It should be noted here that a new 

spectrum ev ery sample is usually too 

much information, too fast. This 

would often give you thou sands of 

transforms per second. Just how fast 

a Dynamic Signal Analyzer should 

transform is a subject better left to 

the sections in this chapter on real 

time band width and overlap  

pro cess ing. 

Figure 3.3 

The FFT works  

on blocks  

of data.

Figure 3.4 

A new time  

record ev ery  

sam ple af ter  

the time record  

is filled.

Time Records
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How Many Lines are There? 

We stated earlier that the time  

record has N equally spaced sam ples. 

Another property of the FFT is that  

it transforms these time domain  

samples to N/2 equal ly spaced lines  

in the fre quen cy domain. We only  

get half as many lines because each 

fre quen cy line actually contains two 

pieces of information, am pli tude and 

phase. The mean ing of this is most 

easily seen if we look again at the 

relationship between the time and 

frequency domain. 

Figure 3.5 reproduces from Chap ter 2 

our three-dimensional graph of this 

re la tion ship. Up to now we have 

implied that the am pli tude and  

frequency of the sine waves contains 

all the information nec es sary to  

re con struct the input. But it should 

be obvious that the phase of each  

of these sine waves is important too. 

For instance, in Figure 3.6, we have 

shifted the phase of the higher  

fre quen cy sine wave components  

of this signal. The result is a severe 

distortion of the original wave form. 

We have not discussed the phase 

information contained in the  

spec trum of sig nals until now 

because none of the traditional  

spec trum analyzers are capable of 

mea sur ing phase. When we discuss 

mea sure ments in Chapter 4, we shall 

find that phase contains valuable 

information in determining the  

cause of per for mance problems. 

What is the Spacing  
of the Lines?

Now that we know that we have N/2 

equally spaced lines in the frequency 

domain, what is their spacing? The 

lowest frequency that we can resolve 

with our FFT spectrum analyzer must 

be based on the length of the time 

record. We can see in Figure 3.7 that 

if the period of the input signal is lon-

ger than the time record, we have no 

way of determining the period (or fre-

quency, its reciprocal). Therefore, the 

lowest fre quen cy line of the FFT must 

oc cur at frequency equal to the re cip-

ro cal of the time record length. 

Figure 3.5 

The re la tion ship  

be tween the time  

and fre quen cy  

domains.

Figure 3.6 

Phase of  

frequency domain  

com po nents is  

important.
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In addition, there is a frequency line 

at zero Hertz, DC. This is mere ly the 

average of the input over the time 

record. It is rarely used in spectrum 

or network anal y sis. But, we have 

now es tab lished the spacing between 

these two lines and hence every line; 

it is the reciprocal of the time record. 

What is the Frequency 
Range of the FFT? 

We can now quickly determine that 

the highest frequency we can  

measure is: 

 

fmax  =      ● 

 

because we have N/2 lines spaced  

by the reciprocal of the time record 

starting at zero Hertz *. 

Since we would like to adjust the fre-

quency range of our mea sure ment, 

we must vary fmax. The num ber of 

time samples N is fixed by the imple-

mentation of the FFT algorithm. 

Therefore, we must vary the period of 

the time record to vary fmax.  To do 

this, we must vary the sample rate so 

that we always have N samples in our 

vari able time record period. This is 

illustrated in Figure 3.9. Notice that 

to cover higher fre quen cies, we must 

sample faster. 

*  The usefulness of this frequency range can be limited by the 

problem of aliasing. Aliasing is discussed in Section 3.

Figure 3.7 

Low est fre quen cy  

re solv able by  

the FFT.

Time

Time

A
m

p
lit
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d
e

Period of input signal longer than the time record.

Frequency of the input signal is unknown..

b)

Time Record

Time Record

Period of input signal equals time record.

Lowest resolvable frequency.

a)

??

Figure 3.8 

Fre quen cies of  

all the spec tral 

lines of the FFT.

Figure 3.9 

Fre quen cy range  

of Dy nam ic Sig nal  

An a lyz ers is  

de ter mined by  

sample rate.

 N  1   

 2 Period of Time Record
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Section 2*:  
Sampling and Digitizing 

Recall that the input to our Dynamic 

Signal Analyzer is a continuous  

analog voltage. This volt age might  

be from an elec tron ic circuit or could 

be the output of a transducer and be  

proportional to current, power,  

pres sure, ac cel er a tion or any num ber 

of other inputs. Recall also that the 

FFT requires dig i tized sam ples of the 

input for its digital cal cu la tions. 

Therefore, we need to add a sam pler 

and analog to digital con vert er (ADC) 

to our FFT pro ces sor to make a spec-

trum analyzer. We show this basic 

block diagram in Figure 3.10. 

For the analyzer to have the high 

accuracy needed for many mea sure-

ments, the sampler and ADC must be 

quite good. The sam pler must sample 

the input at exactly the correct time 

and must ac cu rate ly hold the input 

voltage measured at this time until 

the ADC has finished its conversion. 

The ADC must have high res o lu tion 

and linearity. For 70 dB of dy nam ic 

range the ADC must have at least  

12 bits of resolution and one half 

least significant bit lin ear i ty. 

A good Digital Voltmeter (DVM) will 

typically exceed these specifications, 

but the ADC for a Dy nam ic Signal 

Analyzer must be much faster than 

typical fast DVM’s. A fast DVM might 

take a thousand readings per second, 

but in a typical Dynamic Signal  

An a lyz er the ADC must take at  

least a hundred thousand readings 

per second. 

 
Section 3: Aliasing 

The reason an FFT spectrum  

analyzer needs so many samples per 

second is to avoid a problem called 

aliasing. Aliasing is a potential prob-

lem in any sampled data system. It is 

often over looked, sometimes with  

disastrous results. 

A Simple Data Logging  
Example of Aliasing 

Let us look at a simple data log ging 

example to see what aliasing is and 

how it can be avoided. Con sid er the 

example for re cord ing temperature 

shown in Figure 3.12. A thermocouple 

is connected to a digital voltmeter 

which is in turn connected to a print-

er. The sys tem is set up to print the 

tem per a ture every second. What 

would we expect for an output? 

If we were measuring the tem per a-

ture of a room which only changes 

slowly, we would expect every  

reading to be almost the same as the 

previous one. In fact, we are sampling 

much more often than necessary to 

determine the temperature of the 

room with time. If we plotted the 

results of this “thought experiment”, 

we would expect to see results like 

Figure 3.13. 

Figure 3.10 

Block di a gram  

of dy nam ic  

Signal Analyzer.

Figure 3.11 

The Sam pler  

and ADC must  

not in tro duce  

errors.

Fig ure 3.13 

Plot of  

tem per a ture  

vari a tion  

of a room.

Fig ure 3.12 

A sim ple  

sampled  

data sys tem.

*  This section and the next can be skipped by those not inter-

ested in the internal operation of a Dynamic Signal Analyzer. 

However, those who specify the purchase of Dynamic Signal 

Analyzers are especially encouraged to read these sections. 

The basic knowledge to be gained from these sections can 

insure specifying the best analyzer for your requirements.
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The Case of the  
Missing Tem per a ture 

If, on the other hand, we were  

measuring the temperature of a  

small part which could heat and cool 

rapidly, what would the output be?  

Suppose that the temperature of  

our part cycled ex act ly once every 

second. As shown in Figure 3.14, our 

print out says that the temperature 

nev er chang es. 

What has happened is that we have 

sampled at exactly the same point on 

our periodic temperature cycle with 

every sample. We have not sampled 

fast enough to see the temperature 

fluctuations. 

Aliasing in the  
Frequency Domain 

This completely erroneous result is 

due to a phenomena called aliasing.* 

Aliasing is shown in the frequency 

domain in Figure 3.15. Two signals 

are said to alias if the difference of 

their frequencies falls in the frequen-

cy range of in ter est. This difference 

fre quen cy is always generated in the 

process of sampling. In Figure 3.15, 

the input frequency is slightly higher 

than the sampling frequency so a low 

frequency alias term is gen er at ed. If 

the input frequency equals the sam-

pling frequency as in our small part 

example, then the alias term falls at 

DC (zero Hertz) and we get the  

constant output that we saw above. 

Aliasing is not always bad. It is  

called mixing or heterodyning in  

analog electronics, and is com mon ly 

used for tuning household radios and 

televisions as well as many other 

communication prod ucts. However, 

in the case of the missing tempera-

ture variation of our small part, we 

definitely have a problem. How can 

we guarantee that we will avoid this 

problem in a measurement situation? 

Figure 3.16 shows that if we sam ple 

at greater than twice the highest  

frequency of our input, the alias  

products will not fall with in the  

frequency range of our input. 

Therefore, a filter (or our FFT  

processor which acts like a filter) 

after the sampler will remove the 

alias products while passing the 

desired input signals if the sample 

rate is greater than twice the highest 

frequency of the input. If the sample 

rate is lower, the alias products will 

fall in the frequency range of the 

input and no amount of filtering  

will be able to remove them from  

the signal. 

Figure 3.14 

Plot of temperature  

vari a tion of a  

small part.

Figure 3.15 

The prob lem  

of aliasing  

viewed in the  

fre quen cy  

domain.

* Aliasing is also known as fold-over or mixing.
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This minimum sample rate require- 

ment is known as the Nyquist 

Criterion. It is easy to see in the time 

domain that a sam pling frequency 

exactly twice the input frequency 

would not always be enough. It is less 

ob vi ous that slightly more than two 

samples in each period is suf fi cient 

in for ma tion. It certainly would not  

be enough to give a high quality time 

display. Yet we saw in Figure 3.16 that 

meeting the Nyquist Criterion of a 

sample rate greater than twice the 

max i mum input fre quen cy is suffi-

cient to avoid aliasing and preserve 

all the information in the input sig nal. 

The Need for an  
Anti-Alias Filter 

Unfortunately, the real world rare ly 

restricts the frequency range of its 

signals. In the case of the room  

temperature, we can be reasonably 

sure of the maximum rate at which 

the temperature could change, but  

we still can not rule out stray signals. 

Signals in duced at the powerline  

fre quen cy or even local radio stations 

could alias into the desired frequency 

range. The only way to be really  

certain that the input frequency range 

is limited is to add a low pass filter 

before the sampler and ADC. Such a 

filter is called an anti-alias filter. 

An ideal anti-alias filter would look 

like Figure 3.18a. It would pass all  

the desired input fre quen cies with no 

loss and completely reject any higher 

frequencies which otherwise could 

alias into the input frequency range. 

How ev er, it is not even theoretically 

possible to build such a filter, much 

less practical. Instead, all real filters 

look something like Figure 3.18b with 

a gradual roll off and finite rejection 

of un des ired signals. Large input  

signals which are not well attenuated 

in the transition band could still alias 

into the desired input fre quen cy 

Figure 3.16 

A fre quen cy  

do main view  

of how to avoid  

aliasing - sam ple  

at great er than  

twice the high est  

in put frequency.

Figure 3.18 

Actual anti-alias  

fil ters re quire  

high er sam pling  

frequencies.

Figure 3.17 

Nyquist  

Criterion in the  

time domain.



30

range. To avoid this, the sampling fre-

quency is raised to twice the highest 

frequency of the transition band. This 

guar an tees that any signals which 

could alias are well attentuated by 

the stop band of the filter. Typically, 

this means that the sample rate is 

now two and a half to four times the 

maximum desired input fre quen cy. 

Therefore, a 25 kHz FFT Spectrum 

Analyzer can require an ADC that 

runs at 100 kHz as we stated without 

proof in Section 2 of this Chapter*. 

