Here’s the page we think you wanted. See search results instead:

 

Contact an Expert

Calculation of Measurement Uncertainty

It may surprise you to learn that there isn't actually a formal standard for how general-purpose measuring instruments are specified, or how those specifications are determined. Furthermore, when "calibration to manufacturer's specifications" is requested, a common assumption is that all calibration laboratories use a common method to qualify their calibration capability -- in other words, whether the test method/equipment is adequate for the intended purpose. Except for ISO/IEC17025 accredited calibration, this is not the case. “Measurement adequacy” has often been judged by a relatively simple TAR (test accuracy ratio) approach, considering only the principal accuracy specification of the test equipment rather than all of the contributors to the total uncertainty.

ISO/IEC Guide 98-3:2008 Guide to the Expression of Uncertainty in Measurement

The Guide”, or GUM as it has become known, is a 100+ page document which recommends a methodology for qualifying test accuracy (or more correctly, the potential test inaccuracy) and was published in 1993. Although comprehensive in its treatment of the subject, it doesn't enjoy universal acclaim. Statisticians say it is critically flawed. Practicing engineers view it as too complicated and lengthy. It is, nevertheless, the first methodology to achieve formal, international consensus after decades of debate. Visit http://www.iso.org  to purchase this publication.

OIML G 1-100:2008 – The Free Version of the GUM

A free version of the GUM is available from the International Organization of Legal Metrology. Download it by visiting http://www.oiml.org  and search explicitly for “Evaluation of measurement data - Guide to the expression of uncertainty in measurement”.

Free Practical Guides for Technicians

Before, and after, release of the GUM several national guides have been produced which aim to provide practical advice for those equipment users who are more likely to be at technician level rather than scientists.

EA-4/02 Expression of the Uncertainty of Measurement in Calibration

Released in December 1999, this is a comprehensive (79 pages) and authoritative publication (from Europe's official accreditation organization). Other than price (FREE), what makes this especially valuable is the number of examples that are used to illustrate the uncertainty budgeting process. Visit http://www.european-accreditation.org/  to locate this publication.

UKAS M3003

The first, widely acknowledged practical guide was undoubtedly the old British Calibration Service's document B3003 that addressed electrical calibrations and which subsequently became NAMAS NIS3003 and later renamed M3003. The latest 82-page version (edition 2, January 2007) is consistent with the GUM and includes examples from the non-electrical fields. Visit http://www.ukas.com/  to locate this publication.

NIST Technical Note 1297

The US National Institute of Standards and Technology published their own document to aid understanding of the ISO's, rather daunting, GUM. In outlining their policy and defining the practice for NIST's own staff, this document simplifies the GUM to just 25 pages.. Visit http://www.nist.gov/  to locate this publication.

SAC-SINGLAS Technical Guide 1

This document includes a large collection of examples from various measurement disciplines and, for that alone, is a valuable resource. Visit http://www.sac-accreditation.gov.sg/  to locate this publication.