Here’s the page we think you wanted. See search results instead:


Contact an Expert


Prices for: Canada (English)

* Prices are subject to change without notice. Prices shown are Manufacturer's Suggested Retail Prices (MSRP). Prices shown are exclusive of taxes.


SystemVue ESL Design SoftwareThe W1905 Radar Model Library saves development time and verification expense in R&D for radar system architects, algorithm developers, and system verifiers.

The library provides approximately 110 highly-parameterized simulation blocks and several dozen ready-made reference designs for creating working radar system scenarios, including radar processing blocks, environmental effects items such as clutter, targets, and even hardware measurements. Instead of modeling an entire scenario from primitive function calls for each object, simply connect realistic reference designs with RF models and test equipment to study and verify radar system architectures. The W1905 library can be applied to a wide range of radar technologies, making it a useful algorithmic reference for both commercial and military applications.

The W1905 library recently added 3D inertial modeling “layers” above the baseband radar signal processing references(see Figure 4 below). They account for the 3-D positions, velocities, rotations, and beamforming directions of each transmitter, receiver and target, allowing modelers to create and script meaningful airborne, shipborne and multi-static scenarios or environments.

What’s New for SystemVue 2016.08

  • 20 new models, including many with “matrix” support to handle multiple concurrent objects
  • Pulse Descriptor Word (PDW) generation and download to Keysight N5193A “UXG” Agile Signal Generator
  • W1905 now includes access to the W1720 Phased Array Beamforming Kit, for design flow support for phased array platforms.

Radar Technologies

  • pulsed and pulsed-doppler (PD) radar architectures for telemetry and EW applications
  • ultra-wideband (UWB) radars, and wideband receivers
  • phased array and digital array radars (DAR), with dynamic coordinates, attitude, and beamforming weights
  • synthetic aperture radars (SAR) and beamforming for raster imaging and mapping
  • stepped-frequency radars (SFR) for ground- and wall-penetrating applications
  • frequency modulated continuous-wave (FMCW) radars for automotive applications
  • MIMO radars for increased range resolution and robustness
  • Multi-static radars with multiple TX and RX locations, which can be in motion (vehicle/ship/air/space-borne)
  • signal generation for embedded simulators and test & measurement applications
  • Click here to see simulation models

The W1905 blockset and its example workspaces serve as algorithmic and architectural reference designs to verify radar performance under different signal conditions. These can include target and RCS scenarios, clutter conditions, jammers and environmental interferers, and more. By accounting for a diverse set of environmental effects, while maintaining an open modeling environment (MATLAB, C++, VHDL, test equipment), the Radar system designer can explore architectures with high confidence in early R&D, without requiring expensive outdoor range testing or hardware simulators.

SystemVue connects baseband algorithm modelers with a variety of other domains. SystemVue can also be used to create reference signals for download to test equipment, as well as post-process signals captured from test equipment, to create virtual verification systems at low cost. 

SystemVue Radar Models

Figure 1. SystemVue’s W1905 radar library helps model the signal processing algorithms as well as the radar environment, and connects to UWB test equipment, such as the new Keysight M8190A/95 AWG, M9703A/B digitizer, and Keysight’s new N5193A UXG agile electronic warfare signal generator.

Who should buy the W1905 Radar Model Library?

  • Radar system designers in military, regulatory, commercial, avionics, automotive, medical, research, academic, and consulting applications.
  • Electronic Warfare system architects developing can use the W1905 as a working reference IP to model unfriendly radar topologies for jamming and countermeasure scenarios


  • Create proposals and assess feasibility quickly
  • Accurate radar system architecture and scenario analysis
    • Include realistic RF effects, clutter, fading, and directly-measured waveforms
    • Leverage your existing MATLAB, HDL, and C++ algorithms
    • Continue into hardware test using the same SystemVue environment and IP
    • Multi-Emitter Environment Test Signals
  • Algorithmic reference & test vector generation for baseband DSP hardware design
  • Precisely-degraded BB/RF signal generation for receiver testing
    • Reduce the need for expensive chambers, hardware emulators, faders, and field testing in the early phases of design
    • Reduce NRE and scripting with regression suites of simulated scenarios
    • Save time by verifying algorithms prior to targeted FPGA/ASIC implementation
  • Minimize project costs with easily reconfigured Keysight simulation tools and test equipment

W1905 Radar Processing

Figure 2. SystemVue Radar library includes native support for the effects of beamforming and sophisticated signal processing.

 SystemVue Radar Signal Path ModelsFigure 3. Fading, delay, and other parameters from a virtual flight scenario over a 3D terrain database were passed from the AGI STK 10 software into the fading, target and clutter models of the SystemVue W1905 radar library. SystemVue was then scripted to render the actual RF signal at any point along the virtual mission to Keysight instruments, in order to provide far less expensive “virtual flight testing” in an R&D environment. Learn more in application note 5991-1254EN. Watch an example of SystemVue integration with AGI's STK* software: Virtual Flight Testing of Radar System Performance  (*Please contact AGI directly about the availability of STK in your country).


W1905 supports 3D scenarios with motion and rotation

Figure 4. The W1905 library now supports the creation of 3D scenarios with motion and rotation, along with adaptive digital beamforming (ADBF) for phased arrays, and electronic warfare (EW) techniques. These are essential tools for modeling realistic shipborne, airborne, and spaceborne systems.

What are Customers Saying?

  • “The additions made this year have greatly increased the value of using SystemVue to analyze phased arrays over spreadsheets. The three features that are most helpful are the addition of s-parameters to the phased array components, the multi-tone frequency analysis, and the far field block in DataFlow. Now I can have 1 array model that I build with a phased array analysis and use RF link for dynamic analysis”
  • “Like single tone and multi-tone intermod and harmonic simulation in phased array analysis”
  • “Analysis of system designs that took about a day to run in SystemVue that take a week to complete in our alternative tools”
  • “We have a fully integrated N channel transmit receive module implemented in SystemVue that closely matches expected parameters”
  • “Keysight did everything we asked in Phased Array Design kit”
  • “I am excited to start using this tools in detailed AESA system design”

For More Information

Please directly contact your local Keysight EEsof EDA sales representative to inquire about this library and its associated training and consulting services.

To view all SystemVue configurations, refer to the SystemVue Product Structure & Options Summary.