The Need for More Than One  
Anti-Alias Filter 

Recall from Section 1 of this Chap ter, 

that due to the prop er ties of the FFT 

we must vary the sample rate to vary 

the frequency span of our analyzer. 

To reduce the frequency span, we 

must reduce the sample rate. From  

our considerations of aliasing, we 

now realize that we must also re duce 

the anti-alias filter fre quen cy by the 

same amount. 

Since a Dynamic Signal Analyzer is  

a very versatile instrument used in  

a wide range of applications, it is 

desirable to have a wide range of  

frequency spans available. Typ i cal 

instruments have a min i mum span of 

1 Hertz and a max i mum of tens to 

hundreds of ki lo hertz. This four 

decade range typ i cal ly needs to be 

covered with at least three spans per 

decade. This would mean at least 

twelve anti-alias filters would be 

required for each channel. 

Each of these filters must have  

very good performance. It is de sir able 

that their transition bands be as  

narrow as possible so that as many 

lines as possible are free from alias 

products. Ad di tion al ly, in a two  

channel an a lyz er, each filter pair  

must be well matched for accurate 

network analysis mea sure ments. 

These two points unfortunately mean 

that each of the filters is ex pen sive. 

Taken together they can add sig nif i-

cant ly to the price of the analyzer. 

Some manufacturers don’t have a  

low enough fre quen cy anti-alias filter 

on the lowest frequency spans to save 

some of this ex pense. (The lowest 

frequency filters cost the most of all.) 

But as we have seen, this can lead to 

prob lems like our “case of the  

missing temperature”. 

Digital Filtering 

Fortunately, there is an al ter na tive 

which is cheaper and when used in 

conjunction with a single analog anti-

alias filter, always provides aliasing 

protection. It is called digital filtering 

because it filters the input signal after 

we have sampled and digitized it. To 

see how this works, let us look at 

Figure 3.19. 

In the analog case we already  

discussed, we had to use a new  

filter every time we changed the  

sam ple rate of the Analog to Dig i tal 

Converter (ADC). When using digital 

filtering, the ADC sample rate is left 

constant at the rate needed for the 

highest frequency span of the analyz-

er. This means we need not change 

our anti-alias filter. To get the reduced 

sample rate and filtering we need for 

the narrower fre quen cy spans, we  

follow the ADC with a digital filter. 

This digital filter is known as a  

decimating filter. It not only filters  

the digital representation of the signal 

to the desired fre quen cy span, it also 

reduces the sample rate at its output 

to the rate needed for that frequency 

span. Because this filter is digital, 

there are no manufacturing vari a-

tions, aging or drift in the filter. 

Therefore, in a two channel an a lyz er 

the filters in each channel are identi-

cal. It is easy to design a single digital 

filter to work on many frequency 

spans so the need for multiple filters 

per channel is avoided. All these  

factors taken together mean that  

digital fil ter ing is much less expen-

sive than analog anti-aliasing filtering. 

Figure 3.19 

Block di a grams  

of an a log and  

dig i tal filtering.

*  Unfortunately, because the spacing of the FFT lines  

depends on the sample rate, increasing the sample rate 

decreases the number of lines that are in the desired  

frequency range. Therefore, to avoid aliasing problems 

Dynamic Signal Analyzers have only .25N to .4N lines  

instead of N/2 lines.
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Section 4:  
Band Se lect able Analysis 

Suppose we need to measure a small 

signal that is very close in frequency 

to a large one. We might be measur-

ing the powerline sidebands (50 or  

60 Hz) on a 20 kHz oscillator. Or we 

might want to distinguish between 

the stator vibration and the shaft im- 

balance in the spectrum of a mo tor.*

Recall from our discussion of  

the properties of the Fast Fourier 

Trans form that it is equivalent to a  

set of filters, starting at zero Hertz, 

equally spaced up to some max i mum 

frequency. Therefore, our frequency 

resolution is lim it ed to the maximum 

fre quen cy divided by the number  

of filters. 

To just resolve the 60 Hz side bands 

on a 20 kHz oscillator signal would 

require 333 lines (or filters) of the 

FFT. Two or three times more lines 

would be re quired to accurately  

measure the sidebands. But typical 

Dy nam ic Signal Analyzers only have 

200 to 400 lines, not enough for  

accurate mea sure ments. To increase 

the number of lines would greatly  

in crease the cost of the analyzer. If 

we chose to pay the extra cost, we 

would still have trouble seeing the 

results. With a 4 inch (10 cm) screen, 

the side bands would be only 0.01 inch 

(.25 mm) from the carrier. 

A better way to solve this prob lem  

is to concentrate the filters into the 

frequency range of in ter est as in 

Figure 3.20. If we select the minimum 

frequency as well as the maximum 

frequency of our filters we can “zoom 

in” for a high resolution close-up shot 

of our frequency spectrum. We now 

have the capability of looking at the 

entire spectrum at once with low  

resolution as well as the ability to 

look at what interests us with much 

higher resolution. 

This capability of increased res o lu-

tion is called Band Se lect able 

Analysis (BSA).** It is done by mix ing 

or heterodyning the input sig nal 

down into the range of the FFT span 

selected. This tech nique, familiar to 

electronic engineers, is the process 

by which radios and televisions  

tune in sta tions. 

The primary difference between the 

implementation of BSA in Dynamic 

Signal Analyzers and het ero dyne  

radios is shown in Figure 3.21. In a 

radio, the sine wave used for mixing 

is an analog volt age. In a Dynamic 

Signal An a lyz er, the mixing is done 

after the input has been digitized, so 

the “sine wave” is a series of digital 

numbers into a digital multiplier.  

This means that the mixing will be 

done with a very accurate and stable 

digital signal so our high resolution 

display will likewise be very stable 

and accurate. 

*  The shaft of an ac induction motor always runs at a rate 

slightly lower than a multiple of the driven frequency, an 

effect called slippage.

**  Also sometimes called “zoom”.

Figure 3.20 

High res o lu tion  

mea sure ments  

with Band  

Se lect able  

Analysis.

Figure 3.21 

Analyzer block  

diagram.
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Section 5: Windowing 

The Need for Windowing 

There is another property of the Fast 

Fourier Transform which affects its 

use in frequency do main analysis.  

We recall that the FFT computes the 

frequency spec trum from a block of 

samples of the input called a time 

record. In addition, the FFT algorithm 

is based upon the assumption that 

this time record is repeated through-

out time as illustrated in Figure 3.22. 

This does not cause a problem with 

the transient case shown. But what 

happens if we are mea sur ing a contin-

uous signal like a sine wave?  If the 

time record con tains an integral  

number of cycles of the input sine 

wave, then this assumption exactly 

match es the actual input wave form  

as shown in Figure 3.23. In this case, 

the input waveform is said to be  

periodic in the time record. 

Figure 3.24 demonstrates the  

dif fi cul ty with this assumption  

when the input is not periodic in the 

time record. The FFT al go rithm is 

computed on the basis of the high ly 

distorted waveform in Figure 3.24c. 

We know from Chapter 2 that  

the actual sine wave input has a  

fre quen cy spectrum of single line. 

The spectrum of the input as sumed 

by the FFT in Figure 3.24c should be Figure 3.24 

Input sig nal  

not pe ri od ic  

in time record.

Figure 3.22 

FFT as sump tion -  

time record  

re peat ed  

throughout  

all time.

Figure 3.23 

Input sig nal  

pe ri od ic in time  

record.
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very different. Since sharp phenome-

na in one domain are spread out in 

the other domain, we would expect 

the spec trum of our sine wave to be 

spread out through the frequency 

domain. 

In Figure 3.25 we see in an actual 

measurement that our ex pec ta tions 

are correct. In Figures 3.25 a & b, we 

see a sine wave that is periodic in the 

time record. Its frequency spectrum  

is a single line whose width is deter-

mined only by the resolution of our  

Dynamic Signal Analyzer.* On the 

other hand, Figures 3.25c & d show  

a sine wave that is not pe ri od ic in  

the time record. Its power has been 

spread through out the spectrum as 

we predicted. 

This smearing of energy through out 

the frequency domains is a phenome-

na known as leakage. We are seeing 

energy leak out of one resolution line 

of the FFT into all the other lines. 

It is important to realize that leak age 

is due to the fact that we have taken 

a finite time record. For a sine wave 

to have a single line spectrum, it must 

exist for all time, from minus infinity 

to plus infinity. If we were to have  

an in fi nite time record, the FFT 

would compute the correct single  

line spectrum exactly. However, since 

we are not willing to wait forever to 

measure its spectrum, we only look  

at a finite time record of the sine 

wave. This can cause leakage if the 

continuous input is not periodic in 

the time record. 

It is obvious from Figure 3.25 that the 

problem of leakage is severe enough 

to entirely mask small signals close  

to our sine waves. As such, the FFT 

would not be a very useful spectrum 

analyzer. The solution to this problem 

is known as windowing. The prob-

lems of leakage and how to solve 

them with windowing can be the 

most confusing concepts of Dy nam ic 

Signal Analysis. There fore, we will 

now carefully develop the problem 

and its solution in sev er al representa-

tive cases. 

*  The additional two components in the photo are the  

harmonic distortion of the sine wave source.

Figure 3.25 

Actual FFT results.

b)

a) & b) Sine wave periodic in time record

d)

c) & d) Sine wave not periodic in time record

a)

c)
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What is Windowing? 

In Figure 3.26 we have again repro-

duced the assumed input wave form 

of a sine wave that is not periodic in 

the time record. No tice that most of 

the problem seems to be at the edges 

of the time record, the center is a 

good sine wave. If the FFT could  

be made to ignore the ends and con-

cen trate on the middle of the time 

record, we would expect to get much 

closer to the correct single line  

spectrum in the frequency domain. 

If we multiply our time record by  

a function that is zero at the ends  

of the time record and large in the 

middle, we would concentrate the 

FFT on the middle of the time record. 

One such function is shown in Figure 

3.26c. Such func tions are called  

window functions because they  

force us to look at data through a  

narrow window. 

Figure 3.27 shows us the vast  

improvement we get by windowing 

data that is not pe ri od ic in the time 

record. However, it is im por tant to 

realize that we have tam pered with 

the input data and can not expect  

perfect results. The FFT assumes the 

input looks like Figure 3.26d, some-

thing like an amplitude-modulated 

sine wave. This has a frequency  

spectrum which is closer to the  

cor rect sin gle line of the input sine 

wave than Figure 3.26b, but it still is 

not correct. Figure 3.28 dem on strates 

that the windowed data does not 

have as narrow a spec trum as an 

unwindowed function which is  

periodic in the time record.

Figure 3.26 

The ef fect of  

windowing in  

the time do main.

Figure 3.27 

Leakage re duc tion  

with windowing.

a) Sine wave not periodic in time record b) FFT results with no window function

c) FFT results with a window function
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The Hanning Window 

Any number of functions can be used 

to window the data, but the most 

common one is called Hanning. We 

actually used the Hanning window in 

Figure 3.27 as our example of leakage 

reduction with windowing. The 

Hanning window is also commonly 

used when measuring random noise. 

The Uniform Window* 

We have seen that the Hanning  

window does an acceptably good  

job on our sine wave examples, both 

periodic and non-periodic in the time 

record. If this is true, why should we 

want any other windows? 

Suppose that instead of wanting the 

frequency spectrum of a con tin u ous 

signal, we would like the spectrum  

of a transient event. A typical tran-

sient is shown in Fig ure 3.29a. If we 

multiplied it by the window function 

in Figure 3.29b we would get the 

highly distorted signal shown in 

Figure 3.29c. The frequency spectrum  

of an actual transient with and with-

out the Hanning window is shown in 

Fig ure 3.30. The Hanning win dow has 

taken our transient, which naturally 

has en er gy spread wide ly through the 

frequency do main and made it look 

more like a sine wave. 

Therefore, we can see that for  

transients we do not want to use  

the Hanning window. We would  

like to use all the data in the time 

record equally or uniformly. Hence 

we will use the Uniform window 

which weights all of the time  

record uniformly. 

The case we made for the Uniform 

window by looking at tran sients  

can be generalized. Notice that our 

transient has the prop er ty that it is 

zero at the beginning and end of the 

time record. Remember that we in tro-

duced windowing to force the in put 

to be zero at the ends of the time 

record. In this case, there is no need 

for windowing the input. Any func-

tion like this which does not re quire a 

window because it occurs completely 

within the time record is called a self- 

windowing func tion. Self-windowing 

func tions generate no leakage in the 

FFT and so need no window. 

*  The Uniform Window is sometimes referred to as a 

“Rectangular Window”.

Figure 3.28 

Windowing re duc es  

leakage but does  

not elim i nate it.

b)  Windowed measurement - input not periodic 

in time record

a)  Leakage-free measurement - input periodic  

in time record

Figure 3.29 

Windowing loses  

in for ma tion from  

tran sient events.

Figure 3.30 

Spectrums  

of transients.

b) Hanning windowed transientsa) Unwindowed trainsients



36

There are many examples of self- 

windowing functions, some of which 

are shown in Figure 3.31. Impacts, 

impulses, shock re spons es, sine 

bursts, noise bursts, chirp bursts and 

pseudo-random noise can all be made 

to be self-windowing. Self-windowing 

func tions are often used as the ex ci-

ta tion in measuring the fre quen cy 

response of networks, particularly 

 if the network has light ly-damped 

resonances (high Q). This is be cause 

the self-windowing func tions generate 

no leakage in the FFT. Recall that even 

with the Hanning window, some leak-

age was present when the signal was 

not periodic in the time record. This 

means that with out a self-windowing 

ex ci ta tion, energy could leak from  

a light ly damped resonance into  

adjacent lines (fil ters). The re sulting 

spectrum would show greater damp-

ing than actually exists.* 

The Flat-top Window 

We have shown that we need a  

uniform window for analyzing self- 

windowing functions like tran sients. 

In addition, we need a Hanning  

window for measuring noise and  

periodic signals like sine waves. 

We now need to introduce a third 

window function, the flat-top win dow, 

to avoid a subtle effect of the 

Hanning window. To un der stand  

this effect, we need to look at the 

Hanning window in the fre quen cy 

domain. We recall that the FFT acts 

like a set of parallel fil ters. Figure 

3.32 shows the shape of those filters 

when the Hanning window is used. 

Notice that the Hanning function 

gives the filter a very rounded top. 

If a component of the input signal  

is centered in the filter it will be  

measured ac cu rate ly**. Oth er wise, 

the filter shape will at ten u ate the 

com po nent by up to 1.5 dB (16%) 

when it falls midway between  

the filters. 

This error is unacceptably large if  

we are trying to measure a sig nal’s 

amplitude accurately. The solution is 

to choose a window function which 

gives the filter a flatter passband. Such 

a flat-top passband shape is shown in 

Figure 3.33. The amplitude error from 

this window function does not exceed 

.1 dB (1%), a 1.4 dB improvement. 

Fig ure 3.33 

Flat-top  

passband  

shapes.

* There is another way to avoid this problem using Band 

Selectable Analysis. We will illustrate this in the next chapter. 

** It will, in fact, be periodic in the time record

Figure 3.31 

Self-windowing  

func tion examples.

Figure 3.32 

Hanning  

passband  

shapes.

Figure 3.34 

Re duced  

resolution  

of the flat-top  

window.

Flat-top

Hanning
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The accuracy improvement does  

not come without its price, how ev er. 

Figure 3.34 shows that we have flat-

tened the top of the pass band at the 

expense of wid en ing the skirts of the 

filter. We there fore lose some ability 

to re solve a small component, close ly 

spaced to a large one. Some Dy nam ic 

Sig nal Analyzers offer both Hanning 

and flat-top window func tions so that 

the operator can choose be tween  

increased ac cu ra cy or im proved  

frequency res o lu tion. 

Other Window Functions 

Many other window functions are 

possible but the three listed above 

are by far the most com mon for  

general measurements. For spe cial 

measurement sit u a tions other groups 

of window func tions may be useful. 

We will discuss two windows which 

are par tic u lar ly useful when doing 

network anal y sis on mechanical 

structures by impact testing. 

The Force and  
Response Win dows 

A hammer equipped with a force 

transducer is commonly used to  

stimulate a structure for response 

measurements. Typically the force 

input is connected to one channel  

of the analyzer and the response of 

the structure from another transducer 

is connected to the second channel. 

This force impact is obviously a  

self-windowing function. The 

response of the structure is also  

self-windowing if it dies out with in 

the time record of the an a lyz er. To 

guarantee that the re sponse does go 

to zero by the end of the time record, 

an ex po nen tial-weighted window 

called a response window is some-

times added. Figure 3.35 shows a  

response window acting on the re-

sponse of a lightly damped struc ture 

which did not fully decay by the end 

of the time record. Notice that unlike 

the Hanning window, the response 

window is not zero at both ends of 

the time record. We know that the  

re sponse of the structure will be zero 

at the be gin ning of the time record 

(before the hammer blow) so there  

is no need for the win dow function  

to be zero there. In addition, most of 

the in for ma tion about the struc tur al 

response is contained at the begin-

ning of the time record so we make 

sure that this is weight ed most heavi-

ly by our re sponse window function. 

The time record of the exciting force 

should be just the impact with the 

structure. However, move ment of the 

hammer before and after hitting the 

structure can cause stray signals in 

the time record. One way to avoid 

this is to use a force window shown 

in Fig ure 3.36. The force window is 

uni ty where the impact data is valid 

and zero everywhere else so that the 

analyzer does not measure any stray 

noise that might be present.

Passband Shapes or  
Window Func tions? 

In the proceeding discussion we 

sometimes talked about window 

functions in the time domain. At 

other times we talked about the filter 

passband shape in the fre quen cy 

domain caused by these windows. We 

change our per spec tive freely to 

whichever domain yields the simplest 

explanation. Likewise, some Dynamic 

Signal Analyzers call the uniform, 

Hanning and flat-top functions “win-

dows” and other analyzers call those 

Figure 3.36 

Using the  

force window.

Figure 3.35 

Using the  

response  

window.
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functions “pass-band shapes”. Use 

which ev er ter mi nol o gy is easier  

for the problem at hand as they are 

completely in ter change able, just as 

the time and frequency do mains are 

completely equivalent. 

Section 6:  
Network Stim u lus 

Recall from Chapter 2 that we can 

measure the frequency response at 

one frequency by stimulating the  

network with a single sine wave and 

measuring the gain and phase shift at 

that frequency. The frequency of the 

stimulus is then changed and the 

measurement repeated until all 

desired fre quen cies have been  

measured. Every time the frequency 

is changed, the network response 

must settle to its steady-state value 

before a new measurement can be 

taken, making this measurement  

process a slow task. 

Many network analyzers operate in 

this manner and we can make the 

measurement this way with a two 

channel Dynamic Signal An a lyz er. We 

set the sine wave source to the center 

of the first filter as in Figure 3.37.  

The analyzer then measures the  

gain and phase of the network at  

this frequency while the rest of the 

analyzer’s filters measure only noise. 

We then increase the source fre quen-

cy to the next filter center, wait for 

the network to settle and then mea-

sure the gain and phase. We continue 

this procedure until we have  

mea sured the gain and phase of  

the network at all the frequencies  

of the filters in our analyzer. 

This procedure would, within  

experimental error, give us the same 

results as we would get with any of 

the network analyzers de scribed in 

Chapter 2 with any net work, linear  

or nonlinear. 

Noise as a Stimulus 

A single sine wave stimulus does  

not take advantage of the possible 

speed the parallel fil ters of a  

Dynamic Signal Analyzer pro vide. If 

we had a source that put out mul ti ple 

sine waves, each one cen tered in a  

filter, then we could measure the  

frequency response at all frequencies 

at one time. Such a source, shown in 

Figure 3.38, acts like hun dreds of sine 

wave generators connected to geth er. 

Although this sounds very expensive, 

Figure 3.37 

Frequency  

re sponse  

measurements  

with a sine  

wave stimulus.

Figure 3.38 

Pseudo-ran dom  

noise as a  

stimulus.
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just such a source can be easily  

gen er at ed dig i tal ly. It is called a  

pseudo-ran dom noise or pe ri od ic  

ran dom noise source. 

From the names used for this source 

it is apparent that it acts somewhat 

like a true noise gen er a tor, except 

that it has pe ri od ic i ty. If we add 

together a large num ber of sine 

waves, the result is very much like 

white noise. A good analogy is the 

sound of rain. A single drop of water 

makes a quite distinctive splash ing 

sound, but a rain storm sounds like 

white noise. How ev er, if we add  

to geth er a large number of sine 

waves, our noise-like signal will  

pe ri od i cal ly repeat its se quence. 

Hence, the name pe ri od ic ran dom 

noise (PRN) source. 

A truly random noise source has a 

spectrum shown in Figure 3.39. It is 

apparent that a ran dom noise source 

would also stim u late all the filters at 

one time and so could be used as a 

net work stim u lus. Which is a better 

stim u lus? The answer depends upon 

the mea sure ment sit u a tion. 

Linear Network Analysis 

If the network is reasonably linear, 

PRN and random noise both give the 

same results as the swept-sine test of 

other analyzers. But PRN gives the 

fre quen cy re sponse much faster. PRN 

can be used to measure the frequency 

response in a single time record. 

Because the ran dom source is true 

noise, it must be averaged for several 

time records before an accurate fre-

quen cy re sponse can be de ter mined. 

There fore, PRN is the best stimulus 

to use with fair ly linear networks 

because it gives the fast est re sults*. 

Non-Linear Network Analysis 

If the network is severely non-linear, 

the situation is quite dif fer ent. In this 

case, PRN is a very poor test signal 

and ran dom noise is much better. To 

see why, let us look at just two of the 

sine waves that compose the PRN 

source. We see in Fig ure 3.40 that  

if two sine waves are put through  

a nonlinear network, distortion  

prod ucts will be generated equal ly 

spaced from the sig nals**. Un for tu-

nate ly, these products will fall exactly 

on the frequencies of the other sine 

waves in the PRN. So the dis tor tion 

products add to the output and there-

fore in ter fere with the measurement 

Figure 3.39 

Random noise  

as a stimulus.

Figure 3.40 

Pseudo-ran dom  

noise distortion.
฀

฀

฀฀

* There is another reason why PRN is a better test signal  

than random or linear networks. Recall from the last  

section that PRN is self-windowing. This means that  

unlike random noise, pseudo-random noise has no leakage. 

Therefore, with PRN, we can measure lightly damped  

(high Q) resonances more easily than with random noise. 

** This distortion is called intermodulation distortion.
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of the fre quen cy response. Fig ure 

3.41a shows the jagged re sponse of  

a nonlinear network mea sured with 

PRN. Be cause the PRN source 

repeats it self ex act ly every time 

record, this noisy look ing trace never 

chang es and will not av er age to the 

desired fre quen cy re sponse. 

With random noise, the dis tor tion 

components are also ran dom and will 

average out. There fore, the frequency 

re sponse does not include the distor-

tion and we get the more reasonable 

results shown in Figure 3.41b. 

This points out a fundamental  

prob lem with measuring non-lin ear 

networks;  the frequency response is 

not a property of the network alone, 

it also de pends on the stimulus. 

Each stimulus, swept-sine, PRN and 

random noise will, in general, give a 

dif fer ent result. Also, if the am pli tude 

of the stimulus is changed, you will 

get a different result. 

To illustrate this, consider the  

mass-spring system with stops that 

we used in Chapter 2. If the mass 

does not hit the stops, the system  

is linear and the frequency response 

is given by Figure 3.42a. 

If the mass does hit the stops,  

the output is clipped and a large  

num ber of distortion components are 

generated. As the output approaches 

a square wave, the fun da men tal com-

ponent becomes constant. Therefore, 

as we in crease the input amplitude, 

the gain of the network drops. We  

get a frequency response like Figure 

3.42b, where the gain is de pen dent  

on the input signal amplitude. 

So as we have seen, the frequency 

response of a nonlinear network is 

not well defined, i.e., it depends on 

the stimulus. Yet it is often used in 

spite of this. The fre quen cy response 

of linear net works has proven to be a 

very powerful tool and so naturally 

people have tried to extend it to  

non-linear analysis, particularly since 

other nonlinear analysis tools have 

proved intractable. 

If every stimulus yields a different 

frequency response, which one 

should we use? The “best” stim u lus 

could be considered to be one which 

approximates the kind of signals you 

would expect to have as normal 

inputs to the network. Since any large 

collection of sig nals begins to look 

like noise, noise is a good test signal*. 

As we have already explained, noise 

is also a good test signal because it 

speeds the analysis by exciting all the 

filters of our analyzer simultaneously. 

But many other test signals can be 

used with Dynamic Signal An a lyz ers 

and are “best” (op ti mum) in other 

senses. As ex plained in the beginning 

of this section, sine waves can be 

used to give the same results as other 

types of network analyzers al though 

the speed advantage of the Dynamic 

Signal Analyzer is lost. A fast sine 

sweep (chirp) will give very sim i lar 

results with all the speed of Dynamic 

Signal Analysis and so is a bet ter  

test signal. An impulse is a good test 

signal for acoustical testing if the net-

work is linear. It is good for acoustics 

because re flec tions from surfaces  

at dif fer ent dis tanc es can easily be 

iso lat ed or eliminated if de sired. For 

in stance, by using the “force” win dow 

described ear li er, it is easy to get the 

free field re sponse of a speaker by 

elim i nat ing the room reflections from 

the win dowed time record. 

Band-Limited Noise 

Before leaving the subject of net work 

stimulus, it is ap pro pri ate to discuss 

the need to band limit the stimulus. 

We want all the power of the stimulus 

to be concentrated in the frequency 

region we are analyzing. Any power 

*  This is a consequence of the central limit theorem. As an 

example, the telephone companies have found that when 

many conversations are trans mit ted together, the result is  

like white noise. The same effect is found more commonly  

at a crowded cocktail party.

Figure 3.42 

Nonlinear  

system.

Figure 3.41 

Nonlinear trans fer function.

a) Pseudo-random noise stimulus b) Random noise stimulus
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outside this region does not  

contribute to the mea sure ment  

and could excite non-linearities.  

This can be a par tic u lar ly severe 

problem when testing with random 

noise since it theoretically has the 

same power at all frequencies (white 

noise). To eliminate this problem,  

Dy nam ic Signal Analyzers often limit 

the frequency range of their built-in 

noise stimulus to the frequency span 

selected. This could be done with an 

external noise source and filters, but 

every time the analyzer span changed, 

the noise power and filter would have 

to be readjusted. This is done au to-

mat i cal ly with a built-in noise source 

so transfer function mea sure ments 

are easier and faster. 

 
Section 7: Averaging 

To make it as easy as possible to 

develop an understanding of Dy nam ic 

Signal Analyzers we have almost 

exclusively used ex am ples with deter-

ministic signals, i.e., signals with no 

noise. How ev er, as the real world is 

rarely so oblig ing, the desired signal 

often must be measured in the pres-

ence of significant noise. At other 

times the “signals” we are trying to 

measure are more like noise them-

selves. Common examples that are 

somewhat noise-like in clude speech, 

music, digital data, seismic data and 

mechanical vi bra tions. Because of 

these two common conditions, we 

must de vel op techniques both to  

mea sure signals in the presence of 

noise and to measure the noise itself. 

The standard technique in sta tis tics 

to improve the estimates of a value  

is to average. When we watch a  

noisy reading on a Dy nam ic Signal 

Analyzer, we can guess the average 

value. But be cause the Dynamic 

Signal An a lyz er contains digital  

com pu ta tion capability we can have  

it compute this average value for us. 

Two kinds of averaging are available, 

RMS (or “power” averaging) and  

linear averaging. 

RMS Averaging 

When we watch the magnitude of the 

spectrum and attempt to guess the 

average value of the spectrum com-

ponent, we are do ing a crude RMS* 

av er age. We are trying to de ter mine 

the av er age magnitude of the sig nal, 

ig nor ing any phase difference that 

may exist between the spec tra. This 

averaging technique is very valu able 

for determining the av er age power  

in any of the filters of our Dynamic 

Signal Analyzers. The more averages 

we take, the better our estimate of 

the power level. 

In Figure 3.43, we show RMS aver-

aged spectra of random noise, digital 

data and human voices. Each of these 

examples is a fairly random process, 

but when av er aged we can see the 

basic prop er ties of its spectrum. 

If we want to measure a small sig nal 

in the presence of noise, RMS averag-

ing will give us a good es ti mate of the 

signal plus noise. We can not improve 

the signal to noise ratio with RMS 

averaging; we can only make more 

accurate estimates of the total signal 

plus noise power. 

Figure 3.43 

RMS av er aged spectra.

a) Random noise b) Digital data

c) Voices

Traces were separated 30 dB for clarity

Upper trace: female speaker 

Lower trace: male speaker

*  RMS stands for “root-mean-square” and is calculated  

by squaring all the values, adding the squares together,  

dividing by the number of measurements (mean) and  

taking the square root of the result.
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Linear Averaging 

However, there is a technique for 

improving the signal to noise ratio  

of a measurement, called linear aver-

aging. It can be used if a trigger sig-

nal which is syn chro nous with the 

periodic part of the spec trum is  

available. Of course, the need for a 

syn chro niz ing sig nal is somewhat  

re stric tive, al though there are nu mer-

ous sit u a tions in which one is avail-

able. In network anal y sis prob lems 

the stimulus signal itself can often be 

used as a syn chro niz ing signal. 

Linear averaging can be im ple ment ed 

many ways, but perhaps the easiest to 

understand is where the averaging is 

done in the time domain. In this case, 

the syn chro niz ing signal is used to 

trigger the start of a time record. 

Therefore, the periodic part of the 

input will always be exactly the same  

in each time record we take, where as 

the noise will, of course, vary. If we 

add together a series of these trig-

gered time records and di vide by  

the number of records we have  

taken we will compute what we  

call a linear average. 

Since the periodic signal will have 

repeated itself exactly in each time 

record, it will average to its exact 

value. But since the noise is different 

in each time record, it will tend to 

average to zero. The more averages 

we take, the closer the noise comes 

to zero and we continue to im prove 

the signal to noise ratio of our mea-

surement. Figure 3.44 shows a time 

record of a square wave buried in 

noise. The re sult ing time record  

after 128 averages shows a marked 

im prove ment in the signal to noise 

ratio. Transforming both results to 

the frequency domain shows how 

many of the har mon ics can now be 

accurately mea sured be cause of the 

reduced noise floor.

Figure 3.44 

Linear averaging.

b) Single record, no averaginga) Single record, no averaging

d) 128 linear averagesc) 128 linear averages
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Section 8:  
Real Time Band width 

Until now we have ignored the fact 

that it will take a finite time to com-

pute the FFT of our time record. In 

fact, if we could com pute the trans-

form in less time than our sampling 

period we could continue to ignore 

this computational time. Figure 3.45 

shows that under this condition we 

could get a new frequency spec trum 

with every sample. As we have seen 

from the section on aliasing, this 

could result in far more spec trums 

every sec ond than we could possibly 

com pre hend. Worse, be cause of the 

com plex i ty of the FFT al go rithm, it 

would take a very fast and very 

expensive com put er to generate  

spectrums this rapidly. 

A reasonable alternative is to add a 

time record buffer to the block dia-

gram of our analyzer. In Figure 3.47 

we can see that this allows us to  

compute the fre quen cy spec trum of 

the previous time record while gath-

ering the current time record. If we 

can compute the transform before  

the time record buffer fills, then we 

are said to be operating in real time. 

To see what this means, let us look at 

the case where the FFT computation 

takes longer than the time to fill the 

time record. The case is illustrated in 

Figure 3.48. Although the buffer is 

full, we have not finished the last 

trans form, so we will have to stop 

tak ing data. When the transform is 

finished, we can transfer the time 

record to the FFT and begin to take 

another time record. This means that 

we missed some input data and so  

we are said to be not operating in 

real time. 

Recall that the time record is not  

constant but deliberately varied to 

change the frequency span of the ana-

lyzer. For wide frequency spans the 

time record is shorter. Therefore, as 

we increase the fre quen cy span of the 

analyzer, we eventually reach a span 

where the time record is equal to the 

FFT computation time. This frequen-

cy span is called the real time band-

width. For frequency spans at and 

below the real time bandwidth, the 

analyzer does not miss any data. 

Real Time Bandwidth  
Requirements 

How wide a real time bandwidth is 

needed in a Dynamic Signal An a lyz er? 

Let us examine a few typical mea-

surements to get a feel ing for the  

considerations involved.

Adjusting Devices 

If we are measuring the spectrum or 

frequency response of a device which 

we are adjusting, we need to watch 

the spectrum change in what might 

be called psy cho log i cal real time. A 

new spectrum every few tenths of a 

second is sufficiently fast to allow an 

op er a tor to watch adjustments in 

what he would consider to be real 

time. However, if the response time 

of the device under test is long, the 

speed of the analyzer is im ma te ri al. 

We will have to wait for the device  

to respond to the changes before the 

spectrum will be valid, no matter 

how many spectrums we generate  

in that time. This is what makes  

ad just ing lightly damped (high Q)  

resonances te dious. 

Fig ure 3.45 

A new  

transform  

every sam ple.

Figure 3.46 

Time buff er  

added to  

block diagram.

Figure 3.48 

Non-real time  

operation.

Fig ure 3.47 

Real time  

operation.
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RMS Averaging 

A second case of interest in determin-

ing real time bandwidth re quire ments 

is measurements that require RMS 

averaging. We might be interested in 

de ter min ing the spectrum distribution 

of the noise itself or in reducing the 

variation of a signal con tam i nat ed  

by noise. There is no requirement in 

av er ag ing that the records must be 

con sec u tive with no gaps*. There fore, 

a small real time band width will not 

affect the accuracy of the results. 

However, the real time band width 

will affect the speed with which an 

RMS averaged mea sure ment can be 

made. Figure 3.49 shows that for  

frequency spans above the real time 

band width, the time to complete the 

average of N records is de pen dent 

only on the time to com pute the  

N trans forms. Rather than continually 

re duc ing the time to compute the 

RMS av er age as we increase our 

span, we reach a fixed time to  

compute N averages. 

Therefore, a small real time band-

width is only a problem in RMS aver-

aging when large spans are used with 

a large num ber of av er ag es. Under 

these conditions we must wait longer 

for the an swer. Since wid er real time 

band widths re quire fast er com pu ta-

tions and therefore a more ex pen sive 

pro ces sor, there is a straightfor ward 

trade-off of time versus money. In the 

case of RMS av er ag ing, higher real 

time band width gives you some what 

fast er measurements at in creased 

analyzer cost. 
Transients 

The last case of interest in de ter min-

ing the needed real time band width  

is the analysis of tran sient events. If 

the entire transient fits within the 

time record, the FFT computation 

time is of little in ter est. The an a lyz er 

can be triggered by the transient and 

the event stored in the time record 

buffer. The time to com pute its  

spectrum is not im por tant. 

However, if a tran sient event con tains 

high fre quen cy en er gy and lasts lon-

ger than the time record necessary to 

measure the high frequency en er gy, 

then the pro cess ing speed of the an a-

lyz er is critical. As shown in Fig ure 

3.50b, some of the tran sient will not 

be analyzed if the com pu ta tion time 

exceeds the time record length. 

In the case of transients longer than 

the time record, it is also im per a tive 

that there is some way to rapidly 

record the spec trum. Otherwise, the 

Figure 3.49 

RMS av er ag ing  

time.

Figure 3.50 

Transient  

analysis.

*  This is because to average at all the signal must be  

periodic and the noise stationary.
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in for ma tion will be lost as the  

analyzer updates the display with  

the spec trum of the latest time 

record. A special dis play which  

can show more than one spec trum 

(“wa ter fall” dis play), mass memory,  

a high speed link to a computer or a 

high speed fac sim i le recorder is need-

ed. The output device must be able to 

record a spectrum ev ery time record 

or information will be lost. 

Fortunately, there is an easy way to 

avoid the need for an expensive wide 

real time bandwidth an a lyz er and an 

expensive, fast spec trum recorder. 

One-time transient events like explo-

sions and pass-by noise are usually 

tape recorded for later analysis 

because of the expense of re peat ing 

the test. If this tape is played back at 

re duced speed, the speed demands on 

the analyzer and spectrum re cord er 

are reduced. Timing mark ers could 

also be recorded at one time record 

intervals. This would allow the analy-

sis of one record at a time and plot-

ting with a very slow (and commonly 

available) X-Y plotter. 

So we see that there is no clear-cut 

answer to what real time band width 

is necessary in a Dy nam ic Signal 

Analyzer. Except in analyzing long 

transient events, the added expense 

of a wide real time bandwidth gives 

little ad van tage. It is possible to ana-

lyze long transient events with a nar-

row real time bandwidth analyzer, but 

it does require the recording of the 

input signal. This method is slow and 

requires some operator care, but one 

can avoid pur chas ing an expensive 

analyzer and fast spectrum recorder. 

It is a clear case of speed of analysis 

versus dollars of capital equip ment. 

Section 9:  
Overlap Pro cess ing 

In Section 8 we considered the case 

where the computation of the FFT 

took longer than the col lect ing of the 

time record. In this section we will 

look at a tech nique, overlap process-

ing, which can be used when the FFT 

com pu ta tion takes less time than 

gath er ing the time record. 

To understand overlap pro cess ing,  

let us look at Figure 3.51a. We see  

a low frequency analysis where the 

gathering of a time record takes much  

longer than the FFT computation 

time. Our FFT processor is sitting  

idle much of the time. If instead of 

waiting for an entirely new time 

record we overlapped the new time 

record with some of the old data,  

we would get a new spectrum as  

of ten as we computed the FFT. This 

overlap processing is il lus trat ed in 

Figure 3.51b. To un der stand the  

benefits of overlap processing, let  

us look at the same cases we used  

in the last section. 

Adjusting Devices 

We saw in the last section that we 

need a new spectrum every few 

tenths of a second when adjusting 

devices. Without over lap pro cess ing 

this limits our resolution to a few 

Hertz. With overlap pro cess ing our 

res o lu tion is unlimited. But we are 

not getting something for nothing. 

Because our over lapped time record 

contains old data from before the 

device ad just ment, it is not complete-

ly cor rect. It does indicate the direc-

tion and the amount of change, but 

we must wait a full time record af ter 

the change for the new spec trum to 

be ac cu rate ly displayed. 

Nonetheless, by indicating the  

direction and magnitude of the  

changes every few tenths of a  

sec ond, overlap processing does  

help in the adjustment of de vic es. 

Figure 3.51 

Understanding  

over lap  

processing.
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RMS Averaging 

Overlap processing can give dramatic 

reductions in the time to compute 

RMS averages with a giv en variance. 

Recall that win dow functions reduce 

the effects of leakage by weighting 

the ends of the time record to zero. 

Over lap ping eliminates most or all of 

the time that would be wasted taking 

this data. Because some overlapped 

data is used twice, more averages 

must be taken to get a given variance 

than in the non-overlapped case. 

Figure 3.52 shows the im prove ments 

that can be expected by overlapping. 

Transients 

For transients shorter than the time 

record, overlap processing is useless. 

For transients longer than the time 

record the real time band width of  

the analyzer and spectrum recorder  

is usually a limitation. If it is not, 

overlap processing allows more  

spectra to be generated from the  

tran sient, usu al ly improving  

res o lu tion of re sult ing plots. 

Section 10: Summary 

In this chapter we have de vel oped  

the basic properties of Dy nam ic 

Signal Analyzers. We found that  

many properties could be un der stood 

by con sid er ing what hap pens when 

we transform a finite, sampled time 

record. The length of this record 

determines how close ly our fil ters 

can be spaced in the fre quen cy 

domain and the num ber of samples 

determines the num ber of filters in 

the fre quen cy domain. We also found 

that un less we filtered the input we 

could have errors due to aliasing and 

that finite time records could cause  

a problem called leakage which we 

min i mized by windowing. 

We then added several features to  

our basic Dynamic Signal An a lyz er  

to enhance its ca pa bil i ties. Band 

Selectable Analysis allows us to make 

high res o lu tion mea sure ments even  

at high fre quen cies. Averaging gives 

more ac cu rate measurements when 

noise is present and even allows us  

to im prove the signal to noise ratio 

when we can use linear av er ag ing. 

Finally, we in cor po rat ed a noise 

source in our analyzer to act as a 

stimulus for transfer func tion  

mea sure ments.

Figure 3.52 

RMS av er ag ing  

speed im prove ments  

with over lap  

processing.
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In Chapters 2 & 3, we developed an 

understanding of the time, frequency 

and modal domains and how 

Dynamic Signal An a lyz ers operate.  

In this chapter we show how to use 

Dynamic Sig nal An a lyz ers in a wide 

variety of mea sure ment situations. 

We introduce the measurement  

functions of Dy nam ic Signal  

Analyzers as we need them for  

each mea sure ment situation. 

We begin with some common elec-

tron ic and mechanical measurements 

in the frequency do main. Later in the 

chapter we in tro duce time and modal 

domain measurements. 

 
Section 1:  
Frequency Domain  
Measurements 

Oscillator Characterization 

Let us begin by measuring the char ac-

ter is tics of an electronic oscillator.  

An important spec i fi ca tion of an 

oscillator is its har mon ic distortion. 

In Figure 4.1, we show the fundamen-

tal through fifth harmonic of a 1 KHz 

os cil la tor. Because the frequency is 

not necessarily exactly 1 KHz, win-

dowing should be used to re duce the 

leakage. We have chosen the flat-top 

window so that we can accurately 

measure the amplitudes. 

Notice that we have selected the 

input sensitivity of the analyzer so 

that the fundamental is near the top 

of the display. In general, we set the 

input sensitivity to the most sensitive 

range which does not overload the 

analyzer. Severe distortion of the 

input signal will occur if its peak  

voltage exceeds the range of the  

analog to digital converter. Therefore, 

all dynamic sig nal analyzers warn the 

user of this condition by some kind of 

overload indicator. 

It is also important to make sure the 

analyzer is not underloaded. If the 

signal going into the analog to digital 

converter is too small, much of the 

useful information of the spectrum 

may be below the noise level of the 

analyzer. There fore, setting the input 

sensitivity to the most sensitive range 

that does not cause an overload gives 

the best possible results. 

In Figure 4.1a we chose to display  

the spectrum amplitude in log a rith-

mic form to insure that we could see 

distortion products far below the  

fundamental. All signal amplitudes  

on this dis play are in dBV, decibels 

below 1 Volt RMS. However, since 

most Dynamic Signal Analyzers have 

very versatile display capabilities,  

we could also display this spectrum 

linearly as in Fig ure 4.1b. Here the 

units of amplitude are volts. 

Power-Line Sidebands 

Another important measure of an 

oscillator’s performance is the level 

of its power-line side bands. In Figure 

4.2, we use Band Se lect able Analysis 

to “zoom in” on the signal so that we 

can easily re solve and measure the 

side bands which are only 60 Hz away 

from our 1 KHz sig nal. With some  

an a lyz ers it is possible to measure 

signals only millihertz away from the 

fun da men tal if desired. 

Phase Noise 

The short-term stability of a high  

frequency oscillator is very important 

in communications and radar. One 

measure of this is called phase noise. 

It is often mea sured by the technique 

shown in Figure 4.3a. This mixes 

down and can cels the oscillator  

Figure 4.1 

Harmonic dis tor tion  

of an Au dio Os cil la tor -  

Flat-top win dow used.

a) Logarithmic amplitude scale b) Linear amplitude scale

Figure 4.2 

Powerline  

side bands of an  

Au dio Os cil la tor -  

Band Se lect able  

Anal y sis and  

Hanning win dow  

used for max i mum  

resolution.

Chapter 4 
Using Dynamic Signal Analyzers
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carrier leaving only the phase noise  

sidebands. It is therefore possible to 

measure the phase noise far be low 

the car ri er level since the car ri er does 

not limit the range of our mea sure-

ment. Figure 4.3b shows the close-in 

phase noise of a 20 MHz syn the siz er. 

Here, since we are measuring noise, 

we use RMS av er ag ing and the 

Hanning window. 

Dynamic Signal Analyzers offer  

two main advantages over swept  

signal analyzers in this ap pli ca tion. 

First, the phase noise can be mea-

sured much closer to the car ri er. This 

is because a good swept analyzer  

can only resolve signals down to 

about 1 Hz, while a Dy nam ic Signal 

An a lyz er can resolve signals to a few 

millihertz. Sec ond ly, the Dynamic 

Signal An a lyz er can determine the 

com plete phase noise spectrum in  

a few minutes whereas a swept  

an a lyz er would take hours. 

Spectra-like phase noise are usually 

displayed against the logarithm of fre-

quency instead of the linear frequen-

cy scale. This is done in Figure 4.3c. 

Because the FFT generates linearly 

spaced filters, the filters are not 

equally spaced on the display. It is  

im por tant to realize that no informa-

tion is missed by these seemingly 

wide ly spaced filters. We recall on  

a linear fre quen cy scale that all the 

filters over lapped so that no part of 

the spectrum was missed. All we have 

done here is to change the presenta-

tion of the same measurement. 

Figure 4.3 

Phase Noise  

Measurement.

a) Block diagram of phase noise measurement

b)  Phase noise of a frequency synthesizer -  

RMS averaging and Hanning window used for noise measurements

c)  Logarithmic frequency axis presentation of phase noise normalized to a  

1 Hz bandwidth (power spectral density)
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In addition, phase noise and other 

noise measurements are often nor-

mal ized to the power that would be 

measured in a 1 Hz wide square filter. 

This mea sure ment is called a power 

spectral density and is often provided 

on Dynamic Signal Analyzers. It sim-

ply chang es the pre sen ta tion on the 

display to this desired form; the data 

is exactly the same in Fig ures 4.3b 

and 4.3c, but the latter is in the more 

conventional pre sen ta tion.

Rotating Machinery  
Characterization 

A rotating machine can be thought  

of as a mechanical os cil la tor.*  There-

fore, many of the mea sure ments we 

made for an electronic oscillator are 

also im por tant in characterizing  

ro tat ing machinery. 

To characterize a rotating ma chine 

we must first change its mechanical 

vibration into an elec tri cal signal. 

This is often done by mounting an  

ac cel er om e ter on a bearing housing 

where the vi bra tion generated by 

shaft imbalance and bearing im per-

fec tions will be the highest. A typ i cal 

spectrum might look like Figure 4.4. 

It is obviously much more com pli cat-

ed than the rel a tive ly clean spectrum 

of the electronic os cil la tor we looked 

at pre vi ous ly. There is also a great 

deal of ran dom noise; stray vibrations 

from sourc es other than our mo tor 

that the ac cel er om e ter picks up.  

The effects of this stray vi bra tion 

have been minimized in Fig ure 4.4b 

RMS av er ag ing. 

In Figure 4.5, we have used the Band 

Selectable Analysis ca pa bil i ty of our 

analyzer to “zoom-in” and separate 

the vibration of the stator at 120 Hz 

from the vi bra tion caused by the 

rotor im bal ance only a few tenths of 

a Hertz lower in frequency.**  This 

ability to re solve closely spaced spec-

trum lines is crucial to our ca pa bil i ty 

to diagnose why the vi bra tion levels 

of a rotating ma chine are ex ces sive. 

The actions we would take to correct 

an ex ces sive vibration at 120 Hz are 

quite different if it is caused by a 

loose stator pole rath er than an 

imbalanced rotor. 

Since the bearings are the most  

unreliable part of most rotating 

machines, we would also like to 

check our spectrum for in di ca tions  

of bearing failure. Any de fect in a 

bearing, say a spalling on the outer 

face of a ball bearing, will cause a 

small vibration to occur each time  

a ball pass es it. This will produce  

a characteristic fre quen cy in the 

vibration called the passing fre quen-

cy. The fre quen cy domain is ideal for 

Fig ure 4.6 

Vi bra tion caused by  

small de fect in  

the bear ing.

Fig ure 4.5 

Sta tor vi bra tion  

and ro tor imbalance  

mea sure ment with  

Band Se lect able  

Anal y sis.

* Or, if you prefer, electronic os cil la tors can be viewed as  

rotating ma chines which can go at millions of RPM’s. 

** The rotor in an AC induction motor always runs at a  

slightly lower frequency than the excitation, an effect  

called slippage.

Figure 4.4 

Spectrum of  

elec tri cal mo tor  

vibration.
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sep a rat ing this small vibration from 

all the other frequencies present. This 

means that we can detect impending 

bear ing failures and schedule a shut-

down long before they become the 

loudly squealing problem that signals 

an im me di ate shut down is nec es sary. 

In most rotating machinery mon i tor-

ing situations, the ab so lute lev el of 

each vibration com po nent is not of 

interest, just how they change with 

time. The ma chine is measured when 

new and through out its life and these 

suc ces sive spectra are compared.  

If no catastrophic failures de vel op,  

the spec trum components will  

in crease gradually as the machine 

wears out. However, if an im pend ing 

bearing failure develops, the passing 

frequency component cor re spond ing 

to the defect will in crease suddenly 

and dra mat i cal ly. 

An excellent way to store and com-

pare these spectra is by using a small 

desktop computer. The spectra can 

be easily entered into the computer 

by an in stru ment interface like GPIB* 

and com pared with previous results 

by a trend analysis program. This 

avoids the tedious and error-prone 

task of generating trend graphs by 

hand. In addition, the computer can 

easily check the trends against limits, 

pointing out where vibration limits 

are exceeded or where the trend is 

for the limit to be exceeded in  

the near future. 

Desktop computers are also use ful 

when analyzing machinery that  

normally operates over a wide range 

of speeds. Severe vi bra tion modes 

can be excited when the machine 

runs at critical speeds. A quick way  

to determine if these vibrations are  

a problem is to take a succession of 

spectra as the ma chine runs up to 

speed or coasts down. Each spectrum 

shows the vibration components  

of the ma chine as it passes through 

an rpm range. If each spec trum is 

trans ferred to the com put er via  

GPIB, the results can be processed 

and displayed as in Figure 4.8. From 

such a dis play it is easy to see shaft 

im bal anc es, constant fre quen cy vi bra-

tions (from sources other than the 

variable speed shaft) and structural 

vibrations excited by the rotating 

shaft. The computer gives the  

capability of changing the display  

presentation to other forms for great-

er clarity. Because all the values of 

the spec tra are stored in memory, 

pre cise values of the vibration com-

po nents can easily be de ter mined.  

In addition, signal pro cess ing can  

be used to clarify the dis play. For 

instance, in Figure 4.8 all signals 

below -70 dB were ig nored. This  

elim i nates mean ing less noise from 

the plot, clarifying the pre sen ta tion. 

So far in this chapter we have been 

discussing only single chan nel fre-

quency domain mea sure ments. Let  

us now look at some measurements 

we can make with a two channel 

Dynamic Signal Analyzer. 

Figure 4.7 

Desktop  

computer  

system for  

mon i tor ing  

ro tat ing  

machinery  

vi bra tion.

Motor Computer

Dynamic

Signal

Analyzer

Accelerometer

GPIB

Figure 4.8 

Run up test  

from the sys tem  

in Fig ure 4.7.

* General Purpose Interface Bus, Keysight’s  

implementation of IEEE-488-1975.
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Electronic Filter  
Characterization 

In Section 6 of the last chapter, we 

developed most of the prin ci ples we 

need to characterize a low frequency 

electronic filter. We show the test 

setup we might use in Figure 4.9. 

Because the fil ter is linear we can use 

pseudo-random noise as the stimulus 

for very fast test times. The uniform 

window is used because the pseu do-

random noise is periodic in the time 

record.*   No av er ag ing is needed 

since the signal is pe ri od ic and rea-

sonably large. We should be careful, 

as in the single channel case, to set 

the input sen si tiv i ty for both channels 

to the most sensitive position which 

does not over load the analog to  

digital converters. 

With these considerations in mind, 

we get a frequency response magni-

tude shown in Figure 4.10a and the 

phase shown in Figure 4.10b. The  

primary ad van tage of this measure-

ment over traditional swept analysis 

tech niques is speed. This mea sure-

ment can be made in 1/8 sec ond with 

a Dynamic Signal An a lyz er, but would 

take over 30 seconds with a swept 

network analyzer. This speed 

improvement is par tic u lar ly import-

ant when the filter under test is being 

adjusted or when large volumes are 

tested on a pro duc tion line. 

Structural Frequency  
Response 

The network under test does not have 

to be electronic. In Figure 4.11, we 

are measuring the fre quen cy response 

of a single struc ture, in this case a 

printed circuit board. Because this 

struc ture be haves in a linear fashion, 

Figure 4.10 

Frequency re sponse  

of elec tron ic fil ter us ing  

PRN and uni form window.

Figure 4.9 

Test set up  

to mea sure  

fre quen cy  

re sponse  

of fil ter.

* See the uniform window discussion in Section 6  

of the previous chapter for details.

Figure 4.11 

Frequency  

re sponse test  

of a me chan i cal  

structure.

a) Frequency response magnitude b) Frequency response magnitude and phase
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we can use pseudo-random noise as  

a test stimulus. But we might also  

de sire to use true random noise, 

swept-sine or an impulse (ham mer 

blow) as the stimulus. In Fig ure 4.12 

we show each of these mea sure ments 

and the fre quen cy re spons es. As we 

can see, the re sults are all the same. 

The frequency response of a linear 

network is a property sole ly of the 

network, in de pen dent of the  

stimulus used. 

Since all the stimulus techniques  

in Figure 4.12 give the same re sults, 

we can use whichever one is fastest 

and easiest. Usually this is the impact 

stimulus, since a shak er is not required. 

In Figure 4.11 and 4.12, we have  

been measuring the acceleration  

of the structure divided by the  

force applied. This quality is called 

mechanical accelerance. To properly 

scale the displays to the required  

g’s/lb, we have en tered the sensitivities 

of each trans duc er into the analyzer 

by a fea ture called engineering units. 

En gi neer ing units simply changes the 

gain of each channel of the analyzer 

so that the display cor re sponds to the 

physical parameter that the transducer 

is measuring.

Other frequency response mea sure-

ments besides mechanical acceler-

ance are often made on mechanical 

structures. Figure 4.14 lists these 

measurements. By chang ing transduc-

ers we could measure any of these 

parameters. Or we can use the com-

putational capability of the Dynamic 

Signal Analyzer to compute these 

mea sure ments from the me chan i cal 

impedance measurement we have 

already made. 

Figure 4.12 

Frequency  

re sponse  

of a lin ear  

net work  

is in de pen dent  

of the stim u lus  

used.

a) Impact stimulus

Figure 4.13 

Engineering  

units set in put  

sen si tiv i ties to  

prop er ly scale  

results.

b) Random noise stimulus

c) Swept sine stimulus
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For instance, we can compute  

velocity by integrating our ac cel er a-

tion measurement. Dis place ment is  

a double in te gra tion of ac cel er a tion. 

Many Dy nam ic Sig nal An a lyz ers have 

the capability of in te grat ing a trace  

by simply push ing a button. There-

fore, we can easily generate all the 

com mon me chan i cal mea sure ments 

with out the need of many expensive 

trans duc ers. 

Coherence 

Up to this point, we have been  

measuring networks which we have 

been able to isolate from the rest of 

the world. That is, the only stimulus 

to the network is what we apply and 

the only response is that caused  

by this controlled stim u lus. This  

situation is often encountered in test-

ing com po nents, e.g., electric filters 

or parts of a mechanical structure.  

How ev er, there are times when the 

components we wish to test can not 

be isolated from other dis tur banc es. 

For instance, in elec tron ics we might 

be trying to measure the frequency 

response of a switch ing power supply 

which has a very large component  

at the switching frequency. Or we 

might try to measure the fre quen cy 

re sponse of part of a machine while 

other machines are creating se vere 

vibration.

In Figure 4.15 we have simulated 

these situations by adding noise and  

a 1 KHz signal to the output of an 

electronic filter. The mea sured  

frequency response is shown in 

Figure 4.16. RMS av er ag ing has 

reduced the noise con tri bu tion, but 

has not com plete ly eliminated the  

1 KHz in ter fer ence.*  If we did not 

know of the interference, we would 

think that this filter has an additional 

res o nance at 1 KHz. But Dynamic  

Sig nal Analyzers can of ten make an 

additional mea sure ment that is not 

available with traditional net work 

an a lyz ers called coherence. Coherence 

measures the power in the re sponse 

channel that is caused by the pow er 

in the ref er ence chan nel. It is the  

output pow er that is co her ent with 

the input power. 

Figure 4.17 shows the same fre quen cy 

response magnitude from Figure 4.16 

and its co her ence. The coherence 

goes from 1 (all the output power at 

Fig ure 4.14 

Me chan i cal  

fre quen cy  

re sponse  

measurements.

Figure 4.15 

Sim u la tion  

of fre quen cy  

response  

measurement  

in the pres ence  

of noise.

Figure 4.17 

Mag ni tude and  

co her ence of  

fre quen cy  

response.

Fig ure 4.16 

Mag ni tude of  

fre quen cy  

re sponse.

* Additional averaging would further reduce this  

interference.
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that frequency is caused by the input) 

to 0 (none of the output power at that 

fre quen cy is caused by the input). We 

can easily see from the coherence 

function that the re sponse at 1 KHz is 

not caused by the input but by inter-

ference. How ev er, our filter response 

near 500 Hz has ex cel lent coherence 

and so the mea sure ment here  

is good. 

 
Section 2:  
Time Domain  
Mea sure ments 

A Dynamic Signal Analyzer usu al ly 

has the capability of dis play ing the 

time record on its screen. This is the 

same wave form we would see with 

an oscilloscope, a time domain view 

of the input. For very low fre quen cy 

or single-shot phenomena the digital 

time record storage eliminates the 

need for storage oscilloscope. But 

there are other time domain mea sure-

ments that a Dynamic Signal An a lyz er 

can make as well. These are called 

correlation mea sure ments. We will 

begin this section by defining correla-

tion and then we will show how to 

make these mea sure ments with a 

Dynamic Signal An a lyz er. 

Correlation is a measure of the  

similarity between two quan ti ties. To 

understand the cor re la tion be tween 

two waveforms, let us start by multi-

plying these wave forms together at 

each in stant in time and adding up all 

the prod ucts. If, as in Figure 4.18, the 

waveforms are identical, every prod-

uct is pos i tive and the re sult ing sum 

is large. If however, as in Figure 4.19, 

the two records are dis sim i lar, then 

some of the prod ucts would be posi-

tive and some would be negative. 

There would be a ten den cy for the 

products to cancel, so the final sum 

would be smaller. 

Now consider the waveform in  

Figure 4.20a, and the same wave form 

shifted in time, Figure 4.20b. If the 

time shift were zero, then we would 

have the same con di tions as before, 

that is, the wave forms would be in 

phase and the final sum of the prod-

ucts would be large. If the time shift 

between the two waveforms is made 

large however, the wave forms appear 

dissimilar and the final sum is small. 

Figure 4.18 

Correlation of  

two iden ti cal  

signals.

Figure 4.19 

Correlation of  

two dif fer ent  

signals.

Figure 4.20 

Correlation of  

time dis placed  

signals.
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Going one step farther, we can find 

the average product for each time 

shift by dividing each final sum by  

the number of products contributing 

to it. If we now plot the average  

product as a function of time shift, 

the resulting curve will be largest 

when the time shift is zero and will 

diminish to zero as the time shift 

increases. This curve is called the 

auto-cor re la tion function of the 

waveform. It is a graph of the  

similarity (or cor re la tion) between  

a waveform and itself, as a function 

of the time shift. 

The auto-correlation function is easi-

est to understand if we look at a few 

examples. The random noise shown 

in Figure 4.21 is not similar to itself 

with any amount of time shift (after all, 

it is ran dom) so its auto-correlation 

has only a single spike at the point  

of 0 time shift. Pseudo-random noise, 

however, repeats itself pe ri od i cal ly, 

so when the time shift equals a multi-

ple of the pe ri od, the auto-correlation 

repeats itself exactly as in Figure 4.22. 

These are both special cases of a 

more general statement; the auto- 

cor re la tion of any periodic wave form 

is periodic and has the same period 

as the waveform itself. 

Figure 4.21 

Auto cor re la tion  

of ran dom noise.

a) Time record of random noise

Figure 4.22 

Auto cor re la tion  

of pseu do-ran dom  

noise.

τ

ΝΔ

Δ

Δ

ΝΔ

b) Auto correlation of random noise
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This can be useful when trying to 

extract a signal hidden by noise. 

Figure 4.24a shows what looks like 

random noise, but there is actually a 

low level sine wave bur ied in it. We 

can see this in Fig ure 4.24b where  

we have taken 100 averages of the 

auto-cor re la tion of this signal. The 

noise has be come the spike around  

a time shift of zero whereas the  

auto-correlation of the sine wave is 

clear ly visible, repeating itself with 

the period of the sine wave. 

If a trigger signal that is syn chro nous 

with the sine wave is avail able, we 

can extract the signal from the noise 

by linear averaging as in the last  

section. But the important point 

about the auto-cor re la tion function  

is that no syn chro niz ing trigger is 

needed. In signal identification prob-

lems like radio astronomy and pas-

sive so nar, a syn chro niz ing signal is 

not available and so auto-cor re la tion 

is an important tool. The disadvan-

tage of auto-correlation is that the 

input waveform is not pre served  

as it is in linear averaging. 

Since we can transform any time 

domain waveform into the fre quen cy 

domain, the reader may wonder what 

is the frequency trans form of the 

auto-correlation function? It turns out 

to be the magnitude squared of the 

spec trum of the input. Thus, there is 

really no new information in the auto- 

correlation function, we had the same 

Figure 4.23 

Auto-cor re la tion  

of pe ri od ic  

waveforms.

Figure 4.24 

Auto-cor re la tion  

of a sine wave  

bur ied by noise.
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information in the spec trum of the 

signal. But as always, a change in  

perspective between these two 

domains often clarifies problems.  

In general, impulsive type signals  

like pulse trains, bear ing ping or  

gear chatter show up better in cor re-

la tion mea sure ments, while signals 

with several sine waves of different 

fre quen cies like struc tur al vibrations 

and rotating machinery are clearer in 

the frequency domain. 

Cross Correlation 

If auto-correlation is concerned with 

the similarity between a signal and a 

time shifted version of itself, then it  

is reasonable to sup pose that the 

same technique could be used to 

measure the sim i lar i ty between two 

non-iden ti cal waveforms. This is 

called the cross correlation func tion. 

If the same signal is present in both 

wave forms, it will be re in forced in 

the cross cor re la tion function, while 

any uncorrelated noise will be  

re duced. In many network anal y sis 

problems, the stimulus can be cross 

correlated with the re sponse to 

reduce the effects of noise. Radar, 

active so nar, room acoustics and 

trans mis sion path delays all are net-

work analysis problems where the 

stim u lus can be measured and used 

to remove contaminating noise from 

the response by cross correlation.* 

Figure 4.25 

Simulated ra dar  

cross correlation.

a) ‘Transmitted’ signal, a swept-frequency sine wave

Figure 4.26 

Cross cor re la tion  

shows mul ti ple  

trans mis sion  

paths.

b) ‘Received’ signal, the swept sine wave plus noise

c)  Result of cross correlation of the transmitted and received signals.  

Distance from left edge to peak represents transmission delay.

* The frequency transform of the cross correlation  

function is the cross power spectrum, a function  

discussed in Appendix A.
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Section 3:  
Modal Domain  
Measurements 

In Section 1 we learned how to make 

frequency domain mea sure ments of 

mechanical structures with Dynamic 

Signal Analyzers. Let us now analyze 

the behavior of a simple mechanical 

structure to understand how to make 

mea sure ments in the modal domain. 

We will test a simple metal plate 

shown in Figure 4.27. The plate  

is freely suspended using rubber 

cords in order to isolate it from  

any object which would alter its  

properties. 

The first decision we must make in 

analyzing this structure is how many 

measurements to make and where to 

make them on the struc ture. There 

are no firm rules for this decision; 

good en gi neer ing judgment must be 

exercised in stead. Measuring too 

many points make the calculations 

un nec es sar i ly complex and time  

con sum ing. Measuring too few points 

can cause spatial aliasing; i.e., the 

mea sure ment points are so far apart 

that high frequency bend ing modes  

in the structure can not be measured 

accurately. To decide on a reasonable 

num ber of mea sure ment points, take 

a few trial frequency response mea-

sure ments of the structure to de ter-

mine the highest sig nif i cant res o nant 

frequencies present. The wave length 

can be determined empirically by 

chang ing the dis tance between the 

stimulus and the sensor until a full 

360° phase shift has oc curred from 

the orig i nal mea sure ment point.  

Mea sure ment point spacing should  

be ap prox i mate ly one-quarter or less 

of this wavelength. 

Measurement points can be spaced 

uniformly over the structure using 

this guideline, but it may be desirable 

to mod i fy this procedure slightly. Few 

struc tures are as uniform as this sim-

ple plate example,* but com pli cat ed 

struc tures are made of simpler, more 

uniform parts. The be hav ior of the 

structure at the junc tion of these 

parts is of ten of great interest, so  

measurements should be made in 

these critical areas as well. 

Once we have decided on where the 

measurements should be tak en, we 

number these mea sure ment points 

(the order can be ar bi trary) and enter 

the co or di nates of each point into our 

modal an a lyz er. This is nec es sary so 

that the analyzer can cor re late the 

mea sure ments we make with a  

po si tion on the struc ture to compute 

the mode shapes. 

The next decision we must make is 

what signal we should use for a stim-

ulus. Our plate example is a linear 

structure as it has no loose rivet 

joints, non-linear damp ing materials, 

or other non-linearities. Therefore, 

we know that we can use any of the 

stim u li described in Chapter 3, 

Section 6. In this case, an im pulse 

would be a par tic u lar ly good test  

signal. We could sup ply the im pulse 

by hit ting the struc ture with a ham-

* If all structures were this simple, there would be  

no need for modal analysis.

Fig ure 4.28 

Spa cial Aliasing -  

Too few  

mea sure ment  

points lead to  

in ac cu rate  

anal y sis of  

high fre quen cy  

bend ing mode.

Fig ure 4.27 

Modal anal y sis  

ex am ple -  

De ter mine  

the modes in  

this sim ple  

plate.
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mer equipped with a force trans duc er. 

This is prob a bly the eas i est way to 

excite the struc ture as a shaker and 

its as so ci at ed driv er are not required. 

As we saw in the last chapter, how ev-

er, if the structure were non-linear, 

then random noise would be a good 

test signal. To supply ran dom noise to 

the struc ture we would need to use a 

shak er. To keep our example more 

general, we will use random noise as 

a stim u lus. 

The shaker is connected firmly to the 

plate via a load cell (force trans duc-

er) and excited by the band-limited 

noise source of the analyzer. Since 

this force is the network stimulus, the 

load cell output is connected through 

a suit able amplifier to the ref er ence 

channel of the analyzer. To begin the 

experiment, we con nect an acceler-

ometer* to the plate at the same point 

as the load cell. The accelerometer 

mea sures the struc ture’s re sponse 

and its output is con nect ed to the 

other an a lyz er chan nel. 

Because we are using random noise, 

we will use a Hanning window and 

RMS averaging just as we did in the 

previous sec tion. 

The resulting frequency re sponse  

of this measurement is shown in 

Figure 4.29. The ratio of ac cel er a tion 

to force in g’s/lb is plotted on the  

vertical axis by the use of en gi neer ing 

units, and the data shows a number 

of dis tinct peaks and valleys at par tic-

u lar fre quen cies. We conclude that  

the plate moves more freely when 

sub ject ed to energy at cer tain specific 

frequencies than it does in re sponse 

to energy at other frequencies. We 

recall that each of the resonant peaks 

cor re spond to a mode of vibration of 

the struc ture. 

Our simple plate supports a number 

of different modes of vibration, all of 

which are well sep a rat ed in frequen-

cy. Struc tures with widely separated 

modes of vibration are relatively 

straightforward to analyze since  

each mode can be treated as if it is 

the only one present. Tightly spaced, 

but lightly damped vi bra tion modes 

can also be easily analyzed if the 

Band Selectable Analysis capability  

is used to narrow the analyzer’s filter 

suf fi cient ly to re solve these res o nanc-

es. Tightly spaced modes whose 

damping is high enough to cause the 

re spons es to over lap create com pu ta-

tion al dif fi cul ties in trying to separate 

the effects of the vi bra tion modes. 

Fortunately, many structures fall into 

the first two categories and so can be 

easily analyzed. 

Having inspected the mea sure ment 

and deciding that it met all the above 

criteria, we can store it away. We 

store similar mea sure ments at each 

point by mov ing our accelerometer to 

each num bered point. We will then 

have all the measurement data we 

need to ful ly characterize the struc-

ture in the modal domain. 

Recall from Chapter 2 that each  

frequency response will have the 

same number of peaks, with the same 

resonant frequencies and dampings. 

The next task is to determine these 

resonant fre quen cy and damping  

values for each res o nance of interest. 

We do this by retrieving our stored 

fre quen cy responses and, using a 

curve-fit ting routine, we cal cu late  

the fre quen cy and damping of each 

res o nance of interest. 

With the structural information we 

entered earlier, and the frequency  

and damping of each vi bra tion mode 

which we have just determined, the 

Figure 4.29 

A fre quen cy  

re sponse of  

the plate.

* Displacement, velocity or strain trans duc ers could also be 

used, but ac cel er om e ters are often used because they are 

small and light, and therefore do not affect the response  

of the structure. In addition, they are easy to mount on the 

structure, reducing the total mea sure ment time.
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analyzer can cal cu late the mode 

shapes by curve fitting the responses 

of each point with the measured  

res o nanc es. In Figure 4.30 we show 

several mode shapes of our simple 

rect an gu lar plate. These mode shapes 

can be animated on the display to 

show the relative motion of the vari-

ous parts of the structure. The graphs 

in Fig ure 4.30, however, only show 

the max i mum de flec tion. 

Section 4: Summary 

This note has attempted to demon-

strate the advantages of ex pand ing 

one’s analysis ca pa bil i ties from the 

time do main to the fre quen cy and 

modal do mains. Prob lems that are 

dif fi cult in one do main are often  

clar i fied by a change in per spec tive  

to an oth er domain. The Dy nam ic  

Sig nal Analyzer is a par tic u lar ly  

good anal y sis tool at low frequencies.  

Not only can it work in all three  

do mains, it is also very fast. 

We have developed heuristic argu-

ments as to why Dynamic Signal 

Analyzers have certain prop er ties 

because understanding the prin ci ples 

of these analyzers is im por tant in 

making good measurements. Finally, 

we have shown how Dynamic Signal 

An a lyz ers can be used in a wide  

range of measurement situations 

using rel a tive ly simple examples.  

We have used simple examples 

through out this text to develop 

understanding of the analyzer and  

its measurements, but it is by no 

means limited to such cases. It is  

a powerful instrument that, in the 

hands of an operator who un der-

stands the principles developed in 

this note, can lead to new insights 

and analysis of problems.

Figure 4.30 

Mode shapes  

of a rect an gu lar  

plate.
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The Fourier Transform 

The transformation from the time  

domain to the frequency domain and  

back again is based on the Fourrier  

Transform and its inverse. This Fourier  

Transform pair is defined as: 

Sx(f) =       x (t) e-j2pftdt  (Forward Transform)  A.l 

x(t) =        Sx(f) e j2pftdf   (Inverse Trans form)  A.2 

where 

x(t) = time domain rep re sen ta tion of the signal x 

Sx(f) = frequency domain rep re sen ta tion of the   

 signal x

j =    -1 

The Fourier Transform is valid for both  

periodic* and non-periodic x(t) that  

satisfy certain min i mum conditions.  

All signals en coun tered in the real  

world easily satisfy these re quire ments. 

The Discrete Fourier Trans form 

To compute the Fourier Trans form  

digitally, we must perform a numerical 

integration. This will give us an  

approximation to a true Fourier  

Transform called the Discrete  

Fourier Trans form. 

There are three distinct dif fi cul ties  

with computing the Fourier Transform.  

First, the desired re sult is a continuous  

function. We will only be able to  

calculate its value at discrete points.  

With this constraint our transform  

becomes, 

Sx(mDf) =     x (t) e-j2pmDftdt  A.3

where m = 0, ±1, ±2 

and Df = frequency spacing of our lines  

The second problem is that we must  

evaluate an integral. This is equivalent 

to computing the area under a curve.  

We will do this by adding together the  

areas of nar row rectangles under the  

curve as in Figure A.l. 

Our transform now becomes: 

Sx(mDf) ≈ Dt    x (nDt) e-j2pmDfnDt A.4 

where Dt = time interval between samples 

The last problem is that even with this  

summation approximation to the integral,  

we must sum sam ples over all time from  

minus to plus in fin i ty. We would have to  

wait for ev er to get a result. Clear ly then,  

we must limit the transform to a finite  

time interval. 

Sx(mDf) ≈ Dt    x  (nDt) e-j2pmDfnDt A.5  

As developed in Chapter 3, the fre quen cy  

spacing be tween the lines must be the  

re cip ro cal of the time record length.  

Therefore, we can simplify A.5 to our  

formula for the Discrete Fou ri er  

Trans form, S'x.

 

S'x(mDf) ≈       x(nDt) e-j2pmn/N A.6

Fig ure A.l  

Numerical  

integration  

used in the  

Fourier  

Transform

Δ

π Δ

  ∞
-∞∫
  ∞
-∞∫

  ∞

-∞
Σ

  n-1

 n-0
Σ

 n-0
Σ

  ∞
-∞∫

* The Fourier Series is a special case of the  

Fourier Transform. 
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Appendix A

The Fourier Transform:  
A Mathematical Background
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The Fast Fourier Trans form 

The Fast Fourier Transform (FFT) is 

an algorithm for computing this 

Discrete Fourier Trans form (DFT). 

Before the development of the FFT 

the DFT required ex ces sive amounts 

of com pu ta tion time, particularly 

when high res o lu tion was re quired 

(large N). The FFT forces one fur ther 

as sump tion, that N is a multiple of 2. 

This allows cer tain sym me tries to  

oc cur reducing the number of cal cu la-

tions (spe cif i cal ly mul ti pli ca tions) 

which have to be done. 

It is important to recall here that the 

Fast Fourier Transform is only an  

ap prox i ma tion to the de sired Fou ri er 

Trans form. First, the FFT only gives 

samples of the Fou ri er Trans form. 

Second and more im por tant, it is only 

a trans form of a finite time record of 

the input.

Two Channel Frequency  
Domain Measurements 

As was pointed out in the main  

text, two channel measurements are 

often needed with a Dy nam ic Signal 

Analyzer. In this section we will  

mathematically define the two channel 

transfer function and co her ence  

measurements in tro duced in  

Chapter 4 and prove their more 

important properties. 

However, before we do this, we wish 

to introduce one other func tion, the 

Cross Power Spec trum, Gxy . This 

function is not often used in measure-

ment situations, but is used internally 

by Dynamic Signal Analyzers to  

compute trans fer functions and  

coherence. 

The Cross Power Spectrum, Gxy, is defined as tak ing  

the Fou ri er Trans form of two sig nals sep a rate ly and  

multiplying the result together as follows: 

Gxy (f) = Sx (f) S*y(f) 

where * indicates the complex con ju gate of the func tion. 

With this function, we can define the  

Transfer Function, H(f), us ing the cross  

power spectrum and the spec trum of the  

input channel as follows: 

H(f) =

 

where 
⎯ 

denotes the average of the function. 

At first glance it may seem more  

appropriate to com pute the trans fer  

function as fol lows: 

 

|H(f)|2 = 

This is the ratio of two single chan nel,  

averaged measurements. Not only does  

this mea sure ment not give any phase  

information, it also will be in error when  

there is noise in the mea sure ment. To see  

why let us solve the equations for the  

special case where noise is injected into  

the output as in Figure A.2. The  

output is: 

Sy(f) = Sx(f)H(f) + Sn(f)

So 

Gyy=SySy*= Gxx|H|2+SxHSn+Sx*H*Sn+|Sn|2 

Fig ure A.2  

Trans fer  

function  

measurments  

with noise  

present. 

Gyy

Gxx

Gyy(f)

Gxx(f)
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If we RMS average this result to try to  

eliminate the noise, we find the SxSn  

terms approach zero because Sx, and Sn,  

are uncorrelated. However, the |Sn|2  

term remains as an error and so we get 

 = |H|2 +

Therefore if we try to measure |H|2 by  

this single channel tech niques, our value  

will be high by the noise to signal ratio.

If instead we average the cross power  

spectrum we will eliminate this noise  

error. Using the same example, 

Gyx=SySx*=(SxH+Sn)Sx*= GxxH +SnSx* 

so 

 

 =H(f)+SnSx*

Because Sn, and Sx, are uncorrelated,  

the second term will av er age to zero,  

making this func tion a much better  

estimate of the trans fer function. 

The Coherence Function, g2, is also  

derived from the cross power 

spec trum by: 

 
g2(f) = 

As stated in the main text, the coherence  

function is a measure of the power in  

the output signal caused by the input.  

If the co her ence is 1, then all the output  

pow er is caused by the input. If the  

coherence is 0, then none of the output  

is caused by the input. Let us now look  

at the math e mat ics of the coherence  

function to see why this is so. 

As before, we will assume a mea sure ment  

condition like Figure A.2. Then, as we  

have shown be fore, 

Gxy= Gxx|H|2+SxHSn*+ Sx*H*Sn+|S|2  

Gxy=GxxH+SnSx*

As we average, the cross terms SnSx,  

approach zero, assuming that the signal  

and the noise are not related. So the  

coherence be comes 

g2(f) = 

g2(f) =

We see that if there is no noise, the  

coherence function is unity. If there is  

noise, then the co her ence will be reduced.  

Note also that the co her ence is a function  

of fre quen cy. The coherence can be unity  

at fre quen cies where there is no interference  

and low where the noise is high.

Time Domain Measurements 

Because it is sometimes easier to under- 

stand measurement prob lems from the  

perspective of the time domain, Dynamic  

Signal An a lyz ers of ten include several time  

domain mea sure ments. These in clude auto  

and cross cor re la tion and impulse response. 

Auto Correlation, Rxx(t), is a comparison  

of a signal with itself as a function of  

time shift. It is defined as; 

Rxx(t)=              x(t)x(t+t)dt 

Gyy

Gxx

|Sn|2

Gxx

Gyx

Gxx

Gyx(f)

Gxx(f)

Gxy*(f)

Gyy(f)

|H|2Gxx

|H|2Gxx+Sn
2

(HGyx)2

Gxx(|H|2Gxx+|Sn|2)

lim

T→∞

1

T   T∫
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That is, the auto correlation can be 

found by taking a signal and multiply-

ing it by the same sig nal displaced by 

a time t and av er ag ing the product 

over all time. How ev er, most Dynamic 

Sig nal Analyzers compute this quanti-

ty by taking advantage of its dual in 

the frequency domain. It can be 

shown that 

Rxx(t)=F -1[Sx(f)Sx*(f)] 

where F -1 is the inverse Fourier 

Trans form and Sx is the Fourier 

Transform of x(t) 

Since both techniques yield the same 

answer, the latter is usually chosen 

for Dynamic Signal Anlyzer since the 

Frequency Trans form al go rithm is 

already in the instrument and the 

results can be computed faster because 

fewer multiplications are required. 

Cross Correlation, Rxy(t), is a  

com par i son of two signals as a  

func tion of a time shift between them. 

It is defined as: 

Rxy(t)=              x(t)y(t+t)dt 

As in auto correlation, a Dynamic 

Signal Analyzer computes this quan ti ty 

indirectly, in this case from the cross 

power spectrum.  

 

Rxy(t)=F -1[Gxy] 

Lastly, the Impulse Response, h(t),  

is the dual of the transfer func tion, 

h(t) = F -1[H(f)] 

Note that because the transfer func-

tion normalized the stimulus, the 

impulse response can be com put ed no 

matter what stim u lus is actually used 

on the net work.
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